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Abstract

A kinetic theory of collisionless and dissipative trapped electron driven drift wave
turbulence in a sheared magnetic field is presented. Weak turbulence theory is employed
fo calculate the nonlinear electron and ion responses and to derive a wave kinetic equation
that determines the nonlinear evolution of trapped electron mode turbulence. Saturated
fluctuation spectrum is calculated using the condition of nonlinear saturation. The tur-
bulent transport coefficients (D, xi, x.) are in turn calculated using saturated fuctuation
spectrum. Due to the disparity in the three different radial scale lengths of the slab-like
eigenmode: A (trapped electron layer width), z, (turning point width) and z; (Landau -
damping point), A < z¢ < z;, we find that ion Compton scattering rather than trapped
electron Compton scatteﬁng is the dominant nonlinear saturation mechanism. Ion Comp-
ton scattering transfers wave energy from short to long wavelengths where the wave energy
is shear damped. As a consequence, a saturated fluctuation spectrum |¢[2(kg) ~ k7 (=2
and 3 for the dissipative and collisionless regime, respectively) occurs for kgp, <1andis

heavily damped for ksps > 1. The predicted fluctuation level and transport coefficients are
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well below the ‘mixing length’ estimate. This is due to the contribution of radial wavenum-

bers z;! < kr < p;! to the nonlinear couplings, the effect of radial localization of trapped
!

electron response to a layer of width A, and the weak turbulence factor (%’:),—c- < 1, which
k

enters the saturation level.
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I Introduction

Trapped electron driven drift wave turbulence, both dissipative and collisionless, is
considered to be an important agent for anomalous transport in tokamaks. While the linear
theory of trapped electron instabilities has been extensively investigated,! =% the nonlinear
dynamics of trapped electron drift wave turbulence remaines rather poorly understood.
Indeed, with relatively few exceptions,*~" most previous studies of trapped electron driven

drift wave turbulence have forsaken realistic geometries in favor of shearless slab models,8

" adopted the fluid ion approximation ab initio,!? and have ignored the nonlinear dynamics

of trapped electrons by a priori invocation of the “i§” representation of the non-adiaBatic
electron respons'e.8 The purpose of this investigation is to explore the theory of trapped
electron drift wave turbulence, with special attention focused on the role of ion kinetic
effects in the nonlinear dynamics and on the role of trapped electron nonlinearity.” In
order to elucidate the fundamental physics issues, we adopt thé comparatively simple,
albeit unrealistic, model of sheared slab geometry with magnetically trapped electrons.
’i‘his model ignores the poloidal harmonic couplings induced by ion curvature drifts, and
thus describes only the short wavelength, slab-like branch of trapped electron drift wave
turbulence. The nonlinear theory of the long wavelength, toroidicity induced branch will be

discussed in a future publication. It should be noted however, that despite. the absence of

shear damping of the toroidicity induced mode, it is not clear whether the slab or toroidal

branch is more important agent for anomalous transport, since conventional mixing length

estimates suggest that the thermal transport coefficient (in the dissipative regime, for

example) for the slab branch is x5 =~ \/E(kgps)rmsu—:;f%,/%:—, while for the toroidal

2,2
pycy

3 ~
branch is x¢or € i

A key feature of trapped electron driven drift wave turbulence in a sheared slab is

the disparity between the three radial scales A, z;, and z; which parametrize a trapped

electron eigenmode. Specifically, the three scales are: i.) the separation of adjacent mode

rational surfaces for fixed toroidal mode number n, A, = &. A is also the trapped

kg 3
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electron layer width, which demarks the region in which the trapped electron response is
significant. A arises as a consequence of the fact that trapped electrons tend to bounce
along magnetic field lines (i.e. h% ~ e~m290¢ where A, is the nonadiabatic part of trapped
electron distribution perturbation, ¢ is the safety factor) while drift waves tend to localize
at mode rational surfaces (¢n ~ 3, ei’”quv:). ii.) the turning point width z, = \/gpa,
where L,, Ly, and p, are the magnetic shear length, equilibrium density scale length, and
ion larmor radius computed using the electron temperature. z; demarks the extent of
‘the region over which the Pearlstein-Berk!! outgoing wave eigenmode is non-oscillatory,
ie. for ¢7 = exp{-i,u-’f'zi} with ¢ = z;2, and is defined by the asymptotic balance of
the ion polarization drift pﬁ%ﬁ with the ion acoustic response f—‘:;ﬁq&,; , where k| is the
parallel wavenumber and ¢, is the ion acoustic speed. More generally, z; is the scale at
which the drift wave changes character from a quasi-two dimensional “convective cell” to
a radially propagating outgoing wave. Thus, nonadiabatic electron effects contributes only
for z < z:, and z; is generally assumed to be the “mixing length” for slab-like electron

drift wave turbulence (i.e. the effective mode width). iii.) the ion Landau damping point

z; = -%:-)\/:g‘?pa, where T, and T; are the electron and ion temperature, respectively.
z; defines the scale at which the outgoing wave is damped by ion Landau resonance (i.e.
when w = kyv;). Thus, ; charaterizes the radial width of the spectrum |¢z|? of drift wave
turbulence, in that if ¢; = exp(—-z'/.z%z-) f(£), with zfu > 1, the fast variation cancels
upon caleulating |¢z|? (i-e. |¢g]> = f3(£))- It is interesting to note that for z: < z < z;,
the drift wave develops large radial wave-numbers k, = —uz = —:—? < p7!. For most kgps

of interest, A < z; K Z;j.

Several crucial aspects of the theory of trapped electron drift wave turbulence are
revealed by consideration of the scales A, z:, z; and their disparity. First, the fact that
the spectrum width is given by z; ensures that the virtual, driven modes (i.e. those
driven by the beat interaction (w + w', £ + ') of a test wave (w, k) and background

mode (w', k') are resonant, on account of the natural width of the ballistic frequency
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kv, i.e. for resonance, w + w’' < A(kyvy), but A(kyvy) ~ ', since A(ky) = %%—:1:’; This
observation indicates that while the fluid ion approximation may be valid for test wave
dynamics, where ¢ < z; is of greatest interest, it is a manifestly invalid description of the
nonlinear interaction dynamics, since it ignores the beat-wave resonance w' ~ k]’l' v; and
thus fails to represent nonlinear ion Landau damping and Compton scattering. Moreover,
it is interes‘ting to note that while ion fluid mode coupling among strongly dispersive drift

waves requires large amplitude dependent turbulent broadening of the three-wave frequency

‘mismatch wpyrar ~ w ~ Aw, the kinetic beat wave resonance is Doppler broadened at

in finitesimal amplitudes by the spatial extent of the background mode spectrum z;, i.e.

A(kyv;) ~ kg/Lezivi ~ w. As w > Aw, the Doppler broadening is the more significant,
one. These two observations suggest that nonlinear jon Landau damping and Compton
scattering, as described by kinetic weak turbulence theory (since ¥ < w;), are important
(and likely dominant!) processes in the nonlinear dynamics of slab-like trapped electron

modes. Finally, it is also worthwhile to note that since z' extends to z!, k. can approch

p7!. Thus, radial wavenumbers k, < pi! contribute to the ‘coupling coefficient’ k l-c" X Z.

2

. ' -1 .
Since, kL > z; ", saturation at levels -

below the conventionally quoted ‘mixing length
estimated’ éf -;E;- ~ f- appears likely! |

A secdnd crucial feature of trapped electron modes is the disparity between the width
of the electon layer A on one hand and the mode width z; and spectral width z; (i.e..
A < z; < 7;), on the other. This disparity underlines the dominance of ion nonlinearity
over elecfron nonlinearity, since electron interaction is limifed to [z] < A, while the region
of nonlinear ion-mediated interaction extends to z;. Indeed, the effect of localization of
trapped electron effects to a layer of width A has already been manifested in the linear
theory? of trapped electron instabilities, where calculated linear growth rates are smaller
than their local theory analogy by a factor % In & < 1, i.e. the ratio of the electron layer
width to the mode width. Of course, in the case of toroidicity induced drift modes!? for

which the mode and the spectral widths are comparable to A, the nonlinear dynamics
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of the collisionless trapped electrons are not subdominant, since the electron layer width

correction factor approaches unity.

In this paper, a kinetic theory of collisionless and dissipative trapped electron drift
wave turbulence is presented. A slab-like model (i.e. magnetically trapped electrons, with
ion curvature effects neglected) is used throughout. Nonlinear trapped electron and ion in-
teraction mechanisms are treated on an equal footing. A nonlinear bounce-kinetic equation
is used to calculate the nonlinear (collisionless) trapped electron response perturbatively.
"While nonlinear trapped electron-wave interaction tends to transfer energy from long to
short wavelengths, it is subdominant to the nonlinear ion-wave interaction process, since
A < z¢,r;. The nonlinear ion response is also calculated perturbatively, following the
standard procedures of weak turbulence theory!®. The Doppler broadening of the beat
wave resonance induced by the large ion spectral width (z:) indicates that i.on Compt';on
scattering is a relevant and robust nonlinear interaction process. Ion Compton scattering
results in spectral transfer to long wavelengths, primarily by local interaction. A power
law spectrum [@|?(kg) ~ k;* (a=2 and 3 for dissipative and collisionless regimes, respec-
tively) results, with a low-kg cutoff determined by the balance of linear growth with shear
damping. Fluctuation levels are lower than naive mixing length prediction nio ~ £=. The
ca.lculafed fluctuation spectrum is used to calculate the electron and ion thermal diffusiv-

ities, and the particle flux.

