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Abstract

A simple sufficient condition is given for the linear ideal instability of plane parallel
equilibria with antisymmetric shear flow and symmetric or antisymmetric magnetic
field. Application of this condition shows that plane Couette flow, which is stable in
the absence of ma/gnetic field, can be driven unstable by a symmetric magnetic field.
Also, although strong magnetic shear can stabilize shear flow with a hyperbolic tangent

profile, there exists a range of magnetic shear that causes destabilization.



I. Introduction

Shear flow is a very common pheﬁomenon. It appears in such diverse areas as in astrophysical
jets,! the magnetosphere,? and rotating plasmas. Recently, experiments® in the DIII-D
tokamak show that there is a substantial increase in the perpendicular component of plasma
flow velocity associated with the L (low) to H (high) confinement mode transition. Since
shear flow contains a source of free energy, it can give rise to the Kelvin-Helmholtz (K-H)
instability.* A necessary condition for K-H instability to occur is the Rayleigh inflection point
condition. The physical role of the inflection point condition is explained by the conservation
of vorticity®: In order to release the free energy contained in the shear flow there needs to be a
vorticity extremum, since only then does the restoring force against a perturbation vanishes.
Shear flows that are stable can become unstable when the magnetic field is included. The
purpose of the present paper is to present a simple condition for such instability.

The presence of the magnetic field has a dual role for the instability of shear flow. The
magnetic field exerts a tension on the fluid which usually acts as a restoring force on a
disturbance. So it is easy to imagine that the flow is completely stabilized if magnetic
energy overpowers kinetic energy everywhere;® i.e. A? > V2 in the whole region, where A is
the local Alfvén speed. This condition need only hold in some reference frame for stability
to be established. It was also shown by using the semicircle theorem” that the flow is stable
if |Almin > (Vinax — Vinin)/2. References (8) and (9) have discussed the stabilizing effect of
magnetic shear. On the other hand, sometimes the magnetic field can destabilize the shear
flow, since it breaks the constraint of local conservations of vorticity and thus makes the shear
flow free energy accessible. In this case the existence of an inflection point is not necessary
for instability. Kent!® has shown that a stable symmetric flow can be driven unstable by a

symmetric magnetic field if, on the boundary A = 0 and V'V” — A’A” > 0, where prime



denotes differentiation with respect to y. Stern!! has also discussed the destabilizing effect of
a piecewise continuous magnetic field on piane Cou‘ette flow. The actual role of the magnetic
field depends on the specific profiles of both the flow and the magnetic field. Kent® has shown
that a constant magnetic field stabilize some, while destabilize other monotonic flow profiles.

In the present paper, we consider a sufficient condition for instability, by assuming that
the flow is antisymmetric and that the magnetic field has parity; i.e. it is either symmetric
or antisymmetric. A technique!? which is based on the use of symmetries and the Nyquist
method is used to obtain a simple formula. Though the symmetries we assume may limit
application to some practical problems, results obtained from these special profiles provide
insight into the physics and will be helpful in the more realistic situations. In many circum-
stances, the shear flow can be approximated by antisymmetric profiles. An antisymmetric
hyperbolic tangent profile has been used to model the edge flow in tokamaks.®

In Sec. IT we give the derivation of the sufficient condition for instability. In Sec. III this |

condition is applied to plane Couette flow and to a hyperbolic tangent flow profile. =

II. A sufficient condition for inStability

In order to focus on the shear flow driven K-H instability, we neglect dissipation. In many
situations, this is justified since the dissipation diffusion time scale is much longer than the

K-H time scale. The ideal incompressible magnetohydrodynamic (MHD) equations are

ov

P(—éT'*‘V'VV):—VP-E-l/élW(VXé)XE
0B _ o =
W—VX(VXB) (1)

V.V=0, V-B=0,

where P, V and B denote respectively the pressure, velocity and magnetic fields, and p is

the density. For simplicity, we adopt the slab geometry. Obviously a shear flow V= V(y)

3



and parallel magnetic field B = B(y)Z is an equilibrium state of above equations. Here
we assume that such a flow is confined between rigid walls located at y = —l and y = [.
Assuming that all the perturbed field components have the form f(k, ¢,y) exp tk(z — ct), the

normal mode equations for the transverse displacement w are®

(V=) = A = k*((V — ¢)* = A)w =0, (2)

where prime denotes differentiation with respect to y, and A(y), as noted above, is the local
Alfvén velocity. Since the transverse displacement vanishes at the rigid walls, Eq. (2) has the
boundary conditions w(!) = w(~{) = 0. Equation (2) together with the boundary conditions
gives the dispersion relation ¢ = ¢(k?). If ¢ is complex for a certain range of wavenumbers
k, the shear flow is unstable. Since Eq. (2) is regular for complex ¢, ¢(k?) in this case is an
analytic function of .

