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Pressure-driven ideal modes cannot completely interchange flux tubes of a sheared mag-
netic field; instead, they satura,te,onrming new helical equilibria. These equilibria are studied
both analytically and numerically with reduced MHD equations in a flux-conserving La-
gra,ngia,ri representation. For unstable localized modes, the structure of the nonlinear layer
generated around the resonant flux surface dépends on the value of Mercier parameter Djy.
Its width is found to be proportional to the position of the inflection point on the linear
eigenfunction. Perturbed surfaces in equilibrium always have folds, i.e., areas where the
direction of the original reduced magnetic field is reversed. But only far from the instability
threshold does the internal structure of the nonlinear layer resemble ‘bubble’ formation. The
appearance of sheet currents and island-like structures along the resona,ntbﬂux surfa,ce. may
be of interest for the description of forced reconnection in models with finite resistivity. | Aﬁ-
alytic results are found to be in agreement with 2-D numerical simulations. This study alsa‘o
includes the case of ballooning instability by representing nonlocal driving terms through
the matching parameter A’, which defines the outer boundary conditions for the interchange

layer.
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I. Introduction

The nonlinear behavior of ideal ballooning modes, which is a well-known problem in
tokamak theory, is still a mystery even as the present generation of tokamak experiments is
entering regimes for which the emergence of this instability has been predicted. The major
difficulty is the use of the ‘ballooning’ transformation, developed for the representation of
complex 3-D structures of linear eigenmodes,.in the description of the nonlinear system. To
avoid this difficulty, we first consider less complicated models, such as the localized inter-
change instability, and then try to extrapolate these results to more interesting situations.

If considered in a ‘cylindrical tokamak’ environment — i.e. in a straight cylindrical
pinch with a strong parallel magnetic field, nonuniform current density, and periodicity
requirements for any perturbation - the interchange instability resembles the local behavior
of ballooning modes in a tokamak. Both of them are driven by the unfavorable curvature
of the magnetic field lines and the gradient of the plasma pressure and are stabilized by the
shear of the magnetic field, which allows the perturbation to grow only in the vicinity of
those flux surfaces where the helical structure of the mode is resonant with the structure of
the magnetic field. The main difference between interchange and ballooning modes is that in
a ballooning perturbation, poloidal harmonics interact to utilize the modulated curvature of
magnetic field lines in tokamak geometry, while the interchange mode is driven by the mean
curvature on the flux surface. Since different poloidal harmonics have separate resonances
with the magnetic field, the ballooning mode is much broader in radius and can be thought of
as consisting of several radially shifted but partially overlapping perturbations with different
helical structures. The interchange mode is only one such perturbation. Thus, c;nce we have
a sufficient understanding of its structure, it will be possible to consider toroidal corrections
and the interaction of these modes.

For one ideal MHD instability there already is an accepted theory of nonlinear saturation.



Tilis is the m=1 internal kink mode in a ‘cylindrical tokamak’.} It was studied in real space
flux-surface-based coordinate systems in order to find a new helical equilibrium. The problem
was separated into a reduced description of the nonlinear layer around the resonance and a
linearized description of the external perturbation. The amplitude of the saturated helical
displacement was found from a matching procedure in which the driving terms from the
external region were balanced by the formation of sheet currents along the resonant surface.
In this paper we use a similar approach to study the interchange modes, and hence the
equations and results are often comparable.

There ére, of course, several qualitative differences between the nonlinear interchange
mode and the internal kink mode. In particular, it is found that the internal structure of
the nonlinear interchange layer is more complex than that of the m = 1 mode,* and the
usual ordering 92 /dr® > 0%*/06* has only limited applicability. For large valug{s::”c:f..ithe
local pressure gradient (described by the Mercier stability parameter Dyy), the sta.b__ilizing
influence of the magnetic field at the resonance is reduced and the form of the flux surfaces in
" the new equilibrium resembles the formation of ‘bubbles’, predicted earlier for the external
kink.*

The present study is based on the ideal MHD descri-ptioﬁ for a plasma, with a high aspect
ratio tokamak ordering for the equilibrium parameters. 'I“hrourgho{l:most of the paper, a
simple 1-D geometry for the initial equilibrium and a 2-D description for the helical per-
turbations are assumed.. This restricts us to single-helicity perturbations. The rélationship
between the 2-D localized iﬁtercha,nge and 3-D ballooning modes is discussed only in Section
VI. The present study is also limited to internal fixed-boundary perturbafions and resorts
to slab-like models whenever possible. |

In Section II, the simplified equations for the description of the nonlinear localized helical
perturbation will be derived. These equations are a generalization of the layer equations of

Ref.1 to account for local pressure gradients and the finite poloidal wavelength of the pertur-



bation. Before presenting the solution we will discuss the general features of the system and
the properties of the ‘most interesting’ solution in Sec. III and IV. In Sec. III an asymptotic
method for the analytic evaluation of the radial width of the saturated state is presented.
This width is relatively independent of the structure of the nonlinear layer, which is qualita-
tively described in Sec. IV with the hydrostatic model. Analytic estimates are found to be in
agreement with the results of the numerical solution, presented in Sec. V. These numerical
solutions are based on another form of the equations, derived in the Appendix, which form is
necessary in order to avoid coordinate-related discontinuities during tHe description of folds
br bubbles on flux surfaces. The relationship between this problem and the full toroidal de-
scription of ideal ballooning modes is discussed in Sec. VI, and an estimate of the saturation
level for the A’-driven layer is found. In Sec. VII, we summarize the established features of

interchange-like modes and related unresolved problems.
II. Simplified Equations

Reduced MHD The localized interchange can be studied within the framework of reduced
MHD, provided that curvature terms are retained to second order in the inverse aspect ratio
during the derivation. Such a set of equations has been given by Drake and Antonsen®:

o d Jy . bxR
—EEVJ_/)EZ "B"I‘QC B .

