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ABSTRACT

It is shown that a plasma with temperature T sustains fluctuations of electromagnetic
fields and particle density even if it is assumed to be in a thermal equilibrium. The level
of fluctuations in the plasma for a given wavelength and frequency of electromagnetic fields
is rigorously computed by the fluctuation-dissipation theorem. A large zero frequency peak
of electromagnetic ﬂuctua,tiéns is discovered. We show that the energy contained in this
peak is complementary to the energy “lost” by the plasma cutoff effect. The level of the
zero (or nearly zero) frequency magnetic fields is computed as (32)0 /87w = %gT(wp/ c)?,
where T' and wj, are the temperature and plasma frequency. This is the theoretical minimum
magnetic fleld strength spontaneously generated, as no turbulence is assumed. The size of the
fluctuations is A ~ (c/w,)(n/w)*/?, where n and w are the collision frequency and the (nearly
zero) frequency of magnetic fields oscillations. These results are not in contradiction with the
conventional black-body radiation spectra but its extension, and as such, do not contradict
the observed lack of structﬁre in the cosmic microwave background. Our computer particle
simulation shows the support of the theory and in fact exhibits a peaking of the magnetic
energy spectrum at zero frequency. The level of magnetic fields is significant at the early
radiation epoch of the Universe. Implications of these magnetic fields in the early Universe

(t =102 — 103 sec) are discussed.

1Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin,
Texas 78712

?Department of Earth Sciences, Aichi University of Education, Kariya, Aichi 448, Japan

3Inst1tute for Advanced Study and Princeton University

1



I. Introduction

Around the time of 1 second after the big bang, the standard cosmological theory says
(Weinberg, 1972) that the weak (neutrino) interaction detached from reacting with the rest
of the radiation and matter which are in thermal equilibrium. Around the time of 10 seconds
(# ~ 10°) to 10 seconds (z ~ 108) the strong (nuclear) interaction ceased to play a role in
the evolution of the Universe. According to the standard theory “The Universe will go on
expanding and cooling, but not much of interest will occur for 700,000 years (~ 10*3sec; z ~
10%). At that time the temperature will drop to the point where electrons and nuclei can form
stable atoms” (recombination) (Weinberg, 1977). During this epoch from z = 10° to 102 the
radiation couples strongly with matter and thus has been called the radiation epoch. The
main constituent of matter of this period is a plasma and the main interaction of this period
is that of plasma dynamics, including that of ra,diatioﬁ-plasma, coupling. Thus this epoch of
10°—10%8 seconds (z = 10'® — 10?) of the evolution of the Universe may be called the plasma
epoch, the time during which the electromagnetic interaction among the four fundamental
forces (weak, strong, EM, and gravitational) dominated. We first assume that at the dawn
of the radiation (plasma) epoch (¢ ~ 10° sec; z ~ 10%°) photons and charged particles Weré
in thermal equilibrium. In a wider sense of the word this epoch may include also the period
of 1072 — 10° seconds (z = 10** — 10%°) in which the Universe was dominated by photons,
electrons, and positrons, accompanied by nuclei and neutrinos. We may call this the first
period of the plasma epoch, and the period ¢ = 10° — 102 sec (¢ = 10*° — 10%) the second
period of fhe plasma epoch. Although once again it is not traditional to consider this epoch
as characterized by the dominance of plasma interaction, the most important interaction in‘
this period is the coupling between photons a.nci leptons, collective or individual. However,
we shall show that in each of these epochs the presenée of plasma plays an important role

in shaping the radiation spectrum.



For the primordial Universe to be treated as a (gaseous) plasma, the collection of charged
particles have to satisfy a certain condition. In the epoch of ¢ = 1072 — 10° seé the typical
plasma density is 10%® — 10% cm™2. The plasma parameter g = 1/(n A3,) is much less than
unity (for example, Ichimaru 1973) and is approximately 1072 in the epoch of 10° — 103 sec it
is about 1077, where n is the density of electrons, Ap, is the electron Debye length. The Debye
length is equal to c/wy, in the relativistic plasma in the first epoch (2 = 10 — 10%°), where
c is the speed of light and wp. is the plasma frequency and the quantity c¢/wpe is usually
referred to the collisionless skin depth. In both of the ébove epochs the mean distance
between particles is much smaller than the typical collective length (the Debye length = the
collisionless skin depth), which in turn is much smaller than the mean free path of electrons
colliding with photons

1 c -1 .
5 < o < (noxn)™t, (1)

where oxy is the Klein-Nishina cross-section of electron-photon collisions. When T >mc?,
the cross-section should be, instead of the Thompson cross-section, the Klein-Nishina for-

mula:

2
OKN = % (mc ) oT (for hw > mc?), (2)

Aw
while

OKN = OT (for fiw <« mc?) , ” ' (3)

where the Thompson cross-section op = & (€2 /mc?)?.
In this plasma of ¢ = 1072 — 10 sec the (average) photon energy is fiw ~ T > mc? and
we have |

T ~ hw >>‘ mc? > fiw, . ' (4)

In the description of fluid behavior the Reynolds number sometimes plays an important

role. For wavelengths much larger than (noxn)~?, the plasma behaves like a usual fluid and
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the Reynolds number may be expressed as R. = A?p/u, which can be much larger than
unity, where 7 is the collision frequency or the effective collision frequency reiolaced by the
Landau damping rate or other collisionless mechanisms such as the chaotic orbit effect. On
the other hand, for wavelengths A ~ ¢/w,e < (nogn)™?, the plasma is collisionless and nearly
dissipationless. The list of plasma parametérs in the early plasma epoch (z = 10™ — 10%)
are summarized in Table I, in which our conclusions are also listed that are to be obtained
in the following discussion.