At this point it is appropriate to comment on the relation of this investigation to pre-
vious works of similar bent. Refs.(4) and (5) treat only nonlinear ion dynamics for slab-like
and toroidal drift modes, respectively, and neglect electron nonlinearity, ab initio. Ref.(6)
discusses nonlinear trapped electron dynamics in the context of a purely local model, which
therefore ignores the disparity between A, z; and ;. Thus, the conclusions reached in that
work are not universal. With regards to ion dynamics, some of thé conclusions reached
here concerning the relative importance of local and nonlocal transfer processes and the

structure of the predicted fluctuation spectrum differ with those presented in Ref.(4). This

6



0

is, in pé.rt, due to exceedingly large value of T,/T; tacitly assumed in that investigation.
Finally, Ref.(7) is exclusively focused on the effect of mode coupling mediated by resonant
trapped electrons (i.e. trapped electron clumps) and on the resultant broadening of the

frequency linewidth.
The remainder of this paper is organized as follows. In Sec.Il, we discuss the model

equations. In Sec.III, the linear theory of the trapped electron mode is reviewed. In Sec.IV,

weak turbulence theory is employed to calculate the nonlinear ion response and the nonlin-

-ear trapped electron response. In Sec.V, we derive a wave kinetic equation which describes

the nonlinear evolution of trapped electron mode turbulence. In Sec.VI, we discuss the
various nonlinear wave-particle interaction mechanisms and calculate the associa,ted non-

linear transfer rate. The complications of slab-like exgenmode structure for the nonhnea.r
wave particle interaction are emphasized. In Sec.VII, the saturated fuctuation speétr;m
and fluctuation level are calculated. In Sec.VIIIL, the saturated fuctuation spectrum ob-
tained in the previous section is used to calculate the ion and electron thermal transport

coefficients, and the particle transport coefficient. The implications of these results to

the tokamak transport are then discussed. In Sec.IX, the summary and conclusion are

presented. ' <

I1: Basic Model

In this section, the basic model of trapped electron driven drift wave turbulence

is discussed. We consider toroidal geometry with circular concentric magnetic surfaces,

parametrized by the usual coordinates (r, 8, &) corresponding to the minor radius, the
poloidal angle and the toroidal angle, respectively. In this coordinate system, the equi-
librium magnetic field can be written as B = B(ee + §€g), where ¢ = F"o- is the inverse
aspect ratio, Ry is the major radius from the magnetic axis, B = By(l — ecos ) is the

magnitude of the magnetic field, q is the safty factor, and &, &, &, are the unit vectors

in the poloidal; toroidal and radial directions, respectively. The equilibrium distribution
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functions are assumed to be local Maxwellians, with density N and temperature T}, i.e.

M

i N2 _ .2\/[ jvz
27!‘Tj

epl-Sqhishe ®

F; = N(

where M; is the mass, v is the velocity, and j denotes the species.

For the sake of simplicity, we neglect both ion and electron temperature gradient in
this analysis. We also assume that the electron temperature T, is higher than the ion
temperature T;.

For the perturbed ion distribution function f* and electrostatic potential perturbation
#, we can Fourier analyze in @ and £ and time ¢,

(£, 81 = D_Lf%, 61 exp{i(mb — n¢ — wi)} (2)

{
w

where [ = (m,n), and m, n are the pbloida.l and toroidal mode numbers, respectively. The

ion’s dynamics is described by the nonlinear gyrokinetic equation,'4

—i(w — By k' + z%m(w —wi)o(=)p1 = N, (3)

Q

with the nonlinear mode coupling term N: given by

k' . 0 k'
508 -1 Wy + B <

v
Bl (g8 )

.C a
N: =—ig Y‘;{kogm(

where I" = |+ I', w" = w + w'. In the above equations, 2% is the nonadiabatic part of

“ion distribution perturbation in the guiding center system, and is related to fi through

i _ e i ,'gn.f‘l.x__”.l. - . . . . . .
i = —T;F,gé 1 +ht e @, €) is the unit vector in the direction of the local magnetic

field, Q; is the ion gyrofrequency, Jo is the zeroth order Bessel function, ky = ;I-lﬁ(m —ngq)
is the parallel wavenumber, w} = —%}ﬁ- is the ion diamagnetic drift frequency, kg = =

is the poloidal wavenumber, &k, is the perpendicular wavenumber, E 1 = kg€p + krer, and

kr = —i%. The ion density perturbation is given by
éni = —%Ncb . / d3aJ0(kB’f*)h*, (4)
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For trapped electrons, we assume vefs,wpe,w < Wee, Where vepp = 1:-‘- is the effective
collision frequency, and wpe, wse are the electron magnetic precession and bounce frequen-
cies, respectively. In the collisionless regime, we have w > wp, > v, ff, so that the mode
is destabilized by the magnetic precession resonance of high energy trapped electrons. In
the dissipative regime (strong collisional regime), we have veff > w > wpe, so that the
mode is destabilized by the collisional detrapping effect. In the intermediate collisional

regime (W > vefr > wpe), the growth rate of the mode has such a favorable tempera-

. ture dependence (. o« T.°2) that it seems quite likely that the turbulence will eventually

evolve into the collisionless regime. Therefore, in this discussion, we focus primarily on
the collisionless and dissipative regime.

Since trapped electrons can indﬁce poloidal couplings, the electron perturbed distri-
bution function f® and the electrostatic potential perturbation ¢ are Fourier analyzed only

in ¢ and t, -

[, 6] = Z[f ¢ ]exp{i(—né — wt)}, (5)
The trapped electron dynamics is described by a nonlinear bounce-kinetic equation,!®

—i(w — Wae + iTesp)h% — iTiFe(w —w)(eT P gn ), = N& (6)
w e w W

where the nonlinear mode coupling term is

ein 0 in' 7e
A= —Z“Z{ qed’-n’)b)hu" +P_q5((e qo‘ﬁ:n;)bhn;; )}

In the above equations, A% is the nonadiabatic part of the trapped electron distribution

perturbation, and is related to fi through f: = T‘:Feqﬁz + ﬁi‘ e w4 = wDef’,—;, WDe =

Loy, wr = L %"-, Ueff = vefs(%)%, and (---)y = [§ £...]/[¢ u"] denotes a bounce

vy
average. The untrapped electron is treated as adiabatic. The electron dens1ty perturbation

is then given by

én% =.'E'N¢n +/d35‘h‘i e'ne? (7)
w Te w + w



where the velocity integration is over the trapped electron population only. The velocity
space variables in Eqs.(4) and (7) are the velocity v, the magnetic moment p = %—2}5 and
the gyrophase angle ¢. Finally, by imposing the quasineutrality condition 5ni: = 5ne.: ,
Egs. (3)-(4) and (6)-(7) are closed.

III. Review of linear theory

In this section, the linear theory of trapped electron mode is reviewed with attention
focused on those properties that are important for an understanding of the nonlinear
| evolution of the mode. Included are the mode frequency, the growth rate, and the mode
structure. For a detailed discussion, the reader is refered to Ref.(2). Linearizing Eq.(3)

and Eq.(6), we obtain the linear responses for both ions and trapped electons,

i_ € w—w kivy
b= g P (g, 8. (8a)
Ry = e Fo——— e (e7imalg ), (8b)

T. *w—wge + ety
It is important to note that trapped electrons respond to (e~*"%%¢,);, the bounce average
of the projection of the potential fluctuation along the magnetic field line, rather than the
potential fluctuation ¢, itself. In the presence of magnetic shear, the pitch of the magnetic
field line is different from that of the mode, i.e., ng(r) # m; except at the mode rational
surface. Away from the mode rational surface, due to its fast oscillation, the bounce
average of e~*"%%¢ . tends to vanish. Therefore the trapped electron’s response is radially
localized with a spatial scale length much smaller than the mode width. Physically, this is
equivalent to saying that the trapped electrons can only feel the potential fluctuation near
mode rational surfaces, where the difference between the pitch of the magnetic field line
and that of the mode is negligible. As a consequence of this radial localization effect, the
growth rate of the mode is considerably reduced. The fact that trapped electrons respond
to the magnetic field line rather than the mode rational surface also introduces poloidal
couplings among modes which center at different mode rational surfaces. However, as

pointed out by Catto and Tsang in Ref.(2), this poloidal coupling effect is rather weak.
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Now, we can use Eq.(4) and Eq.(7) to calculate the ion and the electron density

response. For ions the calculation is straight forward. To perform the velocity integration

over the trapped electron population, we note that d3% ~ 4= (% £)3v2dvdr?(k? — sin® £ -3

)
where instead of using variables v and y, we use v and &, & is the pitch angle variable, and
is defined by &? = [$v® — pBo(1 — €)]/2euBo. We then Fourier transform énj, in g, i.e.,

n% = 517-‘; fjooo dfe="™96ne  and invert the order of the 4 and «? integrations by noting

that [7_df fnlo dr? = fol dx> ff‘;o df, where ko = sin . The final results of the calculation

are, | |
i L Wi v w e
and -
b = N (Gm + T 6a)s) b
e -
. 1 v e - .
Ti(e"inqeqﬁn)b\: (g)%(l - f‘j—)gn / d,€2ei(nq—m)0(e—mq0¢n)b (].Ob)
2 o /

In the above equations, Z is the plasma dispersion function, I' is the zeroth order modified

Bessel function, b; = k3% p?, ei("a—m)¢, and g, are defined as ‘

et(nq—-m)o - /80 dé i(nq—m)e -

~bo "Wﬁ — sin %

2 7 Vias | (11)

RV A 1——5’-t+z%’-t"%

where tg = (%3&)’5 <1
€% Vg

- Let’s consider a reference mode rational surface located at rm determined by m =

P nq(rm ), then ky = —Lz, where z = r —rm is the distance from mode rational surface,
L, = 3~1qR is the shear length, and § = —%’—'—% is the shear parameter. We define the
Landau resonance point z; = kf:" - where k“ . Then, in the spatial region z > z;, the

mode is heavily Landau damped. Hence, the mode exists only in the region z < z;. By

making the fluid ion approximation w > kv, and noting that b; < 1 for % < 1, Eq.(9)

11



can be simplified to be,

2 *
0 w 2 2 2

22 1% 122 m D)
N[ps oz + w koﬂs +psuT ]45” (l“)

: e
6ntm = —
n T,
. . kyc,
where p, is the ion larmor radius computed using electron temperature, and p2u? = (—Ec—)2 .

