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Abstract

A theory of drift wave turbulence is presented

based on a low density gas of drift wave solitons. The

Gibbs's ensemble for the ideal gas is used to calculate

the dynamical scattering factor form S(k,w). In contrast

to renormalized turbulence theory, the spectrum has a

broad frequency componént with. Aw proportional to the

fluctuation level -'5ne/nO at fixed k

frequency :a)>“kyvde'

and peaks at a

T
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I. - introduction

The electromégnetic scattering experiments of
Mazzucatol, Surko and Slusherz, and Koec'hlin3 havé'led to
the'identification‘of the micro—turbulence in tokamaks with
drift wave turbulenCe, The general features of the dynam-
ical form factor S(E,aﬁ for the electron density fluctu-
ations <Il6né(£,aﬁlz> are interpreted in ferms of the
frequency' kyvde where Vie is the electron diamggnetic
drift velocity, and the most unstable wavenumbers'of drift
wave theory klpg < 1 where P is'the_ion inertial
scale lengfh, pé = c(miTe)%/eB, 'Efforﬁs to make a detailed
comparison of the‘scéttering data with theory, however, have

been frustrated by the fact that for a well-defined k and

scattering volume, the distribution of the scattered power

has @ peak at a rréquency Whlch.ls two to ten times larger
than the linear drift frequency, ui, and a width, Aw ,
larger than the peak-fréquency;y Anhéxplanation of the peak
has been given in'terms.of a doppler shift due to a radial
elect:ic field by XKoch and Tang4. This‘explanation doeé
~not account for the width of the spectrumfas reported, for
EXample; in Figure 6 of Mazzuéatds. " The Broad frequency'
spectrum lies outside the scope of renormalizéd weak
turbulence theories which ‘typically give ' Aw;$'w£ 6.

- These theories use an assumption of weak correlations.(egg.,
"maximal randomness" of the DIA7) thch predicts, for
moderate levels, Aw ?roportional to integrals 6ver

I, « <|én_ (k)] 2 >
. e o
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In this paper We‘propose,-as'an alternative theoretical
framework for intérpretation of the scattering experiments,
the concept of an (nearly)’ideal gas of drift wave solitons.
Similar ideas héve'been'extenSively studiedAip the context

of condensed matter physiCSB. These studies show that

solitons contribute‘ﬁo the free’energy of nonlinear lattices

in equilibrium, and furthermore, that their effects are

experimentally detectable

While the configuration space phenomenolbgy of Currie

et a1;8 has been applied to nonlinear KleinéGofdon'equations,

very few results have been obtained for the field theories
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of plasma physics. Kingsep, Rudakov and Sudan have

studied the wavenumber "spectrum generated by a gas of

Langmuir solitons. Zakharovll has obtained a kinetic

equation tdr_a given set ot deV. solitons. He shows that

the pairwise interaction of solitons (which causes a phase

shift) leads to an efféctiVe‘renormalization éf the soliton
velocity.

We folloﬁithe approach of Matsunolz, who derived the
wavenumber spectrum due to = Kdv solitonsvfrom'a particﬁlar
initial configuration; assuming that soliton overlap can be
neglected. We obtain the form factér, S(%;w), due to
solitons which arise from an ensemble of initial conditions

with a given mean square‘flUcﬁuation level, <(8n)2>>.
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For simplicity, we adopt a one-dimensional drift wave

theory given by Petviashv"ilijf3 which is obtained from

pressureless ion fluid equatiohs with adiabatic electrons.
However, the concept of a drift wave soliton gas also
applies to many other systems with stable, localized,
coherent structures in any number of dimensions.