Here b x & = —V® x VR + b - V(V¥/(R.B,)), B = V& x Vi) + B,R,V®; & and % are

Vi¢=E .V Vp. (1)

the normalized fluxes of magnetic field; B, is the magnetic field on magnetic axis, and R,
is its radius; ¢ is the electrostatic potential, p is the plasma pressure and Jj is the density
of parallel current; and b=FB /B. The vorticity equation (1) has to be solved together with

Ampere’s and Ohm’s laws,

R’V.RVy = %ROBO(,m/B), (2)
1op -
B b- Ve, (3)
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which define the evolution of Jj, and with the continuity equations that govern p and p. For

the latter we assume the convective model with

dp
@ _ 4

and p =const. The transverse motion of the fluid, necessary for the description of inertia, is

given by

. ¢R, 2chp>
vl:—BquSxV@—}——B—?bxn. - (5)

Equation (1) can be simplified for a single-helicity perturbation in an axisymmetric cylin-
drical equilibrium. Following Ref. 4 we introduce the ‘reduced field’ b= Vz x V* and the
‘reduced flux’ ¥* as the variable part of the magnetic field B= Bo(Vz.-{- £Vz x Vr + 3*)
Using homogeneity of the system along the helical axis of symmetry €, - V = 0, where

€= Vz+ £Vz X Vr, we obtain

d o™ i
TAL = (5 V)AL HB( - VNI + 2628, = (0

In these terms Ohm’s law can be expressed as a continuity equation for the reduced flux

dy* _
dt

0, a o

‘which implies conservation of magnetic surfaces throughout all possible motions.
Because of the incompressibility assumption, the pressure gradient is a function of flux
surface. It appears in Eq. (6) through B,(¢) = 47 B;? (9p,/9¢*). Also, we have renormal-

ized the electrostatic potential and discarded the variation of p.

Lagrangian Coordinates The plasma motion can be described as a mapping or a La-
grangean transformation from the initial position of the fluid element to its final position
(ro,8,) — (r,8). Following Ref. 3, we rewrite the equations to define this transformation

rather than that of the potentials. From the flux conservation law (7) we have ¥* = 1,(r,),



By = B'(r,) /¥ (r,), and incompressibility means that the Jacobian of the transformation is

conserved:

[Tza 9] = [7‘:,90] = 2r,. (8)

Here [a, b] is our notation for Poisson brackets:

[a,b] = Oa 0b _ Oa Ob
0= 558, e, or,

= a,bg — agb,, (9)
where subscripts will be used to denote partial derivatives in (r,,8,,t) space, whenever
compactness is required.

Substituting the velocity of the fluid instead of the electrostatic potential (via Eq. (5))

into the left hand side of Eq. 6, and expressing gradients in terms of Poisson brackets, we

obtain

wy? ([rtt, r] + [r%0;, O]t) _ % 0 ([7'2%09, 0] + [%7"9,7’])

To 00, \" T,

N 2 (10

+6' <ﬂ) 2 1(7"293 +r5) +26'6*r or
Here wy = kc4/r is the normalization constant for the Alfvén frequency.

As shown in Ref. 3, an equation of this type has solutions with asymptotic behavior
resembling the phase mixing of linear Alfvén waves. For low frequency oscillations, this
mixing is due to the radial dependence of kj in a sheared magnetic field. It provides an
effective channel for the ‘dissipation’ of kinetic energy into short-wavelength fluctuations with
the characteristic time 74 = k) / (cAkl'I). This feature is important for understanding the role
of the helical equilibrium. Once the axisymmetric equilibrium becomes unstable, the plasma
column will not oscillate around the stable helical one, as might be expected in an ideal
system with few degrees of freedom. Kinetic energy will be lost in small-scale fluctuations
and the column will asymptotically approach the helical configuration. Completion of this

process, though, will require an infinite time, which in real physical system means the onset

of reconnection.®



- We now proceed by disrega,rding inertial terms in the left hand side of Eq. (10), so that

the remainder describes equilibrium configurations only. It can be integrated in 8, to yield

! ' .y 7\ 2
Lo, o)+ Lieryr 48 (£) (P 4rh 4900 - = ). ()

4] o

Here H(r,) is the integration constant. Its value must be found from the boundary conditions
in 8,, namely, the periodicity requireme.nts. The derivative of the flux can be expressed in

terms of the rotational transform of the magnetic field:
X = /1o = plro) — 2, (12)

where u = 1/g, and o = n/m is the helicity of the perturbation. We also note that the third
term on the left is only a small correction, of the order of 3, to the sum of the first and the
second termé, and is not necessary in our approxirna,tionl.
Thus, any mapping between two equﬂibria (r0,8o) = (7, 8), which is consistent with:flux
conservation requirements, must satisfy
or

., 08 , |
X[TZXB'OTa 9] + X[X%—ar] + ,3 K‘2(T2 o T’Z) = H(Iro)' (13)

Mixed Coordinates Up to this point we have a description of equilibrium based on two
equations, (8) and (13), for two functions r(ro,8,) and 6(r,,0,). It is possible to rewrite
this problem as a single equation for one function by introducing the new mixed pair of
independent variables: (r,,8). The first one is the initial fa,dial position of the fluid element
in an axisymmetric equilibrium, and hence labels magnetic surfaces, but the second one is
the poloidal angle of the same element in the final helical equilibrium. For convenience we

also define the displacements
f(‘ro, 0) =r—-r, /\(T‘o, 9) =~ (90, (14)

and the following shorthand notations for derivatives:

0 | . o |
). e=(2). s
To °/ 8
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In terms of these variables the incompressibility condition (8) reduces to

1 -3 =—(1+&), (16)

7"O
and [a,0],,0, = (1 — Ag)2[a, blr, 0, (8/05)r, = (1 — X0)~1(8/89),,. Using these identities it

is possible to remove all references to §, and A from Eq. (13). We obtain

(lli) 0 (r_ro_><_>+l 0 (L xés )2_
ri14+¢&.) 0re \ 14é, 20r, \ T 1+,

o (—E—’f—”ﬁ) + 863 (r? —r2) = H(r) (17)

We are able to see the relationship of this equation with the linear theory if we multiply
it by r, and linearize for ¢ < r,. Then it becomes

9 (5298 2 20%¢ 23, 20 _
B <TX3TO)+TX£+TX 802—27' B'r¢ =0, (18)

where x? = (p — n/m)?, and the first two terms originate from the first term of Eq. (17).
This equation is widely used for the description of kink and localized modes in the cylindrical
approximation.®

Comparing this linearization with equation (17), we note that probably the most im-
portant nonlinearity is related to the 1 + ¢, denominators. Its physical meaning is that for

¢, = —1, the flux surfaces touch one another at this point and a sheet current is formed,

which makes the energy of such perturbation infinite, if x # 0.

Radial Localization To proceed further, we have to make assumptions about the un-
known solution. This procedure requires verification, which is provided in Sec. V by a
comparison of the numerical solution of Eq. (13) with that of the simplified version derived
below.