We note that the past investigations of cosmological magnetic fields such as Harrison
(1970, 1973) assumed primordial turbulence with nonzero vorticity and obtained magnetic
flelds of ~ 107'8Gauss for galactic scales. More recently this idea has lost favor with most
cosmologists, primarily because vortices decay during the cosmic expansion (Rees, 1987).
Kajantie et al. (1986) discussed phase transition incurred fluctuations. In contrast to these
works we resort to no assumption as for the primordial condition but for the thermal equilib-
rium in the following. Our treatment is based on the rigorous theory of fluctuation-dissipation
theorem. The calculation of magnetic fields is undertaken in Sec. II. Section III covers the
computational work, which support the theoretical finding. Some interesting physical prop-
erties are discussed in Sec. IV. In Sec. V we discuss cosmological implications of the present

discovery.

II. The Fluctuation-Dissipation Theorem and
Magnetic Fields | o

In or near thermal equilibrium the plasma has thermél fluctuations, whose level is related
to the medium’s dissipative characteristics and the temperature T, as formulated in the
fluctuation-dissipation theorem (Kubo, 1957). We find an expression for the fluctuation spec-
trum of the magnetic field in an equilibrium plasma as a function of frequency. This is accom-

plished by deriving the magnetic fluctuations in wavenumber and frequency space (B?)y,, /87
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from the fluctuation-dissipation theory, then integrating over wavenumber. (B?) /8r is
nearly a black-body spectrum at high frequencies, but, when plasma collisionality is taken
into account, it has a high, narrow peak at frequency w =’O.'

The following derivation closely parallels the work of Geary et al. (1986). We look at
waves in a homogeneous isotropic equilibrium plasma. However, since we are interested
in spontaneous generation of magnetic fields, we consider a nonmagnetized plasma here in
contrast to Geary et al. (1986). Furthermore, as we detail later, the work by Geary et al.
(1986) neglected radiation, while we retain this in the following. To start with, we assume

a wavevector k = k%. The strength of electric field fluctuations may be found in Sitenko

(1967):
1 7 h _ ¥
3 \Eili, =5 o {Az’jl — A } ; ()
where _
Ak (ki k |
Aij(w,k) = o2 ( k‘2j — 519) -+ e,-j(w,k) 3 i (6)

where €;;(w, k) being the dielectric tensor of the plasma. Since Faraday’s law is B = % x E,
and we have set k = £Z, we find

<B2>kw Z h C2 k2 .___ _qk -
827r T /T _1 2 {A331 —As } T (M

and

(B, & B PR, . _*
St 2ew/T _1 2 {A221 — A% } ’ < (®)

where the subscript 1,2, and 3 refer to z, y, and 2. We then have the total magnetic

fluctuations as

B, ¢ 3 k? (o _ _ B T '
< tg;-)k = 5 ehw/T —1 w? {A221 + A331 - A221 - A331 } ’ (9)

where c.c. refers to the complex conjugate.



In order to establish AE;”k), from the equation of motion of a plasma, here we introduce

a multi-fluid model of a plasma. With finite and constant collisionality:

dv,

maﬁ=eaE—77amaVa, | (10)

where o is a particle species label and 7, is the collisional frequency‘but can include the
viscosity effect. A more accurate description of electron dynamics such as kinetic treatments
than Eq. (10) leads to better mathematical properties. However, for the sake of analytical
tractability and physical transparency we take this simplified constant collision frequency
model. We note that  should tend to zero for very short wavelength EM waves. Fourier

transforming (10) gives

_iwmava :'eaE — Na My Vo (11)
which yields the current j,
w?
(=it +na) jor = 2B . (12)

The susceptibility tensor X,;; is defined to relate j, to E such that

Joi = —iw X (WK) E;(wk) . (13)

The dielectric tensor ¢;(wk) is given by

eij(wk) = 5@' + 4 Z Xm'j y ' (14)
SO
2
X(“{’-k) = e 47 '
4:7[' oty w(w’l‘ina) 6.7 ) | (15)
and
9 ' v
w, o :
qj(w,k) = 0;; — Z Wii—n) 6i - ‘ (16)



In an electron-positron plasma neglecting ions, we have wpe+ = wpe- and N+ = ne = 7.

So Eq. (16) becomes

w ‘
.. -8, P £, ‘
6” (w, k) 5” w(w + 277) 61] 3 (17>
where w? = w2, 4 w?,_. We now obtain
Wy
w(w +1n)
21,2 2
Aij = R % . 18)

Combining Egs. (9) and (18) after some algebra, we obtain

(B?*)y 2hw o k%c? 1
2= nw (19)
8 ehw/T —177P (2 [w? — k2e — wg]z + 02w — k2 fw]?
or
(B?),. 2hw 9 . k*c?
© = — nw, .
8w ehw/T _ (w? + n2)kdct + 202 (w2 — w? — n2)k2e2 + [(w2 —w2)? + 772w2] w?