The principal result of this paper is a formula for
the spectrum, S(E,w), which is qualitatively différent
from previous formulés (see Ref. 6) based on weakly
correlated linear normal modes. Basically, this result
follows from the soliton‘"diSpersion" relation, " w = ku,
where soliton velocity, u-, depends upon its amplitude.
In a system Where a’large.number of solitons are excited

with varying amplitudes, the frequency spread for a given

. ) .
k dis Aw ~ k:(LA”)2 > - whereAu is the width of the

soliton velocity distribution. \Fufthermore, for drift

waves (as well as many other cases), the allowed soliton
velocities fall in a range‘cdmplemeﬁtary to the phase |
velocity of the linear modes. 1In particular, drift wave
solitons have u > Vg ér u < 0 . We will show

that forimoderate but low fluctuatidn levels, the u > Vg
solitons are.preferentia;ly excited, leading to a spectra
peaked at w >~kvd. For larger levels the u < d solitons

become more important, giving spectra peaked at w=<o.
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II. Drift Wave Solitons

We adopt a simplified two-fluid description of the

plasma, where the electrons are adiabatic

e®(r,t)
né(E;t) = n(x) exp [_T;T§T—]

and the ions are pressureless. The magnetic field is
constant, B =.B02, while the mean density, n , and
electron tempéraﬁure; Te , depend only upon the radial
coordinate, x. Beginning with quaéineutrality and the
hydrodynamic equations for the ion momentum anq density,
one derives a single équation for the electrostatic
pofential, ®, which is vali@ for ayﬁﬁ “@ps/rn << 1.
Here, C% =‘eB/mic . r;l = -axn/n, and p_ = cs/ﬁﬁ with

: 1 .
c, = (Te/mi)z' This equation contains both the EXB
] 5

nonlinearitqu‘and temperature gradient nonlinéarityl .
In this paper we consider the limit (kxps)(kps)2<< ne(ps/rn)
lwhere Mg é'—rn (BXTG/Te) | so'ﬁhat the temperature -
 gradient nonlinearity dominates. The opposite limit (which
is essentially two-dimensional) will be treated in later
work.

The temperature gradient drift Wavé is governed by

the equation

<l - inf) at¢ + vdayw - vdwayw = 0 (1)

_ . _ 13
where ¢ —_ne(e®/Te) and Vg — pScS/rn .




The Petviashvili equation (1) possesses two-dimensional
solitary wave solutions, but for analytical tractability
we consider only gquasi-one-dimensional solutions. The

radial dimension of such solutions is limited by the scale

of variation of vd(x) in Eg. (1). Balancing Vdpsai
with the variation of va(x). about its maximum,
_szaivd,'gives

(ax)? ~ pr_ . | (2)

Thus, the ohe—dimensional drift wave solitons are taken
to extend over the'radial région Ax, centered at the.
ﬁaximum of vy, with an axial length Az = L,

The one-dimensional version of Eg. (l)Ahas been
studied extensively as a "regularizéd" version of the R4V’

equationls, called the regularized lbng—wéve (RLW) eqguation.

and seems to have been first derived by Peregrine / in the
context of tidal waves. Like the K4V equation, Eg. (1)

has solitary wave solutions

. L u 2| 1 Va.
‘pS(YItlyolu) = 3 ('—- - l) sech Fg- (l - —u—>

where the velocity is restricted to the ranges

u > v or u < 0 . (4)
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 Unlike the K4V eguation, these solutions are not
"solitons" in the'pure sense, since they are not preserved
upon collisionl8. However for collisions of moderate
amplitude solitary waves travelling in the same direction,
the inelasticity of collisions is extremely difficult to
detect. 1In head-on collisions the inelasticity is more
pronouncedl8.

Therefore, solitary waves of Eg. (3) will persist for
iong times and through many collisions. As has been
emphasized previouslys, solitary waves which are not
sfrictly solitons still can have an important contribution
to the statistical properties of the turbulent fields.

Tb‘determine statistical properties we will”need the

drift wave eneigy

L=

= 11,2 2 dy
E _'ZJL + (psayw)J - (5)
Which is the physical energy in units of neTepsAch/ni

The energy of the solitary wave, Eq. (3), is

: Vd) |
(6 - —u— (6)

and- is displayed in Figure 1 as a fun;tibn of u/vd.