The usual assumption, applicable to linear localized modes or to the nonlinear layer of the

m = 1 internal kink mode,! is that in the vicinity of the resonant surface y = 0, the radial



variation of perturbed quantities is much larger then the poloidal variation, §%)/dr? >

72 (9% /06%). We use this inequality to introduce the ordering

x~(r—r.)/r~ekl; -
ko = 0/06 ~ erd/0r > 1; (19)
e L K:fBr < 1.

With the above assumptions, the second and third terms in Eq. (17) contribute to force
balance only outside of the x ~ € nonlinear layer. It means that their linearized form can be
used instead of the full expression and all the important nonlinearity is hidden in the first
term. Indeed, this part of the equation is essentially the same as (V,)? = 0, used for a
layer description in Ref. 1.

The assumption ks >> 1, valid for localized modes, simplifies the cylindrical model into
the slab-like one, since we can now discard variation of the metric with » and expand all
quantities around the point of resonance r, where x(ry) = 0 or u(ry) = o Hence,1t is
convenient to change the radial coordinate r, to = r, —r,, which is centered on the resonant

surface z = 0, so that x2 = (p/(ry))?z?. Equation (17) now becomes

0 z? 2 |
o (m - h(m)) =2 (% + D), (20)

where
2

22 1 df B |
h(a;) = g% m‘f, (21)

and Djr = 2rf'x%(u')~? is the stability parameter of linear theory. Expression (21) is the

consequence of the periodicity constraints on the solution of Eq. (20).
The closed system of Egs. (20) and (21) describes the helical equilibrium associated with

a localized interchange mode.

Boundary Conditions While deriving the above equations we have assumed that:

a) each perturbation must be periodic in 6,; and




b) there is a rational magnetic surface u = n/m, where the structure of the magnetic
field is resonant with the helical structure of the perturbation. If n/m is a simple fraction,
then all resonant perturbations must be periodic in m8,. We can account for this complex

periodicity by making the scaling transformation
(G=mb, €=¢E/m, & =z/m). (22)

In tl;le limit of ‘localized’ modes, i.e., m > 1, the equations are invariant, so that after
transformation we retain the same equations but with only simple periodicity in 4. In the_
following we assume that this transformation is carried out.

The radial boundary conditions for the internal modes are, as usual, given by:

a) finite value of radial displacement on the magnetic axis, £(0) < oo,

b) zero radial displacement at infinity or on the conducting wall, £(a.) = 0.

For localized modes it is equivalent to limg . (z%¢) = 0.

Discussion

1) The linearized version of Eq. (20) is

;9% (“’2%> + z%6g9 + D€ = 0. (23)

This is the usual stability problem that results in the well-known Djs < 1/4 Mercier crite-

rion.”®

2) Disregarding the right hand side of (20) (it is relatively small in the nonlinear layer)

yields
z

(h(z) +9(0)"

Such an expression also appears in Rosenbluth et al.! In this respect the above description

‘S:r = (24)

of the nonlinear layer is almost equivalent to that used for the m = 1 mode.
3) The dynamic equations for the low-m modes and the energy functional based on the

same principles of derivation have been earlier published in Ref. 3.
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TIL Equilibrium Displacement

Properties of the Solution The nonlinear equation, derived in the previous section, has
the trivial solution ¢ = 0, which is the axisymmetric initial equilibrium. Therefore, if it
has other solutions, which is what we are looking for, they are not unique. In fact, there is
an infinite number of different solutions, and the first part of this section is devoted to the

problem of determining the most interesting one.

Poloidal Wavenumber Assume that there is at least one nontrivial solution of
Eq. (20). Then we cé,n make scaling transformations of this function in accordance with
Eq. (22), and the result will satisfy the original equation as well as the boundary condi-
tions. Thus we get an infinite set of solutions for every integer 7n. This featurew_is? of
course, conserved for eigenfunctions of the linearized equations, and all of them havethe
same eigenfrequencies. h

If the poloidal wavenumber of the parent helical solution is not the same as the denomi-
nator of a simple fraction o = n/m that describes the helicity of the wave, then the Parent |
solution can be upgraded to wavenumber m by the inverse transformations. This is the
smallest wavenumber we can obtain without violating the boundary conditions.

If any nontrivial helical solution exists, then there is a whole set of them, with poloidal
wavenumbers that are multiples of m.

It is easy to see, that the most interesting soiufion is the one with the lowest ‘poloidal
wavenumber. This has the broadest ra&ial ektent and the largest radial displacements,
according to the features of the transformation in Eq. (22). In what follows, we choose to

consider this function only. Note that its characteristic wavenumber m means 7 = 1 in the

normalized equations.

11



Radial Symmetry Equation (20) is invariant under two symmetry transformations:

0 — 6+ 9;
{:v—>-—z, (25)
§— =€

Consequently, the most general form of symmetry that can be imposed on a solution is
£(z,0) = —£(—z,0 + 9). Using it twice in succession leads to é(z,0) = £(z,0 + 29), and for
m = 1 we have ¥ = {r to satisfy the periodicity.

Thus, there are two basic types of symmetry for a helical equilibrium:

{(z,0) = —¢{(—=,0)
which corresponds to the ‘tearing parity’ mode, and
{(=,0) = —¢{(—=z,0 + )
which corresponds to the ‘ballooning parity’ mode.

The linear problem yields the same stability threshold for ballooning and tearing parity
perturbations. But for the tearing parity, we already have £(0,6) = 0, so that the interchange
of flux tubes cannot take place across the resonant surface. Moreover, the relaxation of the
pressure gradient will be much less than that for ballooning parity perturbations, which
are, therefore, more interesting. This statement will have its confirmation in the following

sections.

Radial Nodes Consider fhe eigenfunctions of the linearized problem with the same
type of symmetry and the same poloidal wavenumber. There are still many of them for any
given Dy above the instability threshold. They differ in the number of radial nodes in z.

To establish the selection principle that is suitable for this kind of degeneracy, we will
show that the perturbation with more radial nodes in £'(z) corresponds to a smaller total dis-
placement on the resonant surface. Hence it corresponds to a smaller relaxation of potential

energy and is less interesting.

12
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Equation (20) has no other parameters besides Dps, which cén be used as an expansion
parameter for the description of the nonlinear layer only if Dy <1, whereas the instability
threshold is Dps > 1/4. In lieu of an exact solution there are only fwo options: either to
make computer simulations, which are presented in Sec. V, or to derive analytic estimates,
based on numerically small factors such as 1/4. These estimates are not asymptotic in any
physical parameter, but, nevertheless, they can be based on physical assumptions and they
can provide understanding of saturation. To make such estimates is the aim of the following

discussion.