(20)

The first form, with a pole being clearly offset from the electromagnetic plasma wave pole,
might be more physically apprehensible, whereas the second form will make integration an
easier task. Note that if relativistic effects are included, the only change is w, — w,/ Nak
this, in fact, has been done in the case of the early electron-positron plasma where v ~ 2.7.
We stay with the electron-positron plasma for the time being. Our first goal is to find
the wavenumber integration of (B?),  to get (B?) . Integrating Eq. (20) over wavenumber,

we obtain

(B?),, 2hw  2n <wpe>3/0°°_dm( ot o (21)

8r  ew/T _1 2n%w2, \ ¢ w? 42zt

where z = k wipe and the primed quantities are normalized by w,. Note that if we let w tend



to zero with n’ = n/wp. fixed, Eq. (21) diverges:

(Bl 2T L) =y, o ()

8T w2 wpe 7'

Before we arrive at a result, we have to solve the problem of divergence in these integrals.
The fact that we get high wavenumber divergence is not surprising, since we have, up to
this point, based our calculations on classical fluid equations of motion with a constant
collision frequency 7 independent of k. Where the fluid picture breaks down, we need a
new theory. This could be done by a kinetic theory which includes more exact collision -
effects, wave-particle interaction, etc. HoWever, by doing so, we lose a,nalyticai tractability
and thus the physical transparency of the present approach. So, for the moment we are
content with this semi-phenomenological theory of collision effects. In order to overcome the
large k divergence, we let 1 tend to zero first then we integrate over k to infinity. This will
bring the high frequency expression. This procedure physi;ally corresponds to the .van-ishing
cross-section of collisions as k& — oco. (To show this involves quantum kinetics, for which we
have no space in the presént paper.) We still need the correct plasma expression in the low
frequency expression.

We start from our expression for (B?), /8, Eq. (19). Note that at high frequency and
high wavenumber (w, ck > w,), this function has a substantial value only where w? —¢? k? —
wﬁ ~ 0. As we noted, a high-frequency, high wavenumber limit is obtained By letting v77 — 0.

We take this limit with the aid of a standard definition of the Dirac é-function:

5(@) = — Tim —7 . (23)

Thus we obtain

(B*)y., 2hw w(w? — B —w? 1 ,
8r  em/T 1 wy k* ¢ w8 w? — c? k2 : ey (24)
Integrating Eq. (24) over 47 k2 dk from 0 to co, we obtain .
(B, _ T / wy g 1 h 2 2\3/2 .
8t or 6(w) w2 + 2 k2 k* dk + o3 enwlT _ | (w f"’p) - (25)



This expression (25) reduces to the familiar black-body radiation formula in the limit w%, — 0.
As the magnetic energy density is L o:o ;l—: <83;7:) and half the energy in a black-body is stored
in the electric field, we see that this is the standard black-body spectrum. The only difference
of Eq. (25) from the conventional vacuum formulation is the presence of the plasma cutoff
Wy

We now break up the integral of Eq. (21) into two intervals: one from zero to kg and

the other from kcy (0T Zeut = Kout ¢/wpe) t0 co. In the first integral we keep 7 finite since

the range of this integral includes w ~ O(7), while in the second integra,i we let n — 0:

(B%, 1 hiw' 5 ,<wpe>3 /zcu: i zt .
8 72 elwne/Tw —1 1 \ ¢ 0 (W2 +n?)zt+ -

h(wIZ _ wzl,Z)B/z Wpe 3 — -
+ 2 (e(ere/ TN 1) (T) © (w - \/C. kas + wp) ) (26)

where O is the Heaviside step funét_ion. The second term is what we have obtained in the

above. Note that the divergence of w — 0 is removed:

2 1 3 Teut 3
lim (B, = o 2 (wpe> —1~ / dr = —L <wpe> Teut (27)
0 .

w=0 8 m2(ehwrew! /T 1) c/ 7o 20 wpe \ €

where the second equality holds for the classical limit T' 3> Aw,,.. Also note that at higher
temperatures wz’f = 2 is replaced by 2/7. We chose key (o1 a:;ut) so as to make the frequency
spectrum (26) be smooth at the joint between the low-frequency spectrum and the black-
body spectrum. The size of ke thus becomes approximately key, ~ We/ c(mcﬁt ~ 1). This
determines the spectrum intensity at w ~ 0. This intensity does not vary sensitively with
kew. A value of ke = \/—3F Wpe/C 18 derived below (see Eqgs. (26) and (27) and following
comments). The above integral can be evaluated analytically. We show three cases of plots
of the magnetic fluctuation frequency spectrum of Eq. (26) for the early (~ 1sec), middle
(~ 10%sec), and late (102 sec) phase of the plasma epoch in Figs. 1, 2, and 3, respectively.
Note that the rise of the zero frequency peak is so sharp that the curve and the graph margin

are very difficult to distinguish (a break indicates where the zero frequency peak ends). The
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frames (b) in Figs. 1-3 show the log-log blowup of the low frequency behavior, indicating
the w2 frequency spectrum near w ~ 0.-