For u/vd > 1, Es increases quadratically, while as
-0 Eqg. (6) reduces to E_ = 12/5(va/Iui);§ .
The.minimum Es for u <0 occurs at u =-Vd(2 - JV10)/12

= ~0.096 v4 where ES-=_14.Ol.

~——T

™I




III. Solitary Wave'Speétrum

‘A turbulent state described by Eg. (1) will consist
of a broad wavenumber spectrum of small]amplitﬁde modes.
together with an ensemble of solitary waves. For each
'linear mode the frequency spectrum will be peaked aboﬁt
«Qi = kvg/[1 + (kp;)z] with some width determined, for
example, by resonance broadeniﬁg‘theory. EaCh_sélitary
wave, however, contributes frequehcies which depend upon
its velocity (and hence its amplifude) through'_w = ku.
By virtue of Eqg. (4) these frequenciésvﬁill range over
w>kvy and w <0 which is cémplementary to the range
of the linear dispersion rélation.

As a first approximation we ignore the small

amplitude component supposing that its spectrum can be

mer-e—]:y—ad—d—e—d—to—tha-t-fo-r.—th-e solittary waves. —Actually
we expect8 that the interaction between solitary waves
and linear modes will act to renormalize ‘the solitary

wave parameters giving,"dressed solitons."

Furthermore, we assume the potential can be written

as a superposition of solitary waves
N
'8

p(y,8) = E oy tiy ,u) - : (7)

- n=1 : ' -
This ignores the strohg interactions between these
esSentially nonlinear objects which occur whenever they
overlap. To the extent that the solitary waves act as

kRdv. solitons (e.g., (kps)2 << 1) the only effect of

e
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this interaction is a phase shift of the soliton positions.
Zakharovll has shéwn that thig phase shift acts.to
renormalize the soliton velocities. This effect is propor-
tional to the soliton number density which we assume small,
land verify a posteriond. |

The spectral density is.the Fourier transform of the

two—point'correlétion function:

i

<yplx + &, t +1)e(x,t)>

. . I
= : 3 '/dkfdwsm,w)elkg ST
| (27) | -

where the average is over the ensemble specified below.
Utilizing the complete field from Eq. (7) with the solution

Eg. (3), gives

. N /.. ' ‘ -
S _;4
1 u TKkp . T
T E 127kp . -E>csch : = §(w - ku_)
_ s\v4 qu:—gfza— : : n
S(k!Q» - n=1 ‘ ‘d n /
0 ' 0 <w< kvd , ' . (8)

where we have assumed that the solitary wave positions,
y,r are randomly distributed along the length L
(generally, L = 27r thé circumferencé of the cdnfinement
device at the radius r which gives the maximum va);

For a large number of solitary waves, Ng >> 1, the sum
in Eg. (8) may be converted to an integral over the

distribution-function, fs(u), of solitary waves in u—spade:

1 TIT
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l . | w w /[ w

Slkyad = i"is(E) L2mpg ;g csch \”kpsv/un— kv4 > (9)
where [ __ f_(u)du = N_ . Before determining E (W),

we can deduce the qualitative shape of S(k,w) directly

from Eq. (9)

(2e (@ |
wfs(E) w <0

0 | - 0 < w<kvy
S(k,w ~ < - 9 A

: < { ]
exp —Zwkps (ZT:_E$E> kvd Lw <L kvd 1+ (nkps)
2. [@ : ’ 2 .
\ wE (E) kvd[l + (7kp ) } < w .