Sheet Currents and Saturation of Interchange It is well known that resonant per-
turbations of the magnetic field in ideal MHD lead to the formation of sheet currents.'*
In our representation they appear as layérs of closely packed flux surfaces, which git11ation
corresponds to fx = —1. Everywhere else fw must be larger than 1, since the ﬂuxrsurfaces
are initially nested and cannot intersect within ideal MHD.

Let us conéider an.arbitrary, ideally unstable MHD perturbation in ﬂux—sﬁrfa(k:e“felated
coordinates (Fig. 1). While it is small, it is expoﬁentially growing in amplitude Wit.h time.
Eventually the é(r,) profile of this perturbation reaches the stage when the ¢'(r,) = —1
point appears. This corresponds to the formation of a ‘sheet current’, and the mode cannot
grow fﬁrther vﬁthout changing its form. Broadening the profile of the perturbation means
an increase in the perturbation of the magnetic field and is stébiiizing to the mode.

If the mode is just above the linear stability threshold, its amplitude will saturate before
the ‘sheet current’ stage is reached. If there is nd other nonlinearity, finding when the ¢ =-1

stage begins is a simple way to estimate the saturated displacement. Since the sheet current

will first appear at the inflection point of the £(r,) profile, we have
Le=0;  E(r)=-1  €'(r.)=0.
These relations determine the position of the inflection point, r., on the eigenfunction of the

13



linear equation, L& = 0, and hence the amplitude, ¢, of the saturated perturbation.

If the mode is far above the threshold for instability, it is necessary to match the external
linear solution onto whatever description of the nonlinear layer is available. The geometrically
simplest approximation is a ‘sheet current’ of zero width (or £ = —1 over a finite region of
r,). Physically this is impossible, since it will cause an infinite perturbation of energy. The
real layers are thin, but not infinitely thin. However, this assumption is approximately valid
for the task of constructing the £’ -continuous perturbation using the linear eigenfunction
and the layers.

We will now try to carry out this program for our problem of ideal interchange modes.
However, we have to avoid two difficulties:

a) above the instability threshold, the solutions of the linearized equation (23) are os-
cillatory (as &/(z) o z=*/%cos(vIn(z/z,)) for z — 0), so that there are many inflection
points;

b) the amplitude of the oscillations in any linear solution increases and becomes infinitely
large near the singular point at z = 0, so that even for small amplitudes the problem seems
to be nonlinear.

The cause for these difficulties is the static nature of our analysis. In a real linear stage
of instability, the number of nodes is limited and the singularity is removed because of the
presence of inertia. Equation (23) is valid only far from the resonant surface, whereas in
the inner region it must be modified by either nonlinearity or inertial terms. Effectively, the
helical equilibrium is always based on a strongly nonlinear mode, ‘far’ from the threshold of
instability.

Consider a linear eigenfunction growing with time, which has & inflection points z. >
z1 > ...> Tp_1 at positive z. Since the amplitude of the oscillations in ¢’(z) is proportional
to 2732, the sheet current condition ¢’ = —1 will first be satisfied at the inner inflection

point z;._;. So that the external perturbation will not be able to grow further. Assuming

14



that the inner layer settles down into some nonlinear configuration (see Sec. IV), we arrive at
a helical equilibrium with k& — 1 radial nodes in the external region. The widest perturbation

with the largest displacement at the matching point corresponds to k£ = 1.

Balldoning Parity We now look for a solution that is basically r”n =1, has as few
nodes in z as possible, and has ballooning parity, £(z,0) = —{(—=z,0 + 7). Because of the
assumed parity, £(z) can have even zero nodes, while ¢” has at least one node at positive .

Assume that the perturbation far from the resonant surface is.completely m = 1: namely,

£ezt = £1(x) cos§. This is reasonable, since in that region the equations are almost linear

" and the linear solution for the 7 = 1 harmonic is the widest in radius, so that all high-a

corrections are concentrated closer to the resonance. As an approximation for the nonlinear

internal solution we choose ¢,, = —1 over the region —§ < z < z,(f). This is a thin
sheet-current layer of variable density. o
Asa first step, we match displacements at 6 =0 and z = z,(0), where the nonlinear layer

is widest in z: £z4(24(0),0) = Eine(z5(0),0). Between the inner boundary of the external
solution and the outer boundary of the sheet-current at § # 0, there is now a gap (or
overlapping) with undefined magnetic surfaces. We do not need its exact description a,ﬁ the
moment, but we must assume that there is no overlapping, so that the outer solution is
indeed the outer one for all §. '

As a second step we match the radial derivatives of the displacement at the same point,
which is equivalent to balancing radial forces: £,;,(z+(0),0) = —1.

The final step is necessary to define the matching point, z,(0). As discussed earlier, it is
logical to match the linear solution onto the sheet current at the minimum of ¢’ and hence

ext

r(25(0),0) = 0 defines z,(0). The resulting curve is shown in Fig. 2.

Let us define z, = z,(0), which is the flux width of the sheet-current layer, and rewrite

15



the resulting set of equations as:

¢'(ze) = —1,
¢"(z.) =0, (26)
236" (ze) + 2zl (ze) + (Dar — 22)€(2.) = 0.

Through z. we can estimate another physically significant parameter of the equilibrium

configuration, namely, the characteristic displacement of the resonant flux surface, £(0):

£(0) = &(ze) + e = 76 (1 + —3——) , (27)

Dy — 22
where z. is the solution of Eq. (26).
In general, solutions of Egs. (26) and (27) are related to the roots of complex Bessel

functions and can be found numerically. An asymptotic evaluation yields the exponential

behavior near the threshold of instability:

Ze o Dysexp (—(DM — 1'/4)1/2) . (28)

These analytic estimates reproduce the Djs dependence, as well as the value of the
saturated displacement for the ballooning-parity interchange mode. For a given poloidal
wavenumber m, the above result must be divided by m to obtain the absolute value of

displacement.

Tearing Parity For these modes the perturbation must satisfy ¢(z,0) = —¢(—=z,0),
and hence £(0,6) = 0. The resonant surface is not displaced from its original position and
the sheet-current layer lies along it. This requirement is enough to define the position of
the matching point, z., after we go through the first two steps of matching, following the

procedure for ballooning parity mode: £(0) = z, + {(z.) = 0. Now

fl(xe) ~ _11
ZTe + €(xe) =0, (29)
226" (xe) + 22.8'(z.) + (Dpr — z2)é(z.) = 0.