Here we consider an extreme case with wavenumber & = 0. If there exists an eigenvalue
where Im(c) = ¢; # 0 for k = 0, then this is sufficient to say that the system is unstable.
Strictly speaking, the growth rate kc; is zero when k = 0, but analyticity of c(k?) ensures a
finite growth rate near k¥ = 0. This argument has previously been used in Refs. (6) and (13).

Setting k¥ = 0 in Eq. (2), integrating, and applying the boundary conditions leads to

F(c)=/_ll(v—_h=0. (3)

Without solving the above integral equation for the eigenvalue ¢, we can use the Nyquist
diagram method in a manner similar to the Penrose criterion,'* to determine whether or
not there exist unstable modes. By a well-known theorem of complex analysis, the number
of roots of an analytic function like F in the upper half-plane (Im(c) > 0) is given by the
number of times a polar plot of F' encircles the origin as ¢ traces out the curve as shown in
Fig. 1. Path 3-1 has a distance ¢ from the real axis so that the singularity on the real axis
is avoided. Thus F'(c) is an analytic function. However, in order not to miss any possible

unstable modes, we take the limit ¢ — 0.



Along the path 1-2-3, ¢ = Re” and in the limit R — oo, F(c) ~ 2le~%?/R%. The corre-
sponding plot of F'is shown in Fig. 2. Since we assumed that the shear flow is a,ntisymmetric.
‘ and that the magnetic field is either symmetric or antisymmetric, we have along path 3-1 in
Fig. 1.
F(c, +i€) = F*(—c, +ic) ,
where “¥” means complex conjugate. Thus we have the following conclusions:

(i) Im F(0 +ie =) =0,

(i) I Im F(er +€=) =0, (¢ #0), then
Im F(—c +ie=) =0, and
Re F(c, +ie =) = Re F(—c, +ie=).

To determine the winding number (the number of times F (¢) encircles ‘the origin), we can
just count the points of crossing of the real axis. Denote crossing points by n; associated
With such points are two quantities: |
{ 1, crossing of real axis with up direction
On =

1, crossing of real axis with down direction

and ‘ v
1, ReF,>0
T = 0, ReF,=0
-1, RefF,<0.

Since the Nyquist diagram must be closed as ¢ traces the path of Fig. 1, this implies the

following conclusions:
(1) The total number of crossing points is even and Y, o, = 0;

(ii) For crossing points ¢ and j with r; = r; and o; 4+ o; = 0, there is cancellation and thus

no contribution to the winding number.



As an example note that the Nyquist diagrams of Fig. 3a and Fig. 3b produce the
same winding number (Here the double arrows designate two crossings). In both cases, the
winding number is unity, and there exists one unstable mode. For the present problem, if
Re F(0 + i€) > 0, then the total number of crossing points with positive and negative Re F'
are both odd numbers, and we always have net crossing on each side of the real axis of F'(c).
Now we consider respectively two possible cases.

Case I: In this case we suppose there are no crossing points with Re F' = 0. Thus the net
crossing with Re F' > 0 and Re F' < 0 must point in opposite directions. Hence, the Nyquist
diagram encircles the origin at least once, and there exsits at least one unstable mode.

Case II: In this case there exist crossing points with Re F'(dc, + ¢€) = 0, which implies
that there exist marginal modes with ¢ = £¢,. When this occurs we can prove that the
Nyquist diagram always indicates a none zero winding number. In other words, it is impos-
sible to have a Nyquist diagram with the net crossing for Re F' > 0 and the net crossing for
Re F < 0 pointing in the same direction. For the moment suppose this is the case. The
Nyquist diagram will be as shown in Fig. 4a and there exists no unstable mode. Now we
change the ¢ contour a little bit, so that € is very small but with finite value; instead of
proceeding to the limit ¢ — 0. Since there exists no unstable mode, there are no crossing
points with Re F' = 0 along the new contour. Furthermore, we still have Re F(0 + i¢) > 0,
since € is very small. Using the argument of Case I, there exists an unstable mode as the
example shown in Fig. 4b indicates. This contradicts our original assumption and thus the
proof is established.