(Io)

- Note that 5 = 0 just in the range where small amplitude
excitations contribute. If there is some maximum

amplitude solitary wave, then Egs. (9) and (3)

.flwmax,’

imply S(k,w) = 0 for az>>(l + l/31¢maxl)kvd-
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IV. Canonical Distribution Function

To obtain thé function fs(u), we suppose that the
arift wave disturbances can be characterized by a Gibbs
ensemble. The solitar§ waves, to the exteht they
resemble solitons, can be thought of as nonlinear normal
mode solutions. It is well known that, for.a soliton-~
bearing equation such as KdV, the inverse spectral
transform acts as a canonical transform to action-angle
coordinates in which each soliton\is represented by one
dégree of freedom (J,g)lg. In these coordinates the

Gibbs ensemble for a single soliton is

- P(J,0) = %‘e—ﬁsES(J) S < (11)

where the'enefgy is only a function of the soliton action

J7—and—Z is the partition function (nNormalization

constant). The effective inverse temperature, BS, fixes
the mean soliton enérgy. |

Even though such a. transformation may be difficult
(or, in the casé of RILW, perhaps impossible) we cén |
calculate P..by following an arguﬁentlgiven by Bolterauer
and Opper20. Integration of Eg. (1) over ® and a’

transformation of coordinates from J to E, gives

. ] -1
oE :
_ 27 s - _E

Since J- is a canonical variable, the: derivative aEs/aJ

is the frequency @. For a soliton, which acts as a free
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particle

Hle

and therefore

0E
P(u) = % -—a—u—§- % e—BSE.S (u) . (12)

Note that the soliton energy is now expressed as a
function of its velocity, which is an easily calculable
function. Since true solitons act as independent degrees

~of freedom, the " N_ soliton probability distribution is

just the product of N, one-soliton probabilities, Eq. (12);

therefore the one-soliton distribution function is

£.(u) = N_P(u) .. . (13)

The argument used to derive Eq.'(l3) is not strictly

B

valid for RIW since this equation does not have true
soliton solutions. Nevertheless, the great stability of
the RLW solitary waves observed in simulations indicates
that Eq. (13) is a reasonable approximation.

In Figure 2 we present a plot of ’fs(u), Eg. (13),
with the energy function of Eq. (6) and By = 1/2.
For low temperatures, ﬁs >> 1, the distribution function
- simplifies to the R4V form since the negative velocities

have exponentially small qgight
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5/2

u | u 3/2
NS(GE - l) exp *1255(55 - l).’ u > vy

£ (u) = o , ' , , (8

0 u < Vg o
(l4a)
Negative velocity solitary waves become significantly

excited for BSVS 1/2 with the distribution peaked in

the region -0.096 vg <u<0 and

Ns<z%)5/2 exp [%§-65.<:%)1/2] u<o

<

fs(u) o . ' (ﬁs

(14Db)

>> 1)

<< 1)

11T
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V. S6éliton Number Density and Temperature

To utilize the distribution function, Eq. (13), it

is neceésary to know thé”effedtive'temperaturé; ,TS =Aﬁsg,
which fixes the mean energy, <E_> . The relationship
between these quantifies is obtained through
<ES>--=, j[ du.ES(u)P(u)h
. —-o0 _

where P(u) is given by Eq. (12). This integral can be
done approximately utilizing Egq. (14), yielding

v T, ' Ty <1
<Es> ~

' 3T | T > 1 . (15)

where in the upper (lower) relation dnly the " u >-vd

(u < 0) solitary waves contribute.

Since the solitary waves represent independent degrees

of freedom, energy is equipartitioned and '’

o L "2 L\ .2
<E > =~ (L) <> = (2 ¢
NS S (pS) ‘p (pS> SDO

(le6)

where we assume that the fluctuation energy represented
by ¢g is entirely due to the sblitary waves which have
a number density ng =-NS/L:'

The total available thermal energy for the drift wave
field may be estimated using thermodynamic arguments.
There are two energy sources ariSing from the background

temperature and density gradients: The'diamagnetid-kinetic

11"
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energy and the free energy of expansion from relaxation
of the gradients2l; ‘When the radial scale of the dfift
waves is large, Ax >>-ps, expansion energy dominates.
and a thermodyﬁamic boﬁnd.iSZl
2 p
g (=] -l
n n

Equation (2) has been used for Ax, thé’fadial extent of
the drift waves.