16



Again, this set of equations can be solved numerically, but the only important thing to know

~ is that the flux width and the characteristic displacement are much smaller than those for

the ballooning parity mode:
Te, R Te, eXp(—7/2V) K o,

Here v = (Dpr — 1/ 4)1/ ? measures the extent by which the threshold for linear instability is

exceeded.

Discussion In this section we have noted that the ﬁonlinear solution is not unique, and
tha;t several different helical equilibfia are possible in the system. The most dangerous
perturbation, which generates a new equilibrium Wit‘h the lowest potential energy and largest
displacement of ﬂﬁx surfaces, is the ballooning parit_‘} perturbation with the lowest poloidal
wavenumber consistent with periodicity requirements and without radial nodes in the radial
displacement.

We have found an estimate of the saturated displacement for this mode. It is based on the
assumption that for a linearly unstable perturbation fhere is a simple geometric limit for its
growth: namely, that the radial derivative of the radial ciisplacement, &', cannot exceed unity.
The i‘eason for this limit is the flux conservation law, Which p.rohibité the intersections of
initially nested magnetic surfaces. The estimate is obtained by matching external linearized
solution onto the sheet current layer of zero width. The actual current layer has a finite
width, and further calculations show that our result for the saturated displacement can be
larger then the real value by about 20%. A comparison with the numerical model will be
given in Sec. V. | |

The matching.procedure and its result are virtually independent of the details of the
perturbation structure in the nonlinear region. This means that the source ef instability
and the cause of saturation are both associated with the external region. Nevertheless, a

knowledge of the actual structure of the sheet current and of the whole nonlinear layer is
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important for a physical understanding of reconnection and other dissipation phenomena.

This problem is addressed in the next section.
IV. Structure of the Nonlinear Layer

Hydrostatic Model To understand the structure of the inner nonlinear layer, we need a
simple physical model, which can even involve no magnetic field at all, since the dominant
process here is the fluid convection.

Consider a flat horizontal layer of stratified fluid between fixed boundaries in a vertical
homogeneous gravitational field. To label the constant density lines, we insert into the fluid
thin flexible and elastic horizontal membranes. They will move with the fluid and separate
fluid layers of different density, exactly like the flux surfaces do in ideal MHD (Fig. 3a).
It is easy to find the 2-D equilibria of this model in the limit of zero elasticity, when it is
equivalent to our model of interchange with zero magnetic field.

To reduce the number of possible equilibria that are almost equivalent (having the same
density profiles but different distributions of membranes), let us adopt the procedure of
selecting only those equilibria that have the smallest length of membranes. This allows for
small background elasticity and eliminates thin folds on perturbed membranes. We also have
to impose periodicity constraints in the horizoﬁtal direction, so that a sequence of permitted
wavenumbers is selected.

There are two types of equilibria that have the lowest potential energy. One is the initial
unperturbed equilibrium in a stable case Vp, - § > 0, and the other is the ‘ballooning’-type
equilibrium for Vp, - § < 0, which is shown in Fig. 3b. The ‘tearing’-type solution is also
possible, but it can utilize only 1/4 of the available energy (Fig. 3c) and hence is unstable.

The ‘ballooning’-type solution in this model can be interpreted as a completed inter-
change, resulting in a sequence of ‘bubbles’ on the resonant surface. In a more realistic

model with a finite magnetic field, the interchange cannot be completed because of the field
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elasticity; this will be discussed later. In reality the external boundaries of the layer are
perturbed by an external solution going as =~ £(0) cosf. This complication is addressed in

the following paragraph.

Equilibrium in a Perturbed Layer Let us consider a thin channel, deformed as £ cos ¥,
so that the width of the channel is § < é. The deformation occurred after the channel was
filled with stratified fluid, as described in the previous paragraph. After redistribution of
fluid, the density gradient returns to its original vertical direction, while possible positions
of the membranes are shown in Figs. 4a and 4b.

In this model the elastic membranes are equivalent to flux surfaces in a plasma layer.
Using this analogy, we interpret configurations in Fig. 4 in terms of the magnetic field and
current;

a) In the initially stable case, Vp, - § >0, the flux surfaces are compressed together on
the inner side of the channel at § = 0 or § = 7. At § = /2 the direction of magnetic field
is horizontal and in the direction of the original unperturbed magnetic field.

b) In the unstable case, Vp, - § < 0, the flux suffaces are compressed together on the
outer side of the channel at § = 0 and 7. In between, the direction of the magnetic field
inside the channel is ’horizonta,l and opposite to the direction of the original magnetic field.
The configuration of the middle line ( the ‘resonant surface") can be viewed as an incomplete
‘bubble’.

A layer of compressed flux surfaces is a representation for a sheet current. In the unstable
case, the sheet current is genérated in the right place to be matched with an external solution.
The area with low magnetic field around 6 = 7/2 reé‘e.mbles an island, since the surrounding
flux surfaces go through the X-points at § = 0 and «. Inside this “island’ the heavy fluid is

always below the light one, so that in this sense the interchange is again completed.
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Formation of ‘Bubbles’ Now we intend to show that there is always some region where
the purely hydrostatic model explored previously is adequate. Then the question whether
the ‘bubble’ of magnetic field can be formed or whether it is incomplete, as in a thin channel,
depends on the relative width of the layer. If the hydrostaticv model holds in a region wider
than the external displacement, then the ‘bubble’ is formed. Otherwise, we get an ‘island’-
like structure with a locally reversed magnetic field.

Let us introduce the characteristic parameter 5*, which is the ratio of the hydrostatic
pressure, generated by the stratified fluid in a perturbed channel, to the pressure of the

reduced magnetic field (or elastic membranes):
B = 4n(p' - 6)gbmas/ B = Du(0)/5, (30)

where § is the flux width of the layer. Note that § enters in the denominator because
B* = B,b* « 6.

The physically obvious criterion for validity of the hydrostatic model is 5* > 1, which
can always be satisfied for sufficiently small é.