From the above discussion, a sufficient condition for instability with antisymmetric shear

flow and antisymmetric or symmetric magnetic fields is given by

F(°+“)=/_lz(v—z'i?;2—,42>o’ | @

where the limit ¢ — 0 from above is assumed. For the case of antisymmetric shear flow with



only one inflection point, the inflection point should be at y = 0. When A = 0 (i.e. without
magnetic fleld), our sufficient condition Eq. (4) reduces to that obtained in Ref. 13, and this

condition becomes both sufficient and necessary for instability because of Lin’s theorem.’

ITI. Applications

In this section we apply the simple sufficient condition just derived to two examples which

demonstrate the effect of the magnetic field on the stability of shear flow.

A. Plane Couette Flow

For a plane Couette flow profile V(y) = by, there is no vorticity extremum and thus this flow
is K-H stable.!® Stern!! has shown that the Couette flow can be destabilized by a piecewise
continuous magnetic fleld. Here we add a symmetric magnetic field A(y) = ay? to the
Couette flow equilibrium. The destabilizing effect of this symmetric magneﬁc field is easily
demonstrated from our simple sufficient condition. Equation (4) gives

A . 1+ AD)/V) -
logll—-A(l)/V(l)D ' ®)

1
V(b (‘2 70

When the magnetic field at the boundaries is sufficiently strong; i.e. A(])/V(I) > f, Whére_

F(0+i¢) =

f ~ 0.834 is the value at which F(0 + z¢) = 0, F/(0 4+ z¢) > 0 and there is instability.

B. Hyperbolic Tangent Shear Flow

For the second example, we consider a hyperbolic tangent shear flow V(y) = V5 tanh(y/d1).
In the case without magnetic field, Eq. (4) is both sufficient and necessary for instability; it
indicates that the hyperbolic tangent shear flow is unstable if and only if [/d; > 2.39. Now
we add a magnetic shear A(y) = Agy/dz. When the magnetic shear is strong enough so that
'Ao/ dy > Vp/dy, the shear flow will be always stable since the magnetic energy overpowers

the kinetic energy everywhere; i.e. A(y)? > V(y)? for all y. We want to know what happens



if the magnetic shear is-not this strong. For simplicity of evaluating the integral in Eq. (4),

we approximate the hyperbolic tangent profile by a piecewise continuous one

Vo y > dy
V(y) =4 Voy/dr |yt| < ds
- y<—d.

With these assumed forms of V and A, Eq. (4) yields

1 (V' + A d) (V! — A 2 ) | ©

F(O + Ze) = 1/d1 (V’A’ 10g (V"l' Al) IV’ — A’l/d1| B V2 - A2

where V! = Vp/dy, A" = Ao/ds, and V' > A’, | > dy are assumed. In order to stabilize
the unstable shear flow, it is necessary to have F(0 +4¢) < 0. When A’ > A’, where A4’
satisfies \/%TV' > A’ > &V, the necessary condition is satisfied. However it is interesting
to notice that when A’ ~ &V’;ie. A(l) ~ V(I), F(0 + ie) is always positive. A stable flow
(I/dy < 2.39) can be driven unstable by the magnetic shear in this range. Thus magnetic
shear does not always stabilize the K-H instability.

We conclude from the above two examples that the magnetic field in the midplane tends
to stabilize the shear flow, while the magnetic field at the boundaries tends to destabilize the
shear flow, especially when A({) ~ V(I). In the plane Coutte flow example A(0)/V(0) = 0,
thus this flow is destabilized by the magnetic field at the boundaries. In the hyperbolic
tangent flow example, the magnetic shear destabilizes the flow when A’ ~ &4V"; ie. A(l) ~
V(l). However, a large magnetic shear stabilizes the flow. In this case, the stabilizing effect
of the magnetic field in the midplane overcomes the destabilizing effect of the magnetic field

at the boundaries.
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Figure Captions
1. Nyquist diagram in the c-plane.
2. Nyquist diagram in the F-plane.
3. (a) A Nyquist diagram with 8 crossing points. The double arrows indicate two cross-
ings. | |
(b) A diagram equivalent to 3(a).
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4. (a) A Nyquist diagram having crossing points with Re F' = 0, and with the net crossing

for Re F' > 0 and Re F' < 0 pointing in the same direction.

(b) The Nyquist diagram of 4(a) with finite but small values of ¢, instead of € = 0.
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