Once the energy available to the field is known, we
only need to calculate N, to obtain, through Egs. (16)
and (15),. the temperature. This requires knowledge of
the number of SOIiéénéuémerging from a particular initial
state, ¢(x)} Siﬁce the initial value problem for the

RLW equation remains unsolved, we turn again to Kd4v--

recalling that the results will be éorrect for small Ty

| The inverse spectral transform allows the determination
of the number of solitons emitted by any particular initial
state. For moderate amplitude initial states,

. (Ps
CPmax > (T, o

the number of solitons'produced'is lérge:and a WKB

approximation of thevinverse problem can be used o obtain22

Nle] = ;_l fdx Ve (x) . (18)
/6TP

<0 -

1 1T
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This result is only valid when ¢ < 0 for all y: When
¢ > 0, non=soliton excitations significantly affect
Eg. (18). As a first approximation, we will use Eqg. (18)
for the general case.

To compute the mean number of solitons, we average

Egq. (18) using a Gibbs ensemble‘With'the.‘KdV energy
._}_/2éz B
frav T 2J% b (19)

which is dbﬁained from Eqg.. (5) when kps << 1. The mean
square potential is fixed to agree With,the‘availble energy
of Eq. (17), <¢2> =3¢§. The meanxhﬁmber'of solitons is
determined by a functional integral which upon

discretization becomes

<N_> 1 f"g 'NFW“"“"[“J'/wi\ T 207
N =. — ) 50" 90 exp - . “
S Z i=lj 1; .- L 2 K@O} J b ‘
.. 2.n/2 . T o |
where Z = (2ngo) is the normalization and ;= g(xi).
We then obtain ?
' L
<N > 02
n = —— = g 0 ; (21) -
S L P
_ s
(3 ,_
a = F<4,)~' = 0.053 .

, BT Y 2 IR .
Combining Egs. (21) and (16) gives the mean energy.

_'_ _ 1 3/2

which, in~conjunctibn with Eq. (15), gives TS

T

111
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Using the estimate of &0 in Eq. (17) gives

oml/zp 1/4
S Py T,
379, /4
S N P . -
<Es‘ = — 51—1 . (23)

For p/r = 0.01 and ng =1, which is appropriate for
most present day tokamak experiments, - <Es>' = 0.5.

For TMX, however, p_/r = 0.1 and f<ES>v = 3.3.
Equation flS) then implies T, = 1/2 and T, ~ 2-3,
respectively. 'Spectral densities for these temperatures
are shown in Figure 3. When TS =.1/2 virtually all the
energy is contained in u >'vd modes} while at the higher

temperature, a substantial fraction of the energy is in 1

the negative frequency modes. Significant'excitatién of
negative frequency modes occurs when there is sufficient
thermal energy to overcome the required creation energy;
Eﬁin = 14,01 (see Figure 1). | |

The frequency shift of the positive_Spectral peak,

w , 1is given by u%/kv ~ 1,25 for. T =,O;5 aﬁd;l.s

p d
for TS = 3.0 . The frequency shift relative to the
linear mode.frequenqy depehds-upon‘ k, and increases
rapidly as 'kps'ﬁ'l.. If we use fhe'finitelLarmor radius
formula for ai (sée‘e,g., Ref. 4), a freqguency shift of

a%/ai =5 " is obtained when kps‘éfl and TS'=4O.5, which :
1,2,3,5

TTIT

is in quantitative agreement with the experiments
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Of course, to apply these results to experiments,
the small amplitude contihuum‘should also be included.
Furthermore, we expect that solitafy wave éqllisions will
contribute to the spectrum by forcing excitations at
frequencies w ~ (ul - u2)k ‘which .do not obey the linear
dispersion relation. Inclusion:of;theSe non—soliton'eﬁfects
could prdvide a speétral width comparable tO"the‘experimental