We now have a way to estimate the flux width of the ‘island’,
Tisland = Dm€(0), (31)
and, from incompressibility, its width in 8 direction,
60:51ana = ™Dy (32)

The flux width of the channel becomes comparable to the external displacement when
Dy > 1. At the same time, the f-width of ‘island’ is of the order of m, which means that

the ‘bubble’ is almost closed from above. Thus,
Dy 21 (33)

is the threshold for the formation of ‘bubbles’.
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Discussion Although the preceding study, based on the hydrostatic analogy, is purely
qualitative, it allows us to draw several important conclusions. |

1) In the new helical equilibrium, associated with the ideal interchange instability, mag-
netic flux surfaces have folds; i.e., at certain places, the sign of the poloidal component of
reduced field is reversed. Also, the assumption ,, >> g is not valid in the vicinity of
the turning points. Thus, Eq. (20) cannot be expected to reproduce internal ‘bubble’-like
structures. To check this conclusion, we have numerically solved both Eq. (20) and also the
full equation (13), as reported in the next section.

2) The structure of the magnetic field around the ‘islands’ suggests the possibility of forced
reconnection inside of the sheet-current layers.® Then the ‘island’-like configuration will be
transformed into real magnetic islands. However, the pressure profile is already relaxed
inside the nonlinear layer, and hence the instability drive will not change signiﬁcaifiﬁ?@vith
dissipation. The size of the equilibrium displacement is associated mostly with the external
perturbation and will evolve on a much slower time scale. .

3) The sign of the mean curvature of magnetic field lines for localized modes in a t_bkamak
is often opposite to that required for interchange instability.>1? This parameter plays the role
of local gravity close to the resonant surface. Thus, the field distribution even for the ‘stable’
case can be adequate for the situation when the instability is drivén by ﬁonlocal ballooning

or kink terms from outside of the interchange layer.
V. Numerical Solution

This section contains a qualitative description of the key points of the numerical methods
employed for solving the nonlinear equations (20) and (13) and a discussion of the numerical

results.
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Algorithm The algorithm for the numerical solution was based on iteration procedures.

To describe it, we start by rewriting Eq. (20) in integral form:

z z

(34)

.8) = —1]d=.
£(z,9) /oo (\/h(a:) + f(0) + 2 5 (Dar€ + z%6pg)dz )

Here f(8) is the integration constant, which must be found from the radial boundary con-
ditions at —oo or from parity requirements. The use of infinity as the integration boundary
can be achieved by means of numerical matching onto known solutions of the linearized
equation (23).

The iteration sequence is generated by inserting an initial approximation into the right
hand side of Eq. (34). The values of A(z) and f(6) are found from the requirement that the
result satisfies proper boundary conditions:

1) The function (z) is found from §-periodicity by the solution of the equation § £;,df = 0,

or
T

f dé ( - 1) =0
Vh(z) + £(6) + 2 5 (Dué + z%0)dz

for every = and any periodic f;

(35)

2) The function f(6) is found from the requirement of enforced parity at z = 0: viz,,
£(0,0) = —£(0, 7 — 0) (ballooning) or £(0,6) = 0 (tearing). This is achieved by means of an
internal iteration cycle in f.

The evaluation procedure defines a transformation within a class of smooth functions
£(z,0), which satisfy our boundary conditions, e = S’{old. If a stationary point of this
transformation, &, = S’fs, is found, then &, is the solution of the initial boundary problem.
In fact, by definition of S, it is the solution of Eq. (34), which itself is equivalent to Eq. (20)
coupled with boundary conditions. Thus, although there is no proof that the iteration
procedure &, = 5’”{'0, with n = 1,2...00, always approaches a solution, if it does converge to

some stationary point, this point is the solution.
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Numerically, given a reasonable initial approximation, from 3 to 6 iterations in ¢ are usu-
ally enough to méke ¢ and S¢ equivalent with 1% accuracy. The reason for this convergence
lies in the fact that the right hand side of Eq. (20) is typically small (as 1ss < Yo ), at least
in the nonlinear layer. Furthermore, Eq. (34) has such a structure that all deviations from

the real solution are multiplied by this ‘smallness’ each time we iterate.

Floating Grid Representation of the perturbation in terms of flux-surface-based coordi-
nates saves us from almost all the inconveniences related to the numerical description of the
sheet-current singularity.A But this has also a reverse side, causing difficulties in simulating
more complex field structures, such as ‘folds’ and ‘bubbles’.

The above algorithm with a simple rectangular grid in (z,8) works well only as long as
We use the simplified version, Eq. (20), instead of the full equation (13). Full solutﬁigrrg can
have ‘folds’ on the flux surfaces (see Sec. IV), so that several values of { correspond to a
single (z, #) point. This problem can be avoided, and essentially the same iteration procedure
rétained, by the introduction of new poloidal coordinates.

Equation (13) is rewritten in the Appendix with the use of an orthogonal coordinate
system (z, @), so that it defines thé distance between adjacent flux s1:1rfaces along the normal
direction. This allows the problém to be reformulated as an integral equatir)n liké Eq. (34),
except that the path of integration lies along ¢ =const, instead of a,lovng 6 =const. Also, the
iteration cycle can be implemented along the same general lines as in the simpliﬁéd case. The

role of an effective small expansion parameter is assumed by the ratio of the characteristic

variation length in = to the variation length along the flux surface. This ratio is less than

| unity even in the case of fully developed ‘bubbles’ as in Fig. 4b.

There are two features of this calculation scheme, which need some comment:
a) The real space image of any grid generated in the orthogonal coordinate space is

strongly dependent on the {-function itself, so that the grid points tend to migrate along the
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flux surfaces with iterations;

b) The coordinate lines of constant ¢ can be very rapidly diverging in real space for quite
regular flux surfaces. Thus, if we place grid points on these lines, they will likely become
crowded in one place and very sparsely spaced in another.

These difficulties are resolved by employing an equidistant floating grid, which is only
partially related to the coordinate system. The grid points were placed on each flux surface
so that the distances between neighboring points are constant. This requires recalculation
of the grid in each step of the radial integrations, but keeps the required number of points

low and saves time and worry in the other subprocesses.

The actual calculations were conducted in the region 0 < z < z, 0 < § < 7, where
zs ~ 1 is the surface for numerical matching onto the linear region. The grid size is typically
120 x 60 points with the density of the z grid increasing toward z = 0. The calculated field
structures, described below, reflect the extrapolation of the data on the region —z, < z < zy,

0 < 8 < 27 according to symmetry and parity requirements.

Field Structures The equilibrium field configurations, calculated for ballooning parity
perturbation and Dj; = 0.6, are shown in Figs. 5 and 6. The solution in Fig. 5 is based on
the simplified equation (20), so that the direction of the field lines within the ‘island’-like,
low-field structures around z = 0,0 = 7/2 is incorrect. As shown in Sec. IV, these lines must
be always horizontal and in the reversed direction for Dy > 1/4. This feature is correctly
reproduced by the full solution presented in Fig. 6.