By imposing the quasineutrality condition, we obtain the linear eigenmode equation,
2 & | wi 2 2 2 2, 2 Ny, —ingd
leggz + o —Fora =1+ a]dm =Teo(e™ ™ du)s (13)
It is important to note that the above eigenmode equation has three distinct spatial
scales, A, z:, and z; (see Fig.1). Here, A = l-kz_ls' is the separation between two adjacent
mode rational surfaces for fixed n, z, = |x|~7 is the turning point of the mode, and
z; = %’9%“- is the Landau resonance point. The trapped electron response (the right side
of Eq.(13)) varies on the scale A, the linear mode itself ¢= varies on the scale of z;, and
the spectrum [¢v:|2 varies on the scale z;. For kgp, ~ 1, we observe that z% ~ \/%,
and 1% ~ %.L\/g-:'-: Each eigenmode, centered at a particular mode rational surface rm,
interacts with as many as -[{’—:(>> 1) mode rational surfaces in it’s neighborhood. In this
case, the linear eigenmodés are said to be densely packed. A schematic picture of linear
eigenmode structure with three spatial scale lengths A, z;, and z; is shown in Fig.1.
Equation (13) can be solved by treating the right side perturbatively. In lowest order,
the solution is the Pearlstein-Berk outgoing wave function. For the most unstable mode (

i.e. least shear damped), we have
n . #2
¢ =gme™T (14)
The outgoing wave boundary condition requires that u should be an odd function of kg i.e.
p=rme—— (15)

The linear dispersion relation is determined by equation e(l;,wl:) = 0, where the linear
dielectric function is e(k,w) = %; — k2p? — 1 — tup?. The linear frequency and shear
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damping rate are

w*

- =-._._.._‘ 16
wk 1 + koPs ( )

v s Ln .
v d=—Elw;:| (17)

We next obtain the linear growth rate 4! due to the trapped electron excitation. From

perturbation theory, we have

= ffoco dzdm Ti(e—inqe‘ﬁn)b
E(k7w) = = 2
f_oo dz¢m

(18)

where w = wi 4+ 19°? + iy!. The detailed calculation of the spatial integrals in 'the_:. above
equation has been given in Ref.(2). Here, we only summarize some of the important. results

of the calculation. The spatial integral in the denominator of the above equation is easily

[_:d:cd) = ¢% \/—f | | (19)

The spatial integral in the numerator, which involves the poloidal coupling effects, can be

evaluated as

rewritten as

/ dzgm Th(e™g,),

= (- ¥ / d“’/ Az § iy XPA-0 (gimbr=n0)d), (30

p=—00

As has been shown in Ref.(2), by keeping all p terms in Eq.(20), the integra.l is only a
factor of T times that obtained by keeping the p=0 term only. Hence, we can approximate

Eq.(20) as

)5(1 - _e / d/{, / dg;¢ :(nq—m)&( i(m—nq)&)b (21)



For small &, we can approximate both e¥(#¢=m)é and (ei(m—n08), by Jo(26%). Carrying

out the & and x integration in Eq.(21) by noting that [J° dtJZ(t)e~ Pt ~ 1lng-%, we

have
oo * N
| dsbr e, <5>%<1 - L)t Al T (22)
Noting that e(k,w) ~ iy} 2 3 2 o(E, wg), and £¢ = —Zz | the linear growth rate is obtained

by substituting Eq.(19) and Eq.(22) into Eq.(lS),
Z—'— =(ia-2ha 1n(%)zm(g,,\/§) (23)
Eq.(23) showes that both Regn and Img, contribute to the linear growth rate, because
\/Z = \/Jé—"—_rt' [1 + isign(ky)] is complex (where sign(ky) is the sign function, equal to 1
for kg > 0 and -1 for kg < 0). This phenomenon is due to the fact that the eigenmode
has outgoing wave structure and the trapped electron response and mode vary on different
spatial scales. However, in the discussion of various trapped electron modes, the Reg,
contribution to the linear growth rate can generally be neglected for the following two
reasons. First, Regn is smaller than Img, in the dissipative regime. Second, the linear
growth rate should be an even function of the poloidal wavenumber (k¢). The contribution
of Rega to the linear growth rate, which is an odd function of kg, should be neglected

even when Reg, is not necessarily smaller than Img,. By neglecting term associated with

Regn in Eq.(23), we finally have,

2= 390 - D2 () Imew) (24)
The above equation clearly indicates that due to the radial localization of trapped electron
response, the linear growth rate of the mode is reduced by a factor of % In(%t) o< \/II:——"‘ <1.
The instability source term Im(g,) in the above equation can be calculated from Eq.(11)

in various collisionality regime. The results are:

1.) Collisionless Regime (w > wpe > vesy)

-

Im(ga) =2 (25a)
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2.) Dissipative Regime (veff > w > wpe)

4 vl

Im(gn) = Taves; (259)

" For typical tokamak parameters, it can be shown that the most unstable mode occurs at

!
kops ~ 1, and the growth rate is smaller than the real frequency, i.e. 2= < 1.

“

The important results of the linear analysis are summarized as follows. First, the linear

eigenmode (slab-like) is characterized by three different spatial scale lengths A, z¢, and z;

(A < z¢ < z;). Since the eigenmode spectrum extends to zi, A(kyv;) ~ w which implies
that the wave-particle auto-correlation time is comparable to the wave period. This is in
contrast to the shearless case where the wave-particle auto-correlation time is much longer
than the wave period (i.e. kjv; < w). Thus, nonlinear wave-particle interaction is,much
stronger in sheared slab than in a shearless system, where nqnlinear wave-wave interaction
is the dominant process. Second, the trapped electron mode is a short wavelength, strongly
dispersive drift wave. Third, trapped electron responsel is radially localized to a narrow

region z < A (< z:) near the mode ratioal surface.
VI. Nonlinear Ion and Trapped Electron Response

In this section, weak turbulence theory is employed to calculate the nonlinear ion and
trla,pped electron response. Since in the dissipative regime the trapped electron-mediated.
nonlinear interaction is negligble, we focus on the collisionless regime in the following
analysis. The dissipa.tiv;e effect can be easily incorporated into the final result. In the
weak turbulence theory, the nonlinear evolution of the mode occurs on a much slower
time scale Aw™! than the linear mode oscillation w™!, where the turbulent decorrelation
rate Aw ~ v} <« w. The ions and electrons are primarily fluid-like, namely, they are not
resonanﬁ with the drift wave. The turbulence spectrum can be decomposed into a sum of
modes with frequency and mode stfucture described by linear theory. Nonlinearly, these

modes can couple with each other in various ways.
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By treating N% and N§ as perturbations, we can solve Egs.(3) and (6) perturbatively,
namely, we expand A%, ke, and ¢: as b = hi,(l) + hi,(z) + hi,(a) +--e 7»‘3. = A +fz§<2) +

w

Be® +-.-+,ando: = ¢(11) + 45(,2) +¢(,3 ).... To the lowest order, we have the linear responses,

i _ ep w=wi g kvl m 2
h‘i = TiF‘w e Jo( - )45:' (26q)
71?,(1) — _i W = we —:nqo (1) 260

w Te Few wde< ¢ ) ( )

where qb(,l) = qSEl) §(w—wg) is the linear eigenmode with wy being the linear eigenfrequency.
In second order, we have a set of beat modes hi,(,?) h";‘(,?) , and rb(,,, which satisfy

Egs.(3) and (6), but are driven only by the direct interaction between the test mode (I,w)

and background mode (I',w’),

" =11 " y
i2) € o w —w] Elvi, (2 1 i
h:( = —F} J[) ¢ S ” 27a
:,I/’r T; ‘W =kl ll' 1l ( Q,‘ ) :,I/Il w' — I’II v\ a:a’ ' ( )
@ _ _&pu-w 6 4(2) i
e - -
hn" .:_.P_.Fe__lf.(e in''q ¢,n“) + '—”———7,-55,,: (216)
w!? e w—w,, w!? (7 wde w!

where the driving terms S%, and S¢, are given by,

w!! @

; . k a . ; ) i
S'n =zi{kaJo(—£3+-)¢<}> <1>+ k! J(_;.l’i)qﬁu) (1)

ar
—kg h“” o s lTa(~5= L”)qs( )] — kb i) 59 [ J(kuu) (1)]} (28a)
St =is {2 ""‘I"q&(l)) T (5< a0 g )R
n e —in ze
e qo¢(n)) h(l)—%(gk* CoDMALY  (28D)

The second order ion and electron density perturbation can be obtained from Egs.(4) and

(7) by integrating pi2 "‘," ) and he(,,’, over velocity. To perform the velocity integration for ions,