width.
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VI. Conclusion

Recognizing that the nonlinear drift wave equations
v_generallj possess finite amplitude coherent solutions, we
propose that drift wave turbulence may, in general, contain
a coherentJCOmponent. In this work, we‘develép-the'theory
‘for the soliton component of the turbulence-based on a
oné—dimensional drift wave'equatioh{given by Petviashvili.
Af low energies Es’ the drift Wavé'soliton, reduces to a
KdV soliton propagating with a velbcity u ﬁust'greater
than the electron diamagnetic drift véibcity vy + At
higher energies, the equation.gives localized solitary
waves’propagating.either faster than :Vd or in the
direction opposite to electron drift_velociﬁy,;u <-05{

For the root-mean-square fluctuation:levels typical

of vhe~saturated—state—ef—driﬁtuwave—turbuienee, inverse
scattering theory for the soliton (KAV) equation is used
to show that a large'number;-”NS >> 1, of solitons can
evolve from the drift wave fié;ds. Each drift wave soiiton
introducesla spatially localized infinite'order“Set of
correlations, due to i£s intrinsic cocherence. These
correlatioﬁsvare lost in the truncations of renormalized
turbulence'ﬁheory;‘and give rise to new features in the
fluctuation spectrum even in the limif.of an ideal_gas

approximation to the many-soliton systemn.
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To invesﬁigate the features in the fluctuation
spectrum of the soéliton gas, we introducejthé Gibbs'
ensemble for the ideal gas limit of the N - soliton
system, Eg. (14), and calculate the dynamical form factdr
S(k,w) from the fwo—point corrélation function of the
drift WaveAfields, Eg. (9). |

The fluctuation spectrum 'S(k,w) from the drift
wave soliton gas has a broad frequehcy.spedtrum for fixed
k. The width of the frequéncy spédtrum Aw is directly
proportional_to the :odtfmean;équa:e fluctuatién,level ‘
¢O’ in contrast to resonance broadening theory where
Aw is proportional to the intensity wg ,bof the
fluctuating fields. For a given .k component the peak

frequency a% of  the spectrum is greater than .kvd‘ as

~given by Egs. (10) and (14), and show in Figure 3.  In

contrast, the renormalized turbulence theory spectrum

peaks near the linear frequency Qi less than kvdﬁv,

a condition which has prevented anianderstanding'of the

S(?,oﬁ observed'byselectromagnetic scattering experiments. -
‘The'observed fluctuation spectral—3 are broad and

peaked at a frequency @p up-to five times the ai as

investigated in terms of Doppler shifts due'tO'the}ambipoIar

radial field in Ref. 4. The drift Wave.soliton.gas can

easily give rise'io ub/ai ~'5 as well as negativé'

frequency components to the spectrum at fixed k as shown,

for examplé,'by Figs. 3a and 3b.




We do not regard the limitation of the results of
this paper to the one-dimensional case as fundamental.
The Petviashvili equatibnfposseéses two-dimensional
éolitary waveéls’qualitatively'similar to Eq;'(B), and

therefore the frequency spectrum will also resemble

ours qualitatively.
In conclusion, we suggest that from both a theoretical
-1ia * )
and an experimental point of view, a full understahding

of drift wave turbulence may require theory for both the

. : » £ ' s .
continuum component « , I(k,t) of conventional turbulence

kl
theory and the soliton component k'uh.fs(u,t) .of the

turbulent plasma.
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‘Figure Captions

Fig. 1
Fig. 2

Fig. 3

Single soliton energy for the 'RLW equation,

from Eqg. (6).

' Gibbs ensemble probability density, Eq. (12),

as a function of soliton velocity.

Spectral density of Gibbs ensemble of RLW
solitons at fixed wavenumber; Corresponding
linear mode frequency is indicated by the

arrow. For smaller (larger) fluctﬁétion levels,

 Fig. 3a (3b), the. u >vy. (u<0) solitons are

preferentially excited.
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