The visible roughness of the grid representation in Fig. 6a is caused mainly by the dis-
proportionately extended scale on the z axis. The real dimensions of the perturbed layer are
shown in Fig. 6b, where grid steps are less visible and one gets é, more realistic impression

of the ¥s4 K gy feature.
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Except for this discrepancy in the description of the internal structure of ‘islands’, the
simplified .and full solutions are in good agreement with one another. They are also in very
good agreement with the analytical estimates of the equilibrium displaéement, derived in
Sec. TIL. |
K A comparison of the numerical values with the analytic estimates of the displacement,
obtained with the assumptioﬁ of zero thickness for the sheet current layer, is shown in Fig. 7.
All numerical points for £, = £(0) are slightly below thé solid‘ curve, defined by Eq. (26)‘.
This difference is, obviously, the 1;33,1 radial width of the current layer. It is well within
20% of the total displaceme_:nt, Which is very good agreement, considering the nature of the
assumptions. |

Figure 8 shows the equilibrium configuration, which corresponds to the locally stable
system (Dps =-—0.5)7With an externally pérturbed boun;iary. The idealiz‘edv hydrostaf%“%é' con-
ﬁgurjation for such a case is shown in Fig. da. The field structure again exhibits intermiffént

‘islands’, with a horizontal field inside, and ‘sheet’-current layers.

Discussion We have been able to find numerical solutions of Egs. (13) and (20) by utilizing |

the same small parameter that was used for the analytical reduction of the problem, although
in a somewhat different way. However, the mathematical validity of that iterative approach
has yet to be tested.’

The numerical results are in good agreement with the predictions of simple models (Sec.
ITLIV) based on a physical understanding of the problem.

The estimates of the saturated diéplacement from Sec. III have relatively small éleviations
from the numerical resul_ts. Therefore, the approach that was used in their derivation, can

also be used for other problems as well.

25



VI. Ballooning Modes

Relationship to Interchange Modes The closest tokamak analog to interchange modes
are the localized Mercier modes.®!® The cylindrical and toroidal cases differ mainly in
that the curvature of the magnetic field in a tokamak varies along the field line, and exact
helical symmetry for the equilibrium is impossible. However, the usual weak-toroidicity
approximation generates a perturbation method that describes all toroidal corrections to
the mode as two (or more for higher-order methods) satellite poloidal harmonics. These
satellites are equivalent to a small amplitude modulation imposed on the original cylindrical
solution. The same physical idea manifests itself as the averaging technique widely used for
solving the ballooning equations.

It would be very interesting to check whether this averaging of the toroidal variation of
the field curvature can be carried out before linearizing the MHD equations. Then the theory
of cylindrical interchange described above would be valid for Mercier modes as well (with a
toroidally modified stability parameter, Dps; = Dase(1 — ¢2), of course). Lacking an explicit
proof at the moment, we can provide only qualitative arguments to support this hypothesis:

a) the description of the interchange in the external region is linear, so that all linear
techniques can be implemented there;

b) in the internal nonlinear layer the characteristic magnetic energy associated with non-
helical perturbations (3-D effects) is typically (B*(1)/B*(z))? ~ 1/z? times larger than that
related to helical movements. Since z. is very small, at least close to the instability threshold,
all 3-D effects can be calculated perturbatively.

If we accept this argument, then the toroidal Mercier modes are equivalent to cylindrical
localized modes with a modified mean curvature parameter Das; = Dpre(1 — ¢?). With the
usual monotonically decreasing pressure profiles and €, < 1, such modes are stable since

Djs < 0 everywhere, except, perhaps, within the ¢(r) = 1 surface.l® This feature makes
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nonlocal ballooning modes very important for finite-3 stability theory.

Ballooning modes can have three main sources of free energy that drives them unstable:

1) the mean curvature of field lines and the pressure gradient, the same as for localized
modes;

2) the enhanced utilization of variations in the field curvature, which is related to large
radial width of each individual helical perturbation;

3) the interaction of several different helical perturbations shifted in radius (this contri-
bution is the only one that is dependent on the Bloch shift and accounts for the formation
of the ‘radial structure’!?).

‘ We can incorporate in 2-D equations the first effect only, while the nonlocal terms are
inherently 3-D and typically very hard to find even in the linear theory. This dlfﬁculty
was also encountered in the resistive theory of ballooning modes, so that one of the tricks
developed there is useful for our purposes. =

As in the theory of resistive ballooning modes,'? it is possible to assume that the influence
of all driving effects outside of the ipterchange layer can be described by the single parameter
A’. Physically it is equivalent to the statement that ballooning effects can be described as
a modification of the boundary conditions for the interchange .la,yer problem. With this
assumption, the estimate for the amplitude of the nonlinearly saturated ballooning mode
can be obtained. That approach will be valid as long as the A’-defined boundaries do not

interfere with the internal nonlinearity, i.e., the nonlinear layer must be contained within the

interchange layer.

A’ -Driven Layer Let us assume the interchange mode itself to be stable, Dy < 1/4, and
the interchange to be driven from the outside by a A’-like contribution from the external

region. Then the asymptotic solutions for z — 0 behave like

£ o< 2% 4+ Ayz®?, (4, =1/4"). (36)
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Here we defined
1 1 1/2
Q12 = —7% + (— - .DM) . (37)
The ideal ballooning stability threshold is A, = 0, and we will consider only the unstable
case, Ay < 0.
If the largest root of Eq. (37) is @y < 0, then the mode has the structure shown in Fig. 9.
The linear solution has one node in radius and one inflection point, so that Eq. (26) of
Sec. III is justified. But in the present case we can use the asymptotic formulae to find the

position of the inflection point explicitly:
¢ o aq(og — 1)z* 7% 4 g — 1)A2% 72 = 0. (38)

Substituting expressions (37) for 1,2 we obtain:

1 — Dy + (1 — 4Dy) 2 (1=4Da) ™2
= (1 - D;K - El - 41)?3;1/2 (‘Ab)> (39)
and
60) = é(an) + o = 14 52 ). (40)

These two equations govern the saturation of ideal ballooning modes in a tokamak. Since the
internal description is the same as in a cylinder, all properties of the configuration discussed
in Sec. ITI-V still hold and the accuracy of the above analytic estimate is the same as shown
in Fig. 7 for interchange modes.