~ we neglect the resonance eﬁ'e(:,‘t of the normal modes ({,w) and (I',w') in favor of the beat

moae (I",w") resonance, i.e. the ions are fluid-like relative to the normal modes w > kyv;,

and W' > k" v;. but are dissipative relative to the beat modes w” < k" v;. The results are
'6n',(3) = 5ni,l,(,2) + 5ni,s,$2)

w!t wlt w!?
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where 5ni,l,(,2) and 5ni,’,$2) are the linear and nonlinear piece of the second order ion density

w!t w!!

response, and given by

II "

i2) _ & w 1m\1 (2) 5
o' = T{N[1+(1 - )Ik“ le(lk" 11)1“0(1; e (29a)
. is(z) € _ > (Jo(kLpi)Jo(k' pi)Jo(K' pi)) L
572“,'/,;, TN ( ) lk vtl (lk I)

|| Vi
(koo 262 — 6 6 D) < (208)

where b = 1% %p?, and
(Jo(kLp:)Jo(kLpi)Jo(Kp:i)) L =2 / z1dz ek Jo(kypiz 1) To(KLpiz L) To(K] piz L)
0

The velocity integrated trapped electron population can be obtained in a 51m11ar way.
For most trapped electrons, we have w > wq. and w' > w),, hence only a small number
of high energy particles in the distribution tail can be resonant w1th the primary wave.
However, since the beating mode frequency w” can become smaller than either w or W',
the bulk of the trapped electron distribution can be resonant with the beat wave. mThus,

by retaining only the beat mode resonance effect in the trapped electron velocity integral,

we have
5ne,5?) = 6n°1(2) + 5ne,‘f,(2)
where 6n°%? | and 6n°5® are given by
ik = SN + T 0By (30a)
‘ .
T (emin" 102, =2(;)’z‘an~ / di?ei " a=m (=i 045} ), (30)
) w*n ol :
ntt = & 1
g ( w” w!f [ ¢ wDe
and
st 222 WS - ey, [ vt
T. 2 B'w' w’ ™% J,
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. a ! —_tn a —in 2
X g (e = TR RO g ] (3la)
1 " 'l
¢ L+ =—2Z( ] =] (316)

De Whe YDe
By imposing the quasineutrality condition, we can obtain an equation that determines

the second order potential perturbation 45(,,, ,

, , s M
[1 +7+ T(l )IL" |F0(b/’)Z( ll“ l)] 1" ( B q0¢n")b
t (Hl’
=N‘,(,I,j) - le,:) (32)
where

i(s Te t3(2

N“l,(’l'l) €N 6” “I?Igl )
€ T g

Ny = oo

The left side of Eq.(32) is simply the linear dielectric for the be-at mode (E”,w"). The
terms on the right side represent the drive by the direct interaction between the test mode
(E,w) and the background mode (k',w") from both ion and trapped electron nonlinearity.
Clearly, Eq.(32) is a very complicated, inhomogenious integral-differential equation which
is not amenable to analytical solution. Nevertheless, some important properties of ¢(,,l,,
relevent to our discussion can be obtained from simple physical considerations. First, ¢(“:,,

wlt

represents a process of nonlinear three wave resonance interaction (decay type interaction),

ie., ¢(,2,.) < = E"l,u")‘ The three wave resonance interaction is severely restricted by the
dispersxon of the primary wave. Second, in the presence of magnetic shear, the beat mode
is intrinsically dissipative in nature (i.e., heavily Landau damped for w + w' < kjvi). In
order to see this, we note that the spectrum of the Pearlstein-Berk eigenmode extends to
z; such that A(kyvi) ~ %,’_-Aa:’ v; ~ ', hence the nonlinear ion Landau damping takes
place when w + w' < A(kl'l' v;) ~ w'. Therefore, in a sheared magnetic field, the range

of frequency of the background mode which can interact with the test mode through ion

Compton scattering is very broad. This is in contrast to the shearless case where the
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condition that the ion is fluid-like w > k|vi implies that w +w' < k"v, < w' for beat mode
interaction, i.e. without shear, the beat interaction is severely restricted.” The strong
dissipative character of the beat mode in a sheared magnetic ﬁeld renders qS i significant
only in a region of width z! which is much narrow than the spatial W1dthwof the linear
eigenmode spectrum «} (i.e. z < 7). As a consequence, the oft-referred-to cancellation
of the shielding and bare scattering contributions to the order of o(k2 2 p?), which occurs in
the weak turbulence theory of shearless drift wave turbulence, does not occur in asheared
. system.

Now, following standard proceedures'?, and making use of Eqgs.(27a) and (27b), we
have the third order perturbation in both A% and he, ,

w

i _°c_ 1 <y 6@ 2 i 9@ i)
hw Bw- k"v" Z{ O( i" 6rh:j,', * ko or (gb“,',l,, h_-:/ >]
e FJ _LU.L J _Lv.L —wi (2) 0 (1) k! 3, w" (2)
+ T—e i 0( ) 0( )[ kiallvuéullllll a’f'qb:‘l/ + 96 (W l” _[I )]
%S ik} S
k! VL Lo ",', %} 1 5} o 1)
+I(5 ) e 6,«{_’, + a,,(w———,;ﬁvl 401} (330)
and
Eeﬂ(g) — _C_ 1 Z{—E(e_in”qeé(”) 3] he(l) n' nq 0 (( —tn"q0¢(2\) )b}"ze(l))
¢ T Bw-—uwge o = ter I T T ar oI
€ w" — w " ng, —in"q6 ,(2) 0 1n 98 (1) n' ngq 9 —in''q8 (2) in'q8 ;(1)
—EFew—de_[r ( ¢n” )ba—( ¢—n:) + (( ¢ ) ( ¢—n:) )]
1 n 3, in n'q 0 e  in
oo [ S e e+ P (s e qoqs(}?,,) 1} (330)
e w -’ —!

On the right side of the above equations, the first two terms that involve ¢(,,, or <p( 2)

nl?
w!! w!!

represent nonlinear three wave resonant interaction effects. The last two terms that involve

the resonance factor - _lk T or P _lw;,e represent the effect of scattering of waves by bare
particles, namely, the ion Compton scattering and trapped electron Compton scattering

(nonlinear trapped electron-wave interaction). The second two terms that involve both
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cp(,z,l,)’ , and the resonance factor represent the effect of scattering of waves by the shielding or
pglarization cloud generated by a moving charged particle. For slab-like trapped electron
drift modes, the three wave resonance interaction is irrelevent since the most unstable
modes are short wavelength dispersive waves (kgp, = 1) so that the beat mode is not
resonant. The effect of the scattering of waves by the shielding cloud is weak because the
second order potential perturbation ¢(",', is radially localized to a region which is much
more narrower than the linear mode v:idth (z! < z!). Therefore, in a sheared magnetic
‘field, the dominant nonlinear process is the bare particle induced wave scattering. In
the followmg discussion, terms associated with ¢(",', will be neglected. By making use of

Eqgs.(28a) and (28b), and keeping only the beat-mode-particle resonance effect, we have

the third order ion and trapped electron response,

i i kiv ‘ kLv
h,r(,:s) = —kjpgeJo( J('zi'L)¢','.‘ + #erJo( B J-)a,.z (34a)
Te n e —-in 62 —-in
hn(s) = _(Tq)zl-‘w(e ?9¢n)b + l»‘rra 2 (e q0¢n) (34b)

where the spectrum dependent quantities are

i _ Syl 2 klvL 8 g w!
“90—(B) w;R':u JO( Qi )Iar¢r:,’| T’;‘F‘(w

n!

i cl kv w! W}
b = (52 2 Ry kT b P = 550)

1
R mh = —————
o — Klfv)

! *

e _(fypl D jemin'aty y 2 € Yo W
#ee—(B)wZRnlar(e b ol* - Fe(r = )

w
1 in e . Wl Wl
per = (g =)= ZRn"( 2y2|(emi'etg, )12 Fo(=5—=%)
W W
1
Rnu = ——_w” _wg

In arriving at the above results, the fact that the linear modes are densely packed has

been ultilized so that only terms with even parity in z’ are retained, while terms with odd
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parity in z’ like 1/1(2, 3 t/)(l) d (e 90 4(1) Vo= (e ""“’qeqﬁ(l))b vanish. The superﬁuous

-t
-! —-—w! w

subscripts w, w’ on all the ﬁuctuatmg quantities have been dropped, since they are related
to the wavenumbers n and n/ through the linear dispersion relation w = wg, and W' = wy,.
Without any confusion, ¢£,1), and qS(,l,l) have been replaced by ¢, and ¢',',‘,' to represent the
linear eigenmode. The ion density r‘:esponse up to third order is then given by