In an electron ion plasma the dielectric function is

w2 w2-

. = s — — pe 8 — L P , 28
€ij(w, k) i W@ + i172) 3 w(w + i) g (28)
from which we find in the limit of w — 0:

(.32) /’kcut dk 9 k2 C2 wze w;z : T wge wfn
S _ 5 s 2 “re ke - (2
5 2T o T 47 k B\, + n: 2 ¢2 .y + m t (29)

In an equilibrium hydrogen plasma, w2, ~ 2000 wZ;. Also, n, = 2.91x10~®n.fn A T-%/2sec?

and 7; = 4.78 x 1078 n AT"3/2sec™1. So 1’2’5—2% ~ 16.4. Therefore, ion motion raises the
pil

w = 0 peak by about 6% of the value it would have if the ions were frozen. -

We now discuss the wavenumber spectrum. In the limit 7 — 0 the integral of Eq. (20)

over w gives

(B _ > 2hw 212 2 w(w? — ¢ k? —w3) 1
87 _/_oodwenw/:r'_lwpk c'mé w2 — 2 k2 (@2—c2k2)2
=/_occlweh—w/,;a—_l(.u}szc2 [5(w)+5(w—,/c2'k2}w§)+6(w+1/02k2+w§>]
X ! (30)

(W? — k) (3w? — k2 —w?) — 2w (w? — 2 k2 —w2)

This leads to the expression

(B*)y _ hk?c? 1 - wg :
8r (eh/T(w§+k2 c2)i/z 1) (wg + 2 k2)1/2 +T w; +c2k2 (31).
First, note that, once again, w, — 0 gives the standard black-body result arising from the
P
ok :
. . (B2 _ _ok 2/ p2 .
first term. (Remember: (B?) /87 = [) OOE 4 k <B >k /87.) Second, the second term is

that given for (B?), /87 by Geary et al. (1986). They obtain this expression via the Darwin
approximations, that is to say, without radiation. Our result satisfies both radiative and

non-radiative limits.
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Note that when %i(w? + ¢ k2)Y/2 < T, two terms together yield
P g

(B?)
8T

kT, ' ' (32)

giving the equipartition law of classical statistical mechanics. We can show that this limit
is obtained also by using the Kramers-Kronig theorem. |

It is worth noting here that the w = 0 peak shows up in our calculation of (Bz)k / 8m
by way of the §(w) in the mtegral/ — <B2> /87 as seen in Eq. (30). This §(w) gives
rise to the second term in Eq. (30) in the final result. The earlier note by Tajima and
Shibata (1989) on the magnetic fluctuations (32)0 /87 is to carryrout the integral of this
second term (B?), /87 ~ Tw?2/(w? + k2 c?) in Eq. (31) over the interval of 0 to wpe/c. This
integral gives rise to the expression of the magnetic energy density near the zero frequency

(i.e. non-radiative modes) as

B2’ reewwp/e dkdnk? (B2C 1 /fw.\3
Lo Theo Lr(2) 3

(27)® 8w 67
where the approximate expression of Eq. (33) is obtained with wy/(wh +k*c?) ~ 1 in fhe
integrand. On the other hand, the integration of the frequency spectrum (Bz)w /8 for the
zero frequency modes in Eq. (27) over frequency interval of 0 to 7 yields the expression of
the magnetic energy density near the zéro frequency as

(B2® 7 dw (BY 1 <ﬂ>3 -
8¢ Jo 2r 8rn _271'3T c Teut » o (34)

Since the expressions (33) and (34) should agree, we bbtain Teut = k;utc;)p = (3/7)4? = 0.977,
close to unity. Considering the involved approximations in evaluating integrals in Eqgs. (33)
and (34), this agreement should be quite satisfactory. The agreement of Egs. (33) and (34)
may be termed as a version of Perseval’s theorem. The ord_ina,ry version of the integrals
of the spectral intensity in different spaces such as kw .spa,ce and xt space give rise to the

same answer. Here we have not only the entire electromagnetic energy satisfying such a
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theorem, but also a portion (i.e. the zero frequency fluctuations) of magnetic energy spectrum
satisfying a similar relationship. In short, the photon energy is in the first term of Eq. (31)
and the “zero-frequency” magnetic energy is in the second term. A schematic figure is shown
in Fig. 4. |

Another observation of interest may be made. The energy under the w = 0 peak is
approximately equal to the energy “deficit” around the plasma cutoff w = w,. The energy
under the peak is evaluated from Eq. (27) as ~ T'(w,/c)®4/n?%. The energy deficit, using the
Rayleigh-Jeans formula, is approximately

I do T WP _ iT@g)?’ |
—wp 27 27 ¢ 67? c

This is pictorially shown in Fig. 4. This result may be figuratively stated that the elec-
tromagnetic energy cutoff by the plasma w < wye 18 squeezed toward the zero frequency
fluctuations when compared with the black-body radiation without plasma.