This analysis is valid for 1/4 > Dpr > 0. Otherwise, a; > 0 and the linearized solution
has no inflection points within the interchange layer. This feature of solution means that
the sheet-current layer is first generated in the external ballooning region, and we lack the

capability to describe it. The internal layer then looks like the one shown in Fig. 8.

Discussion We have found an estimate for the amplitude of the nonlinear saturation of
‘ballooning modes in tokamak. The physical foundations of it are as follows: if the contribu-

tion to the potential energy of the mode from the mean curvature on the resonant surface
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is destabilizing, Dps > 0, then the sheet-current induced internal modifications of the per-
turbation profile can make it stable. Otherwise, for Dy, < 0, the dependence of stability on
the details of the perturbation profile inside the interchange layer is weak, and the mode will
grow until the nonlinear layer becomes wide enough to modify the ballooning effects. Under

typical tokamak conditions, the sign of Dy is negative.
VII. Conclusion

Summary The saturation of interchange causes the generation of sheet currents and island-
like structures on and around the resonant flux surface. These can be simulated with the
hydrostaticl model, described in Sec. IV. The almost closed ‘bubbles™ are possible only at
large pressure gradients (or low shear), Dps > 1, but the ‘folds’ on magnetic surfaces are
the necessary elements of equilibrium for all Dys > 0. | A

The characteristic size of the saturated displacement is proportional to the position of
the inflection point in the linear eigenfunction ¢ o /Dy exp (—ﬂ‘ (Dpr =1 /4)_1/ 2). This
heuristic dependence is supported by numerical solutions. |

The saturation of ballooning modes in a tokamak is analogous to that of the cylindrical
interchange if Dps > 0. Otherwise, dimensions of the nonlinear structure are larger then the

size of the layer where the interchange approximation is valid.

Problems There is still a number of unresolved problems related to nonlinear interchange
and ballooning modes. For example, the mathematical justification for the apparently ac-
curate heuristic formula for the sa,t;lrated displacement is not convincing and no analytic

estimate of its probable error is given. The ‘bubble’ limit with Dy, > 1 is not investigated
| in detail, while it can be of interest for low-shear discharges.

‘The approach developed in this paper is also in need of some generalization:

a) We need to consider resistive fluids, to account for the reconnection, which can change
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the topology of the field lines. Heat conductivity and diffusion, which are able to change the
local value of Djs, also should be examined.

b) In order to account for the interaction of two or more saturated structures with different
helicities, we need to consider 3-D configurations. Related problems include the saturation of
toroidal ballooning modes with Djs < 0, and the possible consequences of the simultaneous

excitation of several modes.
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Appendix. Equations In Orthogonal Coordinates

Here we will derive a new form for Eq. (13) in terms of orthogonal coordinates (r,, ¢),

where 7, still labels the magnetic surfaces throughout the motion, and the definition of ¢

follows from orthogonality:

dpor, 1040,
o T - O ~ (AD)

or

rry + 120,04 = 0. _ (A2)

Here subscripts denote partial derivatives in (r,, ¢) space.

The condition of orthogonality Visl not enough to provide a unique definition for ¢. We
have to describe its relation to & or 8, on some one flux surface as well. This choice will be
discussed later. | |

"The incompressibility of motion, Eq. (8), in these new coordinates can be expressed as

re05 — 130, = %o-aqg, : - (A3)

where o4 = 06,/0¢ is the Jacobian.
Using expressions (A2) and (A3) it is now possible to rewrite Eq. (13) in (r,, ¢) coordi-
nates. The aim is, as in Sec. II, to get an expression like

0
ar,

U-H=Y,

where U and V are differential expressions, but V contains no derivatives in To.(at least in
the numerator). Then the right hand side will be much smaller than the left'hand side for
interchange-like perturbations, and we can implement, the iteration procedures of Sec. V.

The equation can be put in such a form if we multiply Eq. (13) by r? and rearrange terms
with the help of (A2), (A3):

190

57 (A7) =1 H(r) = R = £ (r? = ), (a9
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Here A = 04/(r? + r263)/? and has a simple geometrical meaning: it is the differential
distance between lines of constant r, along the normal ¢ =const. The expression for R is

rather complicated, but has no singularities:

Tor? (rOgrss — T4(104)4)

k= o4 ri + (r84)?

The ¢ coordinate can be normalized on some arbitrary function of 6,, which will then
define o4. Since it is arbitrary, we choose several different functions to use in different
portions of the volume. On each boundary between those portions it becomes necessary
to recalculate the coordinates, but the inconvenience of doing so is compensated by some

advantages, as pointed out in Sec. V.
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Figures

FIG. 1.Linear growth of the radial displacement in time, which is limited by the genera-

tion of a singular current at the inflection point of the eigenfunction.

FIG. 2.Matching scheme for ballooning parity perturbation: (a), slightly overestimates
the displacement as compared to the more realistic form (b) with finite thickness of the

current layer.

FIG. 3.Hydrostatic model for the internal nonlinear layer of the helical equilibrium
(Dpr > 1). Flat layer with stable density gradient (a), formation of ‘bubbles’ in the
unstable case (b), partial interchange with enforced ‘tearing’ parity (c). Constant density

lines are rounded at corners to show direction of turns.

FIG. 4.Hydrostatic model for the internal nonlinear layer of the helical equilibrium
(Dpr < 1). Perturbed layer boundaries cause redistribution of constant density lines
in initially stable (a) and unstable (b) cases. Density lines correspond to cross sections
of flux surfaces, so that details of the configuration may be interpreted as sheet currents
and ‘islands’.

FIG. 5.Flux surfaces in the new helical equilibrium as given by numeric;l solution of the
reduced Eq. (20) with Dys = 0.6. Initial position of these surfaces was horizontal and
equidistant.

FIG. 6.The new helical equilibrium as given by numerical solution of the full Eq. (13) in
the local approximation. Dps = 0.6. The same configuration, but in actual proportions,
is shown below.

FIG. 7.Comparison of the saturated displacement £(0) for the interchange instability as
given by numerical solution (dots) and by analytic estimate (upper curve). The difference
between the position of the dots and the curve represents the real width of the sheet

current layer. The lower curve shows the flux width of this layer, z., which is the position
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of the matching point in the analytic theory.

FIG. 8.Internally stable layer (Dps = —0.5) driven by perturbed boundaries. The con-
figuration resembles that of Fig.4a and may be similar to real structures produced by
nonlocal ballooning instability.

FIG. 9.Asymptotic (z — 0) form of a linear eigenfunction for the ballooning iﬁstability

with 0 < Dy < 1/4.
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