. k i i
i == = Ném + / PIR(TEE R +HE)

e

—6n’(1) + 6n’(3) : ‘ (35)

where 6n'( is the linear ion density response given by Eq.(12), §n" is the third order

n

ion density response and can be obtained by integrating Eq.(43) over velocity space,

i . . 5 .
b = ZN[~kiDjo + Drr 55167 (36)
where
i 1l c, 9 2,We 'w;" i | ' ‘
88 — w(B) ;Ia’l"é:}’ (w w! Gmn m/n’ . (370)
i 1 'a e el -
Drr=; Zko |¢""l ( - ) mn,m’'n’* (3‘6)
The interaction kernel Gr'mﬂ mint 18
: V ] ‘= 2 k N 2 k’ 1
mn,m'n (']0( 1p )JO( 1.Pi )) lk ‘ll (Ik U:l) ) (38)

where
(J3(krpi) T3 (KLpi))L = 2/ zidzy e T (kypiw ) I3 (k! pizL)-

The electron density response up to third order is given by

o’
= 6n%!) 4 5n %Y | (39)

fn = =—Ngm + / 49 itng-mys / (R + i)



where §n%") is the linear electron response, given by Eqs.(10a) and (10b), 0% is the

n

nonlinear trapped electron response and can be obtained by using Eq.(34b),

503 = TilVTZl(e_i"qo¢n)5 (40a)
rnl) —ingd €.1 ' Zm nq.\2 ne D¢ 82 —ingd b
T gy = (D)} [ aeTeTa (PP Dy + Dl (e 60y (08)
with
c_2c2 9 —in'qd ; 2w_: w_.:' e
o= 25 T s - G (410
e 2. ¢ n,q. 2(/,—in'qd 2 we w:l e
Drr = ;(E) an:( r ) I(e ¢n')b‘ (w - o' Gn,n’ (41b)

V. Wave Kinetic Equation for Trapped Electron Mode Turbulence

In this section, we derive a wave kinetic equation which describes the nonlinear evo-
lution of the fluctuation spectrum using the previously derived nonlinear responses. By
imposing the quasineutrality condition én% = éni. for the nonlinear responses, we obtain

a nonlinear eigenmode equation

232 We 2 2 2.2 2
{Pagz + o —kers =1+ 4 psz"}ém

" Fn —in i i o
=(T£ + Tel)(e q0¢n)b + (kg 68 — Drrﬁ)‘#'x (42)

To solve this equation, techniques in solving the linear eigenmode equation are again
ultilized, i.e. we treat the terms on the right side of Eq.(42) as perturbations. This
is possible because in the weak turbulence theory, the nonlinear interaction is at most
comparable to the linear growth rate. In lowest order, we have the outgoing wave solution

for the most unstable (least shear damped) mode,

2

¢(,2) = (57: 3_12&

the corresponding real frequency,



and the shear damping rate
73:1 Ln

= ——|wg|
3

To the next order, from perturbation theory we have,
e(F,w) / do(@OP = 4+ (43)
-_—00 n

where w = wg + 17, and [, ! I™M and IM are defined by the following integrals,

/ d:cgo(o)“f’ =ingd 4(0)y, (44a)
™= / dxgb(,f’.)TZ‘(e"""%(n”)b | (44b)
= / dz{k2D ’(°)(¢€2’)2+Di5-°)(%¢F2_))2} (44¢)

It is interesting to note that the above integrals involve qbo,: 2 rather than |¢9: [2. Therefore,
it is expected that the principal contribution to the integrals is from the region = < s
where the mode is non-oscillatory. Outside this region, rapid ca.ncela.tion in the integration
occurs because of the fast oscillation character of ¢9::2 for z > z;. Physically, this can
be interpreted as that only the energy input or outflow in region z < z; is relevent to
the growth or damping of the mode. The first integral I! has been evaluated in Sec.III
(Eq.(22)). By noting that for z; > A, we have 2 (e~ ¢,), —/15( —ina84 s, I™ can be

evaluated in the same way. The result is

..K..'Et

It =)} [ anligDs + (1 DEIA (TR, (45)

For I, we note that the spectrum dependent quantities D, and D}, varies slowly with
x on the spatial scale of z;, because they involve |<p l2 rather than ¢° . Therefore, in
evaluating the integral I™, D _(z) and Di,(z) can Be replaced by D: ,.(0) a.nd Di,(0). The
integral I™ can then be easily evaluated,

M = [kD5y) - D‘(°)] (46)
# n



Noting Eq.(19), we multiply Eq.(43) on both side by 11{_5 Replacing qASZr: by quv: 2,

and then taking the imaginary part of the equation, we obtain,
2 e 2 z“
Ime(k,w)|ém | =(3 SHE —)Aln—l¢ml Im(gny/ —)

~(5)} / dr{kIm(D; \/g)+(%)grm(D:,@>1Am<2§*>l$¢|2

+HBIm(DY) — ZuRe(DIP)]|dn (47)

.For the same reasons as we have discussed in Sec.III the nonresonant terms associated with
Re(gn), Re(D§y), Re(DS,.) and Re(Df.;.) on the right side of the above equation can be
neglected. The further reason for neglecting ReD:. is that k% > u for the most unstable
mode. By noting that Ims(E, w) =~ %(7 — ~°%), and replacing v by %5‘%, we obtain the

wave kinetic equation,

5 :
aléml2 2(ve + 7+ 12 + AP gm P (48)

In the above equation, 7! and 4°¢ are the linear growth rate and the shear damping
rate given by Eq.(24) and Eq.(17), respectively, ¥ and v are the nonlinear transfer rates

due to ion Compton scattering and trapped electron Compton scattering. Using Eq.(47)

and g—:; = :;, we have,

gt

e = k ImD 49
le'é l ,..I 9 ( )
nl

Ye 1 Wr / d "‘K'mf 2 2 e

= " kgImDge + (=) ImDS, 50
= (D (3 ImDgy + (352 ImD, (50)

where D}, is evaluated at z = 0.
VI. Nonlinear Wave-Particle Interaction in a Sheared Magnetic Field

In this section, nonlinear wave-particle interaction, namely, ion Compton scatter-
ing and trapped electron Compton scattering, in a sheared magnetic field are discussed.

The effect of slab-like eigenmode structure on thé nonlinear wave-particle interaction is
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explored. Specifically, we find that ion Compton scattering is enhanced while trapped
electron Compton scattering is weakened. Therefore, ion Compton scattering rather than
trapped electron Compton scattering is the dominant nonlinear saturation mechanism of
trapped electron mode turbulence in a sheared magnetic field.

From Egs.(49) and (50) and noting Eqs.(37a), (41a), and (41b), the nonlinear transfer
rates due to ion Compton scattering and trapped electron Compton scattering can be

rewritten as

al _ YE 2, €42 __3_ 252 _ '
Y = w:kB(B) ;lard)',?'l (ke k )paImen m'n/ (51)

7= EOHEF [ () S0 - k)t
< {3l (e Pt 4 (RN 4o} I (52

From Eq.(38), the interaction kernel for ion Compton scattering is given by

Gt = (ki) a0 e (53)

For trapped electron Compton scatterin, , we note that w > wy, and W' > W/, so that
g de

Gh,» in Eq.(31b) can be approximated by Gt nr R —727, hence;
T !
ImG; . = 5w+ (54)

Now, we discuss the physica.l imp]ica.tions of Eqs.(51)-(54). First, from the direct
observation of Eqs.(51)-(54), we note that for ks < kf, v > 0 but 77 < 0, ie. 2
long wavelength mode is nonlinearly excited by ion Compton scattering but nonlinearly
damped by trapped electron Compton scattering; for kg > kj, v* < 0 but ™ > 0,
alternatively a short wavelength mode is nonlinearly damped by ion Compton scattering
but nonlinearly excited by trapped electron Compton scattering. Therefore, we have two
competitive norﬂinear transfer processes: ion Compton scattering transfers wave energy

from short to long wavelengths while trapped electron Compton scattering transfers wave
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energy from long to short wavelengths. Second, we note that the interaction kernel for
ion Compton scattering has a broad band spectrum with width Aw" ~ k(z)vi. Since the
slab-like eigenmode spectrum ¢ m |> can extend to z;, the width of the interaction kernel
is Aw" ~ kf (z Jvi ~ w', which indicates any beat mode with frequency w” in the range
Aw" ~ W' can be very easily coupled with the ions. The ion Compton scattering process
is therefore considerably enhanced. This frequency spread or “resonance broadening”
caused by the magnetic shear induced Doppler shift. In order to see this, it is instructive
. to note that in the shearless case, we have w' >k Vi Thus the interaction kernel in the

shearless case can be obtained by taking the limit k"v,- — 0,

(0 TG = (T3 ) T (KL 1) L6(")

namely, the ion Compton scattering is (severely) restricted to be local in frequency. As a
consequence of the Doppler ‘resonance broadening’, the ion Compton scattering process in
a sheared magnetic field is fundamentally different from that in a shearless case. This is
because: 1) local energy transfer (with comparable wave numbers ky ~ ko) which is absent
in the shearless case is now very robust in the long wavelength part of the spectrum. ii.) jon
Compton scattering is no longer an adiabatic process, namely, significant amount of wave
energy is transfered directly to the ions (nonlinear ion heating). Third, due to the radial
localization of trapped electron response, trapped electron Compton scattering is restricted
to a very narrow layer of width A near mode rational surface. Hence, the intensity of the
scattering is significantly reduced. This is apparent from Eq.(52) that v % In % and
the fact that l(e"'"'qa:fnr)blz is much smaller than |¢,|2.

‘We now evaluate the nonlinear couplings (i.e., the summations) in Eq.(51) and (52).
Since the linear modes are densely packed, we can treat both m' and n' as continuous
variables, so that the summations in both Eq.(51) and Eq.(52) can be converted into

integrals according to E,,., = [dn' [ dm'. Noting that ky=2Land m'=n q(rm: ), we
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have dn' = Zdkj, and dm’ = 5dr .. for fixed n’, hence,
g e AN n!