We compare the size of the w = 0 peak of (B?)_/ 8%1' relative to the size of the black—Body
peak. The black-body spectrum has its maximum at w ~ 2.81T/%. So, the ratio of fhe ZETO

frequency peak fluctuations to the black-body radiation in an electron-positron plasma is

<BZ)w=O — 75,2 w;e ckmt /\B

. T
(B2 ) n1? = (r)ead (E> % o (35)

e

where Ap is the thermal deBroglie wavelength 27%/+/m T and & ~ 0.81. | For the electron-ion

case ¢y in Eq. (35) becomes 0.47 for electron-ion plasma and 0.89 for e". — et. Note, for

example, that this ratio Eq. (46) can be as great as 0.1 —1 at ¢ = 10~ 2sec (see Tanle.I).. »
This is an extremely impressive value. '

We also compare (B?),_, /87 to the pressure produced by w = 0 fluctuations in the ion

density. Consider the longitudinal E-field fluctuations:

B i & I
=y (). (0
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(Once again, k = kZ.) The definition of A;; shows

1
— -1 -
An =en(wk), Ay @l (37)
By taking
kd woi A
€11(L(), k) =1+ —kz — —-—w(w T ’”71) y (38)
we find

()., o i
87 eﬁw/T_l [w2(1+k%/k2) _w2]2—|—-7712w2(1+k'2D/k2)2 ’

Dt

(39)

where kp is the Debye wavenumber. Notice that while (B?)  is inversely proportional to 7

at w = 0, (B2), is directly proportional to n at w = 0. Mafhematically, this stems from
2 7.2

the term which is present in Ay and Ass (transverse fluctuations) but absent from Ayy

w2

(longitudinal).

Using the Poisson equation, we obtain the charge density fluctuations

<6p2> T " k2 nw?; [ 2n o (40)
= — — 7 )
kw  ehw/T _ ] (wz Fw?kd k2 — wzi) Fn2w(L + k3 /k2)?

p

Now, this is total charge fluctuation. If we are interested in the ion density fluctuations, we

use
12
én; = €. 6pcfe where €, =1+ k_l; , (41)
to obtain
B 2. ok .2\ 2 2
(), = gom—iaes |, et (142 . ; 7
w ew/T —12re2 o (27)3 ' k2 k2 9 9 5
W+ W —wy| (1432
(42)
In the zero frequency limit w — 0 we have
D _p T 1 Bys o - |
(sn?) = ngi 5 2 /e, | (43)

where kp is chosen as the cutoff since density fluctuations will be correlated very weakly for

wavenumbers higher than kp. This limit may be an overestimate, but, as will be seen, the
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calculated value of the pressure effects (6n?) _, is insignificant compared to (B?) /87. The

ratio of the plasma pressure fluctuations to the magnetic fluctuation is

) @)

where o & 0.56, g, the plasma parameter, is introduced to evaluate the ratio of the collision

frequency to the plasma frequency disregarding the numerical coefficient of the order of unity
(Ichimaru, 1973) g = ne/wye, and kg = ¢/wye. Equation (44) is much less than unity in our -
typical cases. Thus, magnetic fluctuations play a much more important role than density
fluctuations in shaping the primordial Universe.
From Eq. (34) the plasma beta due to the magnetic field energy density associated with
the zero frequency is evaluated to be |
: 3
et ()
where zy is equated to unity forAsimplicity.. If we assume that at each instance of cosmic
time the level of magnetic fluctuations is determined by the ﬂuctuation—dissipation theorem,
the plasma beta scales as B o n~'/% o« a®/? (see Table I). The beta at ¢ = 107?sec is as
small as 1-10. Once again this is an impressive value. On the other hand, if the primordial
magnetic fields are created at ¢ = 3 (at this moment we do not have sufficient knowledge
to determine ¢4) according to the fluctuation-dissipation theorem and the magnetic field
evolution is detached from that of the plasma temperature or the photon temperature as
the Universe continues to cool, the plasma beta may scale as 8 « a° (invariant), because
B o a2 (the flux conservation). One, however, notes that most likely at some point of time
the dynamo effect comes into play, which tends to amplify magnetic fields in comipetition of
the cosmic expansion. The complete consideration of all these processes is beyond the scope

of the present paper.
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TTI. Simulation

We carry out particle simulation of a thermal equilibrium plasma and measure the level
of magnetic fields and their frequency spectrum to corroborate with the theory described
above. The code employed is the standard electromagnetic lparticle code in 1D and 2D (see,
for example, Tajima, 1989). The 1-D simulations have been employed to control runs and
parameters were: L, = 256 cells, particles/cell=10e™ + 10e*, At = 0.1 /wp., the number of
time steps of runs N; = 2048, and ¢ = 5Aw,., where A is the grid spacing. Simulations
were run for three different temperatures: the relativistic factor due to thermal velocities
Yiherm = 1.05, 1.22, and 34.7 (i.e. T' ~ 3 x 10%°K, 1.3 x 10°°K, and 2 x 10*°K). To test

the performance of these codes, we examined the dispersion relations produced for B, and
4rne®  4mne?
. + .

compared them with the standard result w? = c?k% + ngo where w2, = - o
We made an additional test on the 1-D code by running a nonrelativistic simulation for
N; = 4096. Again, the w = 0 peak appears and its width does not change from the width
it had in the N; = 2048 simulation. We also examined B, fluctuation strengths as functions
of wavevector. The‘ dispersion relation compariSoﬁs were excéll_ent, the fluctuation strengths
compared fairly well. In each of these three cases, a strong B, ﬂuctuatioﬁ peak is seen at
w = 0. We tested cases with temperatures of 2 x 10*°K, 10°°K, and 3 — .><108° K. The
results of 1D cases are not shown here.