Vs

z—-fdl“l dr m . | (55)

In order to complete the integral, an explicit form of the spatial structure of the spectrum
function |§m |2 is requred. The integral is only sensitive to the spatial width of the spectrum

w' rather than to the exact form of its spatial structure. By noting that |¢m|? changes

slowly for z’ < w/’ , but decays rapidly for ' > w', we can approximate ]q&v: |2 as

6 [ = [6(ks)[20(12"| — w') e

where 6(|z'| — w') is the heavyside step function.
a. Nonlinear Transfer Rate Due to Ion Compton Scattering

In evaluating 4™, noting that in the limit 7, > T}, (JE(kLpi)JE(K' pi)) L can be ap-
proximated by 1. From Eqs.(51), and (53), and noting that | £ ¢ m |2 2 p? z 2| B2 (k) )6(|x’[—'

w'), L“ vy = z,’ , T = L—,;;'-, the nonhnea.r transfer rate for ion Compton scattering can be

rewritten as

k32 r dk!,
m = ( )2 lw*l q 9]¢l (k9)(k9 - kO)ps
'+'”’ W'z |
X/ ) drm ,U-szlzl\/l_,l exp{—(m,— 2} (57)

It is important to note that in a sheared magnetic field the radial wavenumber k. is a

function of 2/, i.e., k. = —p'z’, which implies that nonlinear ion coupling is stronger for

- larger z'. The fact that the slab-like eigenmode spectrum extends to z} renders |k!| ~

W'z ~ 4 /-f-:x;‘l > z,7!. Hence, due to the strong nonlinear coupling, ion Compton
scattering is expected to be much more robust in a sheared magnetic field. Thus, saturation
at levels below the conventionally quoted mixing length estimate of :‘—0 ~ %:— appears likely.

Note also that since k/.p; < 1, the replacing of (JZ (kLpi)JE(K' pi))L by 1 in the weak
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turbulence theory constitutes only a slight quantitative error. Changing variable from r ./

n’

to &' = r — . and carrying out the z’ integration in the above equation, we have
n’

kg r [dky w' 2w’ W'z 4

L [ e R (kT ~ K)o R Bl

L= NS

w'w!

where Ey(z) = [ dyy~? exp{—zy} is the exponential function. Ej [( —+)?] is sharply
peaked around w"” with a frequency spread Aw" ~ o' (;—,—) Noting that

(kg — ka)(1 — kokpp?)
Ey(1+k2)(1+k3) "’

W
W

small w” can be achieved either around kj ~ k"' = kg (local interaction) or around ky ~
ky = k Top? (nonlocal interaction) which is depicted in Fig.2. The fact that Ez[( = )2] is
sharply peaked around kj and k; allows us to simplify the expression for }* ! considerably,
namely, to convert the integral operator in Eq.(58) into a diﬁ'erential operator. In order to

do this, let’s expand |$|2(k}) in a Taylor series around kj = k7, k7, i.e.
612 (kp) = |81*(k3) + =7 ) l¢|2(’~ (ko — k3) +- (59)
This expansion is valid only when
|<15|2(7c (ko — k3) < |61*(k3)

Taking k) — k) ~ Akyp, and = I¢|’(k“’) aL, 2-|812(k)) = =, where Akgg, is the spectrum.
width of the interaction kernel E,[(%=F )2] and Akg is the spectrum width of |$|2(ke),

the condition above can be rewriten as

Akagz < Ako¢

namely, the spectrum width of the interaction kernel must be narrower than the width of

the fluctuation spectrum.

To simplify Eq.(58), we first ca.lculate the local interaction contribution to 7. We

1!

‘define a new variable k) = kj — kq. Nea.r ko, we have “LXi

==L ~ atky, where at =

28



|——9-§—1—k91(1_:k”p )|—;- Noting that kg2 — k3 = k,2 + 2kekjj and making use of Eq.(59),

w = Asz
we have
, dkg ' 2w’ W'zl
[y TP~ 2 By

1 w2w 1o o " 2
e [ 2k >[|¢|2<ko>+ P+ - 1B R

VT lw2w 1

Y L B () + 2o ) | -~ (60)

In the above calculation, [*°_ dkjky*E (oz""kuz) = Y1y

. Ak
order terms in -A-?L—El have been neglected.
Co s

Next, we calculate the nonlocal interaction contribution to 4. We define kj =

1=k2p
(1+k2

that k)2 — &} = (k;~ — kZ) + 2k; kj + kji*, and 13'1 YL = 2%, wehave ~7

ky — ky . Near kj, we have ( )2 ~ k"2 where a~ = 9p3|k9

ot p2)|w" Noting

dko w 2w ” I
[zeark I ,I| I (ko)(ko ’ A’ 2[(w ! ] S
1w 2w " -3 —_ 9 n n2
|wlz'; A/ dky((ky" — k3) + 2koky + k5]
x[l¢|2(k;)+-gl¢12(k;)k3+ 1Ea(a~?ky%)
—~— 1 w 2w _ 2 2\/" 1
NG RGP e (o)
In the above calculation, [ dkjEy(a~ k"z) = -L has been used, and high order

terms has been neglected as before. Now, combxmng Eq.(60), and Eq.(61), we obtain the

nonlinear tranfer rate for ion Compton scattering,

1;__4112 2foprw w
lw| 5 wrT; ( ) ( ) gz; A
x A VR VRl ko)l + 5 == (55 = D167} (62)

: W _ -2 .2-_1’=P 2 _ 2,22 zi _ _keps 2z [TorL
Bynotmgthat;:—— 14.1;2,,27]" —k} . L294 == (5 ) (Te) psc,,—A*-— 1+k§p3°‘/?‘?(’£—,,‘.’)’

the above equation can be rewritten as

n[' ~ . -
7 _ 4w r8 Qivg Tevs Loy Wiz € 1o,
o] =3 (qps)(w) (FH TSP
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x{(%)Z(kafi)i(isizkfp’)f s (Vo Boldl? (ko] + Zsign(1 — B3pDIg (55} (63)

In the above equation, the first term on the right side is the local transfer rate and corre-

sponds to a spectral flow in &y space. The second term is the nonlocal transfer rate, which

is positive for kgps < 1, §nd negtive for kgps > 1.
b. Nonlinear Transfer Rate Due to Trapped Electron Compton Scattering

In order to evaluate v7!, let’s first calculate the quantity I, = |(e"'”’qo¢n1)(,|2. By
- using Fourier representation in § for ¢n: ie P =3 ., ¢m: ei’"'o, we can write

Z Z Cm' m'+p¢'""¢""+P’ (64)

m! p=—o0

where the coupling coefficient between different mode rational surface for fixed n’ is

cr

e mi+p = (€ (m'—n'9)8) (e=ilm'+p—n'9)8), Gince (e¥(m'=n'D8Y, is localized around a mode
rational surface T with spatial width A/, ,'}:,’m, +p Which is centered at p = 0 will be a
decaying and oscillatory function of p. Therefore, the primary contribution to I,/ comes
from the p = 0 term in Eq.(64). As a matter of fact, it has been shown in Ref.(2) that by
keeping all p terms in Eq.(64), I,/ is only a factor of 7 times that obtained by keeping the

p = 0 term only. Hence, we may approximate I, as
T : [ -
Ly = 5 3 16 [P ~709), (63)
ml

The quantity (eX(™ ~"'9); can be calculated analytically for & < 1, since Eq.(52) involves
only an integral over (/™ ~™'98);|2  the answer is not expected to be sensitive to this

approximation. Employing m' —n'q(r) ~ % - yields

I
Al
Substituting Eqs.(55), (56), and (66) into Eq.(64), and carrying out the z' integration by

(eilm'—n 9)9)b ~ Jo(‘),c (66)

noting the relation that f fo dtJ. 2(t) ~ L lnto for tg > 1, yields

=2 7 e yepa)

2kw’

12 lap ). (67)

MIH IR
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Noting that

g —in' 2'9‘ —in’
|5, (e qod’n')blzz(z—,)zl(e P )|,

T

and carrying out the x integration in Eq.(52), we can rewrite the nonlinear transfer rate
for trapped electron Compton scattering as:

7: P ‘/—- ( )23°k° ZA‘

T~ ol w

g ’ ’ w'
7 2 k1B (R) (k) — k6w —w)ln . (88)

In arriving at Eq.(68), change of variable kj — —k}, has been made. Now, converting the

= ¢ J dky,

summation over n' in the above equatién into an integral by noting that, 3, =

and using the relation

S(ky — k2
§(wn —wa) = H -L"GL—*’) (69)

l
where ki = ky and k; = k—:—;‘g. we can further simplify the above equation to

'Ye 242 9P3A T
— —_— In_
o] = VR G R

Al BT PSR 8(ky — £))
« L [ diig ()03 K7 1a 75 ,_;.lak/ Aot

- w 222 opsA Tt
\/— ( ) ILUI $t1nA

1 .
-ky ky )(k k' In % ~ 70
xqol‘ﬁl(e)(o ) Alakw(k ] (1)

1- k»l’

and noting that a%‘é—] K = ‘c_f,p_'_—"' after a lengthy but

Replacing k with syl

p27

straightforward algebraic manipulation, we obtain the final form for 2

Ty = —vmest( Doy ><°.>%<5)<3_>

sig n(l

< (RGN TR 2y ()

The above equation shows that trapped electron Compton scattering is a nonlocal transfer

process. Local interactions (kj = kg) do not contribute because k;2 —k3=0.
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For Pearlstein-Berk eigenmode structure, we have w ~ z;. Comparing Egs.(63) and
(71), we find that the nonlinear transfer rate due to trapped electron Compton scattering
is considerably smaller than that due to ion Compton scattering. This is because: i.) the
spectrum of Pearlstein-Berk eigenmode extends to z; so that ion Compton scattering can
take place in a frequency range w + w' < ky(zj)vi ~ w'. However, the trapped electron
Compton scattering process is strictly limited by the §(w'—w) function. As a consequence,
the local interaction, which is absent in trapped electron Compton scattering process, is

.very intense in ion Compton scattering. ii.) trapped electron Compton scattering is radially
restricted to a very narrow region of W'idth A < z; near mode rational surface while ion
Compton scattering extends to z;. Due to this radial localization effect, the intensity of
trapped electron Compton scattering is reduced considerably. This reduction is apparent
from Eq.(71), the reduction factor is approximately given by ﬁ ln(%)% In(Z) ~ (%:-)% <
1. Therefore, ion Compton scattering, rather than trapped electron Compton scattering

is the dominant nonlinear saturation process for the slab-like trapped electron mode.