In the 2-D simulation, parameters were 32 x 32 cells, 9¢~ + 9e* per cell, At = 0.1/w,.,
Ny = 2048, and Yiherm = 1.05. Again, a stroﬁg B, fluctuation peak is seen at w = 0. Figure 5
shows the 2D results with the corresponding 1D results. |

Our simulation results for S(k) follow the standard expression (1/(w2 4+ ¢? k?) the second
term in Eq. (31)) more closely than our low-wavenumber expansion (Eq. (32)). See frames

(b) and (d) of Fig. 5. This is explained by the conditions of the simulation. First of all, the

grid nature of the simulation puts a cap on the maximum & at 7/A. Second, as can be seen
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from our derivation of S(k), the first term in Eq. ‘(31) comes from the energy contained in
the radiation. The results shown were obtained by summing S(k,w) over frequencies ranging
from 0 to 45w, ~ 1/At. When the wave frequency of a given mode is highef than this range,
the high-frequency energy of the radiation mode will not enter into the sum. These damping
factors of the radiation branch, plus sharing of energy between modes, account for the faster
decay of S(k) than theory Eq. (32), favoring the expression with only the second term in
Eq. (31) in this situation. This simulation is therefore in satisfactory agreement with our
present theory, indicating in fact the presence of a zero-frequency peak in the magnetic field

spectrum.

IV. Collisional Effects

In this section we examine the essential results of Sec. II that was based on the rigorous theo-
retical analysis of the fluctuation-dissipation theorem and attach our physical interpretation
to it. The basic physical picture of what the fluctuation-dissipation theorem says is: an indi—
vidual mode (or field) decays by a certain dissipation, giving up energy.fo particles or other
modes, while particles (or other modes) excite new modes and repeat the process and the
amount of fluctuations is related to the dissipation. In this context our discovery of the zero
frequency peak in fluctuation spectra may be a little surprising. Therefore, it is instructive -
to provide more intuitive ground to our theory. We find that the physical basis of the zero
frequency peak is due to collisions (or other kinetic diséipat_ion) or more precisely collision-
induced quasi-modes. In the f.Ollowing‘ we relate physical conéequences to collision-induced
quasi-modes. |

From Maxwell’s equations with all the terms on the right-hand side except the source

term (the third term) written in terms of E, we obtain the dispersion relation of the quasi-
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modes:

w2

2 122 P 0. :
w* —k —1+i77/w' 0 | (46)

In the low frequency limit Eq. (46) yields the dispersion relation

k2 c?
w=1

. (47

2

P
Oz, equivalently, the spatial size A of magnetic field ﬂuctﬁations for a given lifetime 7,(= w™)
is

Mn)=2w§4nnfﬂ._ : o (48)

p

Equation (47) states that the lifetime 7, of magnetic fluctuations (or maybe called “ma;gnetic
bubble”) of size A is proportional to the size squared (7; o A?); the la,rgef the size of the
bubble, the longer it lasts. '

This entails an important ramification. Suppose two magnetic bubbles touch or collide
with each other and coalesce into one. The time for coalescence of magnetic bubbles involves
reconnection of magnetic field lines. It is‘generally known (Parker 1957; Bhattacharjee et al.
1983; Tajima et al. 1987) that this process (dr related ones) is muéh faster than the diffusive
time related to Eq. (47). Thus the coalescence time is much shorter than the individual
life time. Therefore, before bubbles die away, they can form a coalesced bubble when they
collide with each other, as long as they collide frequently enough. Once a larger coalesced
bubble is formed, its life time is substantially longer, as Eq. (47) shows the life time is
proportional to the square of the size of the bubble. It is possible to imagine that once larger
bubbles are formed, they become even more longer-lived and may be able to encounter more
opportunities to collide with other bubbles. In this way a preferential forma,tion of larger
bubbles may become possible. This process is not far different from that of polymerizatioﬁ.
A detailed mathematical analysis of the magnetic bubble size growth is beyond the scope of

the present paper and will be left for a future publication (Tajime and Isichenko 1991).
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V. Cosmological Implications

We have discovered in the previous sections that electromagnetic waves in the primordial
plasma fall into two categories: one with large wavelengths (k S wpec) and nearly zero
frequency (w < wpe) and one with small wavelengths (k 3> wpe/c) and fréquency greatef
than wp.. Those modes ¥ > w,/c are not significantly modified by the presence of the

plasma (‘hard photon’), while those with k& < w,/c significantly modified (‘soft or plastic

photon’). It is those ‘plastic photons’ or their magnetic fields that we are interested in, as -

they can have more ‘magnetic’ fields in nature and can leave possible structural imprints on
the primordial plasma. |

In Table I we summarize our results. Including the physical quantities we already dis-
cussed, we survey physical quantities of importance that charactérize the radiation epoch (or
the plasma epoch). The density scales as n « a2 where a .is the cosmic scale factor, which

increases as a o t1/2 during the radiation epoch.. The wavelength of photons also scales as

1

A o a and thus the temperature of photons T' & a™!, as the frequency of the maximum

intensity of the black-body radiation wpax = 2.81T/k. It follows that the plasma frequency

scales as wp, o< n%/? & a=3/2. The electron collision frequency goes like 7, o n T~3/2 x a=3/2.