VII. Saturated Fluctuation Spectrum

In this section, the saturated fluctuation spectrum is calculated. The saturated state

is defined by the condition ;%[qﬁr: |2 = 0. From the wave kinetic equation, it implies
Yo+ 71+ + P =0 (72)

namely, the linear growth «! at each wavenumber ky is balanced by the combined effect
of linear shear damping and the nonlinear transfer due to trapped electron Compton scat-
tering and ion Compton scattering. The trapped electron Compton scattering, which has
been shown in last section to be much weaker than the ion Compton scattering, is hereafter
neglected. Shear damping can be neglected when we consider the most unstable mode.
| Consequéntly, satuaration is determined by the balance between the linear growth due to
the trapped electron excitation and the nonlinear transfer due to the ion Compton scatter-

ing. Shear damping is only important when we consider a linearly marginal stable mode
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(v} < 4*%), which determines the spectral cutoff. Thus, by neglecting both ~™ and y*¢

Eq.(72), the saturation condition can be reduced to,

nld

¢ are the nonlinear transfer rate due to the local and nonlocal inter-

where 77'"° and 7"1
" actions in ion Compton scattering, which corresponds to the first and second term on the
right side of Eq.(63), respectively.

Now, let’s solve Eq.(73) for fluctuation spectrum at saturation. In the region where
k¢ps > 1, the nonlocal interaction is due to the beating of a high-kg and a low-%} fluctuation
of similar frequency w ~ w'. The intensity of the interaction is determined by the. wave
spectrum in region kgp, < 1. Due to the nature of the ion Compton scaftering' process,
we can anticipate that for even moderate long wavelength fluctuation levels, the nonlocal
interaction is strong and causes a nonlinear transfer rate which exceeds the O'rowth rate
due to trapped electron excitation. As a consequence, these high-ks modes are only very
feebly excited (if at all), and thus do not cdntribute signjﬁcantly to either the fluctuation
level or the transport. Thus, the spectrum is populated only for kgp, < 1.

In region kyp, < 1, the nonlocal interaction is negligible. The remainder of Eq.(73) is

then a local first order differential equation and can be easily solved. In order to simplify

the analysis, we introduce a new variable kg = kgp,. With kg, we can rewrite 7,-"1’.? and v}

as

‘nl,c
- 4;’<;;>< B E P RV R (ko)

,_A"'A‘*\/— f Falo|* (o)) (74)

where A7, which measures the intensity of ion Compton scattering, is given by

ar = TP () (73)

aps Ps
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also

. =
Ye _ _1_'-’_2 L Tt \7. 7(’09)
le "\/g( )2 In(A)ko 3
._Al 7(]‘:0) (76)
3
where A‘e and (k) are defined by
= V) (%) (77)
(ko) = oW 7rImgn, (78)
Thus, the saturation condition is given by the following equation,
APE T2 VRl (Re)] + AR, 1F2) — ¢ 79
i Kg 96_1?:9[ alo|"(ke)] + 92— =0 (79)
The solution of the above equation is
12,7 1 Al ks 1:7"(;:{0) 71
6P(h) = —=loP ()~ —= [ By 1, (50)

In oredr to evaluate the integral in the above equation, a specific instability drive 5(kg)
must be utilized. For simplicity, |#[(1) is neglected by setting ks = 1 to be the upper
wavenumber cutoff of the spectrum, because |¢|2(l;g) falls off rapidly for ky > 1. As
the calculations are straightforward, we just present the results (for kg < 1) for different
collisionality regimes.

1. Collisionless Regime

2407

|¢'2(A—70) = 5 411[ ~

k‘3I°(k9) (81)
with e, = &2, and I°(Fs) = 1 - kj.
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2. Dissipative Regime

(ko) = 7%Eq

~d __ Cs

veffL

_')

6P (Rs) = 5 3 (2)

where I%(kg) =1~ 1:79%. :

Egs.(81), (82) predict a power law spectrum, |¢|?(ke) ~ k;*, where a=2 and 3 for

'dissipa.tive and collisionless trapped electron modes, respectively. This spectrum is drawn

schematically in Fig.3 which shows the lower cutoff l?:g and upper cutoff 1. On the same
picture, we also show the schematic of the linear growth rate so that one can see that the
saturated spectrum is down-shifted towards the lower kg region as a consequence of ion
Compton scattering. With the spectrum intensity we obtained above, we can calculate the
fluctuation level and steady state transport coeflicients. Here, the fluctuation level will be
calculated, while the calculation of the transport coefficients is left for next section.
The fluctuation level is defined as N
n ed
(o) = (27 - |
rz;

—ZI— m[? = i)f/%/r_; drm |gm|? ~ (83)

where the bracket means an average over § and ¢. By carrying out the rm integration,

and noting that A= (kgp,)—‘- T , we have

(GoF) = (g 2 (54

In the above equation, the upper cutoff of the spectrum has been set to be 1, and the
lower cutoff kS is determined by the ba.la.n‘cé'between the linear growth rate due to trapped

electron excitation and the shear damping rate, i.e.

17 c‘Y(k) £’1 -
A kg ;= I (85)



A more accurate determination of k5 should include the nonlinear transfer rate in the
balance equation above which could results in a cutoff smaller than that determined from
Eq.(85), i.e. some linearly stable modes will be nonlinearly excited. However, this excita-
tion is very weak, since for small kg the nonlinear transfer rate is very small. Therefore
the difference between the rigorous lower cutoff and k§ determined from Eq.(85) can be
ignored. Now, substituting the steady state spectrum in Eqgs.(81),(82) and noting Eqs.(75)
and (77), the fluctuation level in various collisionality regimes can be readily calculated.

. The results are |
() =062 (4t Dya(Rs) Loy (86)
T. T. L,
In obtaining the above result, the spatial width of the spectrum w has been set equal to

z;. In the above equation, ¥ accounts for the linear growth rate in different collisionality

regime and is given by
f -2 .. .
= _ J €n e v, collisionless regime; (87)
7 T:;f:’ dissipative regime;
and G(k§) is the function that represents the effects of the spectrum shape and cutoff,

L 5.2

kg 3t3
2
3+

1
ln g -

GlEe ?'2', collisionless regime;
= - 88
(k5) k;% dissipative regime. (88)

WIN’ <xm

Since Al « 1/%:-, Eq.(86) showes that the fluctuation level predicted is well below the
mixing length type estimate of % ~ fE o~ %:ﬁ This is due to the contribution of
the radial wavenumbers k. ~ u'z} ~ Zl,":'xt— ! > 271 to the nonlinear coupling coefficient

E-Bxz (since the slab-like eigenmode spectrum extends to z;), and the weak turbulence

reduction factor (7' )z ~ ALT < 1. Here, (---); represents spectrum average.

VIII. Turbulent Transport

Having obtained the wave number spectrum and the fluctuation level, we now consider

the effect of trapped electron mode driven turbulence on particle and heat transport.
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The turbulent particle and heat flux are determined by the correlation of the fluctu-

ating radial velocity with the density and pressure fluctuation respectively, i.e.

Tj = (Vi#1;), ‘ (89)

Q; = (V-5j)- | - (90)
The bracket represents an ensemble average which in practice can be replaced by an average
over the fast variation variables 8 and £.

For the particle flux, the quasineutrality condition also implies that the particle trans-
port is ambipolar, i.e. the spatial width averaged electron flux should be equal to the ion
flux, T’ = T;. In the following, we calculate the electron particle flux directly using the
quasi-linear approxmation. This is valid because the trapped electron nonlinear wave-
particle interaction is very weak and does not contribute to the saturation criterion. From

Eq. (89), the electron particle flux can be rewritten as —

L.

c e(1) 7
~p 2 kI8 o)

I

cr [dky [TT Le(1) 7
-Bq/ A/r drr ko Im(A0 3 -m) (91)

et T

Note in the above equation, the limits for the rr: integral have been set to be r£z; in order
to ensure satisfaction of the well-known relatioﬁship between the quasilinear equation and °
Ime, and preservation of spectrum width averaged ambipolarity. The particle diffusion

coefficient is defined as

|»—1

D

y (92)

2

|

Substituting Egs.(10a) and (10b) for A% in Eq.(91), and making use of the spectrum
function |#|%(ke) at steady state, we can obtain the particle diffusion coefficient D. The

result is _
— E%g_ﬁg,l’72 —,ccapﬁ
D= 0.4(Te) (Ls) ' (A'e §)F(l“0) Ln . : (93)
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where the function F(k§) is given by

(BS) = — g + 253, collisionless regime,
v 15 %EE + %E,‘j%, dissipative regime.

|H —uo\

and the instability source term ¥ is given by Eq. (87).
Now let’s turn to the discussion of the heat transport. From Eq.(90), the heat flux

can be rewritten as,

-1

Qi = _%Z koIm|(FR) + 55 + )6 -m] (94)