The plasma parameter (and the collisionality) is therefore g = (nA3},)™! & n./wpe o< a°

(independent of @) and thus invariant during the epoch in which the numbers of constituent

Osec g ~ 1073 (invariant) and it changes

particles are conserved; e.g. during ¢ = 1072 — 10
around ¢t = 10°sec as positrons annihilate with electrons to g ~ 1077 and stays invariant
till the recombination. On the other hand, the collision frequency between electrons and

photons may be given from the Thompson cross-section or in relativistic cases from the

7 2

Klein-Nishina cross-section to be vrg o« nTY? « a~"/? and vy nT‘ll x a~*, respec-
tively. The Reynolds number R, is Lv/u, where L,v, and p are the typical sizes of the

length, velocity, and viscosity. By taking v the thermal velocity, Lv/u scales as La™! and if
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we take L as the horizon size ct, R,  t/? in the radiation epoch.

The electron magnetic energy (B 2)5’ contained in the black-body radiation is proportional

to w? and <B2)ib o T® &« a™3. On the other hand, the zero frequency magnetic fluctuation
energy (B?),_, o« Tw3/p oc a™*. Thus the ratio of the zero frequency fluctuations to the
black-body energy is proportional to a=!. If we assume here that the level of nﬁagnetic fields
is determined to be the level by the formula (34) at each instance of time after w integration,
(BJ;% o n(c/wy)® o a2, This conclus‘ion. is based on

the instantaneous adjustment of the magnetic fields to the level of thermal energy of the

the plasma beta scales as § =

Universe. It should be noted that nevertheless this résult of B x a®/? differs from the earlier
discussion of the magnetic field scaling when the magnetic flux conservation was invoked.
For example, it may be possible to imagine a scenario in the 'abvsence of dynamo that 8 o« a®/2 .
until a certain time t4, when magnetic fields detaéh from plasma and thereon 8 o a°.

The significance of the presence of static (or nearly zero frequency) magnetic fields in
the cosmological plasma may be appfeciated in the following. Two main s.cena-rios (Reeé
1987) have been considered for primordial fluctuations, adiabafic ﬂuctuaﬁons and isother-
mal fluctuations. The adiabatic (or isentropic) fluctuations are.like those accompanied by
ordinary sound waves and a cartoon illustration of this sit,ulation is displayed in Flg 6(a) .‘ In
such fluctuations the density of matter (electrons, positrons, and protons (‘and helium ions)
for the case of the early radiation spoch) is accompanied by that of photons, as indicated
in Fig. 6(a). Therefore, after electrons and positrons annihilate around ¢ = 1sec or after
electrons and ions recombine around ¢ = 103 sec, the ifnpriﬁt of Ihattér fluctuations would
remain in photon fluctuations as a fossil of the primordial plasma structure.‘ Thus the back-
ground microwave spectra would show a certain fluctuation or anisotropy/inhomogeneity on
top of the black-body spectra. This would be a contradiction to the latest observations by
COBE etc. (Mather et al. 1990; Gush et al. 1990).

On the other hand, imagine that as we have shown, there exist static magnetic fields
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action and the effects of noise re-entry to the horizon, the magnetic field at ¢ = 103 sec (the
recombination time) is as large as 1072 Gauss. For the moment we exclude any possibility
of such and our estimate of magnetic field strength is solely based on the instantaneous
conditions of the thermal plasma at each instance. Based on Eq. (31), we can define the

strength of magnetic fields whose wavelength is larger than a certain size A as (B?), 8r.

This becomes (B?), /8r = (T'/2)(4m/3)A~3. For \, = 2mc/wy,

(B?),, = 1.4 x 107%(n/10* cc)**(T/10*K)"/* Gauss . (49)

We might be intérested lin global magnetic fields whose wavelengths at ¢ = 1sec are
10* cm or longer, which may correspond to the length of the present galaxies. In this case
\/W = 4 x107** Gauss in the absence of dynamo actio;rl.s, ‘horizon re-entry, or coalescence
of magnetic structures. It is important therefore to recall that i;his value is the theoretical
minimum for a large scale magnetic field. This number together with 10*® G for small scales
gives us several important implications. The primordial f)lasma spontaneously generates
rather strong magnetic fields at small scales. However, the strength of magnetic fields of
such a plasma at large scales is much smaller, implying the cosmology is not just a series of
frozen snapshots of thermal equilibrium plasmas. This is hardly a surprise. In fact it would
be rather surprising if such large magnetic fields at small scales did not act as seed fields for
late developments.