(0 -

where pJ is the [th order pressure response in the weak turbulence expension. The first

term in the above equation corresponds to the quasilinear heat flux. The second term
corresponds to the heat flux caused by nonlinear wave-particle interaction. For electrons,
the quasilinear flux is dominant, since nonlinear trapped electron-wave interaction is wea.‘k.
For ions, the ion Compton scattering induced heat flux is dominant, since the quasilinear
flux caused by the shear damping is negligible. As a consequence, we can write the thermal

flux for ions and electrons as:

-5 ; koIm(5% ¢ -m) . (95a)
gik Im(#%5"8-m) (95)

where p'(s) and pe(l) are given by
"(3) /d3 vJo (k‘l‘v'L L iv’h‘;‘f") (96a)

The thermal flux defined as above can be*di-vided- iﬁto- two terms,

Qj= '¢7:v+Qid _ :
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On the right side of the above equation, the first term QJ, is called convected thermal ﬁﬁx,

and is driven by the density gradient. Since this term results from the transport of heat

by particle diffusion, we may write this term as QJ, = T,T. The second term Qﬁd is called

the conducted thermal flux. It is driven by the temperature gradient. We define the heat
transport coefficient x; by '
J

Xj = —Ni (97)

Note that in order to calculate the thermal transport coefficients, finite temperature gradi-

‘ents are required. The transport coefficients determined in this way usually are nonlinear

functions of the temperature gradient since the linear growth rate 4! also depends on the
VT.. For self-consistency, strictly speaking, we must require that the temperature ‘gradi-
ents we introduce to calculate the thermal transport coefficients be relatively weak so that
our previous assumptions are not violated. In such cases, the tra.nsport coefficients do not

depend strongly on the temperature gradient. Now substituting h 1 from Eq. (34a.) and

52D from Eq.(8b) into the Eqs.(95b) and (96b) and carrying out the velocity integrals,

we can obtain the third order ion pressure response and the first order electron pressure

response. Substituting these responses into Egs.(952) and (95b), and noting the definition
for x; in Eq.(97), we obtain

X =0 lrran g (98)
. 5 Cs 2
X =08 KA D G S @)

where H(k§) is given by

il 3 ..
HE) ={ & (2 - 2)G(kG) - 3F(kS)], for cc‘)lh.smn-less mode
L[25F(kg) + 9k5G(ES))], for dissipative mode.

For trapped electron driven drift wave turbulence, the momentum diffusivity Xo = Xi- The
particle transport coefficient, the heat transport coefficients shown in Eqs.(93), (98), (99)

are substantially smaller than the mixing length type estimate. This is due to the effect
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that trapped electron response is radially localized to z < A < z., the weak turbulence
reduction factor (g:?)%, and the reduction in the fluctuation level which results from the
enhanced ion Compton scattering.

Now, let’s discuss the practical implications of Eq.(93), (98) and (99) for tokamak
transport. First, we notice that L, = §~1¢gR and A} « (%'L)Jz“ Hence,

L,
?)

Q| »
[}

DvXc’Xi(x(

i.e. all the transport coefficients have favorable major radius dependence. This favorable
major radius dependence results from the radial localization of trapped electron response,
and therefore will occur in all collisionality regimes. Second, in the dissipative regime,

-k

1 3
Y = 7St 2 -1 22
V= Tmoey; X Tem; *n™% cops x mPTE, we have,

u -1
D~oxe~ xi o Te? n‘zmi 2
ie. all the transport coefficients in the dissipative regime have a favorable dependence
on both the density and the ion mass. These favorable dependences do not occur in the
collisionless regime. Third, we observe the manifestation of confinement improvement in
peaked profile, collisionless regimes. This is apparent from the dependence of the transport

coefficients on exp(—zl%‘-), which is fundamental to the collisionless trapped electron growth

rate.

IX. Discussion and Conclusion
In this paper, a kinetic theory of trapped electron driven drift wave turbulence which
treats electron and ion nonlinearity on an equal footing is presented. The principal results
of this investigation are éumma.rized in Table I. In particular, we find:
i.) the disparity between the basic scales A < 7 < z; indicates that ion Compton
scattering is the dominant nonlinear pro_ceés for slab-like trapped electron driven drift

wave turbulence.
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ii.)

iii.)

dv.)

ion Compton scattering induces spectral transfer to long Waveiengths. The result-
ing spectrum |¢[*>(kg) ~ k;® ( =2 and 3 for dissipative and collisionless regimes,
respectively) is heavily damped for kgp, > 1 and cutoff by shear damping at kg.
saturated fluctuation levels are smaller than those predicted by naive mixing length
theory %‘f- ~ o~ \/gf—; This disparity is due to the appearence of klp; ~
1 contributions to the coupling coefficient & - &' x €y and to the effects of “weak
turbulence” factors (-3%): ~All«l

the transport coefficients Xe, xi, and D have been determined using the calculated
fluctuation spectrum. The results manifest explicit dependence on the spectral shape
and cutoffs, and are smaller than the mixing length estimate predictidns due to ef-
fects of localization of the trapped electron response to A(< z; < z;), the “weak

turbulence” factor (4! 1)? and the reduction in fluctuation levels discussed -above.

These results have a number of interesting implications for tokamak confinement the-

ory, which include:

i)

ii.)

the appearence of the robust favorable major radius scaling, due to the trapped elec-

tron layer localization effect.

the manifestation of favorable isotope scaling in the dissipative trapped electron

- regime. This favorable isotope scaling is accompanied by a transition from Xx~1l/n

" to x ~ 1/n? scaling.

ifi.)

the manifestation of confinement improvement in the peaked profile, collisionless
trapped electron regime. This trend is a direct cbnsequence of the exp(— %)dependence!
of the collisionless trapped electron mode growth rate. \

finally (and most important!), we observed that short wa.velengéh drift wave turbulence
levels and transport coefficients are considerably smaller than predictions derivedfrom
naive mixing length estimates. This result suggests that longer wavelength toroidal
drift waves and trapped ion modes are probably the dominant agents for electron

driven core transport in tokamaks.
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At this point, it is appropriate to briefly comment on the implications of this work
for longer wavelength, toroidicity-induced trapped electron mode turbulence. In contrast
to the slab-like branch, toroidal modes are standing waves, with coupled poloidal sub-
harmonics of width Az < ﬁ and kyv; € w. It is apparent from the analysis presented
in this paper that: (a) ion Compton scattering is ineffectual for toroidal modes, since
A(kjvi) € w. (b) the role of electron-mediated and ion-mediated nonlinearity are compa-
rable, sinceAz ~ A. (c) it is likely that E x B mode coupling is the dominant ion-mediated
‘nonlinear process, since k% p2 < 1 for toroidal drift wave!?. In contrast to the “conven-
tional wisdom”, it is easily seen that sﬁch E x B mode coupling transfers energy to small
scales, even in quasi-two dimensional systems.1® In combination with the trapped electron
mediated transfer to large kg discussed in this paper, such ion mode coupling suggests the

energy flow in long wavelength drift wave turbulence is toward small scales. A detailed

theoretical analysis of toroidicity induced drift wave turbulence is underway and will be
reported in a future publication.

We want to remark that in our calculation the electron temperature gradient effect
has been neglected. Finite electron temperature gradient can enhance the linear growth
rate!, but will not change the trapped electron dynamics. Since the linear theory will
change when finite 7, is included, the steady state spectra can be expected to change, as
well. However, our results obtained in this paper can be easily modified to include this
change.

Finally, the results presented here further underscore the need for gyrokinetic 17 and
bounce-kinetic!® simulations of trapped electron mode turbulence. Similarly, coupled fluc-
tuation and transport studies of low frequency turbulence,_pa.rticula.rly in flexible magnetic

configurations such as stellarators,'® should be vigorously pursued.
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Table I. Summary of Principal Results

Quantites Collisionless Regime Dissipative Regime
(W > wae > vesy) (Vs > w > wye)

_ -3 _ 1 c
! e Vet Ln
|612(%s) 0.4 ,fn, 2k;31(kq) 04251574 1(Ry)
(=) 065 (4L 1)G(RG)(£2)? same
D 0.4(& ) (—ﬂ-) 2(AL1)2F (kg )5’—"4- same
Xi 0.8(—‘-)5(—-“-) 7(A4! i)zF(lcg)cz‘l—ﬁ-'- same
Xe 0. 8( ) (‘”‘) (A )2H(25)£ﬁi same
I(ko) 1- l::gg 1— 1;33'
G(k3) -3+ 2t In & — 3+ 331
F(kg) 8 kg5 + 2kcE 1_15._1;;c3+1,;%
H(k5) Ll - DGE) —3F(E) | L[25F(RS) + 9k5G(R)]
B %’“Af*r « (LL'?)% (L. A‘ Tt (““)“
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Figure Captions

Figure 1: This figure depicits the linear eigenmode structure of a slab-like drift wave
(Pearlstein-Berk outgoing wave) with three different spatial scale lengths A, z,, and z;.
Two neigbouring mode rational surface of (%) and (™) are also shown on the diagram.

Figure 2: This figure depicits the linear dispersion relation for slab-like drift mode.
On the diagram, two distant wavenumbers ke and 1/kgp?, which conrrespond to the same
frequency w(k,), are shown.
~ Figure 3: This figure depicits the shape and cutoffs of the saturated spectrum |¢|?(ky).
k§ is the lower cutoff determined by the balance between the linear growth rate and the
shear damping rate. On the same diagram, the schematic curve of the linear growth rate

1s also shown.
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