Since the main objective of the present paper is to demonstrate through the rigorous
theory of fluctuation-dissipation theorem that the (even) thermal primordial plasma can
sustain substantial zero frequency magnetic fluctuations, extensif/e ti:eatments of their later
evolution and impact on cosmological consequences such as gélaxy formation need to wait for
subsequent papers. Without going into details, however, we discuss how our finding can give
rise to some cosmological correspondences. First is the possibility of successive coalescence

(Bhattacharjee et al. 1983) of magnetic structures and their subsequent stabilization: Our
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large magnetic fields with small scales tend to fuse to polymerized larger structures. We
have already mentioned this physical basis at the end of Sec. IV. In this mechanism the long
epoch of radiation dominance (¢ = 1 — 103 sec) once thought of as an epoch of no signiﬁcdnt
happening can be considered as a (perhaps quiet but) incubating period of large structures -
of magnetic fields. |

Second is the possibility of dynamo amplification of the primordial magnetic fields. In
addition to the possibility of the dynamo amplification of magnetic fields after the recom-
bination (¢ = 10 sec) due to the gravitationally triggered rapid relaxational motion, it |
is possible to consider the dynamo action due tv(') the fluctuations inhereh.t t.o the thermal
plasma. On top of this it should also be remembered tha,t'the‘ Sizes that were larger than
the horizon could not have been in a thermal equilibrium and thus velocity fluctuations with
sizes larger than the horizon of the older epoch now come Withiﬁ»fhe horizon at a certain time
during the plasma epoch. For example, velocity ﬂuctua;tions (say A ~ 10*cm at t= 1 sec)
can come within the horizon'before ¢ = 10° sec. Velocitj fluctuations with lesser sizes enter
within the horizon correspondingly earlier. Thus these velocity fluctuations vcoupled With
magnetic fluctuations can drive dynamo action before the recombination time. .

The work was supported by the National Sciencé Foundation and the U.S. Department

of Energy.
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Table I — Primordial Magnetic Fluctuations with w ~ 0:

The zero frequency magnetic fluctuations in early Universe. (¢ = 10721,
and 10 sec after the big bang). The temperature T, density of the plasma,
electrons, the horizon size Ly, the zero frequency magnetic fluctuations B,
the ratio of the zero frequency magnetic fields <B2>0 /8 to the blackbody

component <B2>bb /8w, the plasma beta 8, and the (maximum) Reynolds

number Re are tabulated. B and <B2>0 / <B2>bb are from Eq. (45) and 3
from Eq. (56). When kinetic effects are included, some of the numbers

change.
t=10"2%|t=1 t =10 | ¢t =3 x 10 sec

T eV 107 108 0.4 T, = 0.0003
n  em™3 | 5x10% |4 x10% | 103 106
Lhe: cm | 108 1010 102 . 10%8
B Gauss | 106 1013 10~12*

0
%% 0.1-1 1072 10-25%
B 1 10 —‘ 102 | 1015*
R, 107 | 108 10%°

*: no dynamo nor trigger.mecha,nisms included
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Figure Captions

1.

The spectral intensity S(w) = (B?),, /8 for plasma 1 sec after big bang. T' = 101°°K;
ne = 4.8 x 10%°/cc.

a) In(S(w)/So) plotted linearly in w. Zero-frequency peak is at the top of the graph,
where Sy is the normalization.

b) £n(S(w)/So) plotted linearly in w. Zero-frequency peak is at the top of the graph,
is seen to be higher than black-body peak.

c) In(S(w)/So) plotted logarithmically in w. Low-freduency line has slope around —2.
Rises to peak at w = 0.

d) In(S(w)/So) plotted logarithmically in w. Note suppression of black-body radiation
around w = wy,.

Spectral intensity S(w) = (B?), /8w for plasma 108sec after big bang. T = 10%°K;
ne = 6.5 x 10°/cc. '

a) In(S(w)/So) plotted linearly in w. Zero-frequency peak is at the top of the graph.

b) In(S(w)/So) plotted logarithmically in w. Slope of low-frequency line is ~ —2.
Rises to peak at w = 0.

a) Spectral intensity S(w) = (B?),, /8 for plasma 10'? sec after big bang. T' = 10*° K;
ne = 6.5 x 103/cc.

b) £nS(w)/Se plotted logarithmically in w. Slope of low- frequency line is around —2.
Continues to rise until peaking at w = 0.

(a) Schematic plot of the spectrum of magnetic fluctuations (B?), /8 in a thermal
plasma with temperature T', plasma frequency w,. The zero frequency peak has the
height inversely proportional to the dissipation (such as collision frequency) and the
width proportional to itself. The black-body profile is hardly modified. Only the low
frequency (w < wy) is severely modified by the plasma effects. (b) Schematic plot of
the spectrum (B?), /8. The shaded area corresponds to the second term in Eq. (31)
and to the shaded area in Fig. 4(a).

Spectral intensities: a) #nS(w)/S from 1D simulation of et — e~ plasma. Viherm =
1.05(T = 3 x 10%°K). Simulation was run for 4096 timesteps. Width of central peak is
the same as from simulation run for 2048 timesteps.

b) £nS(k)/To from 1D simulation of et — e~ plasma. Yiperm = 1.05. 4096 timesteps.
Line is from simulation results. Dots represent theoretical value —1.7—#n(1+k? %‘2% ek’ a%)
where —1.7 was obtained from least squares fitting. i

¢) 4nS(w)/S from 2D simulation of e* — e~ plasma. Yenerm = 1.05 (T = 3 x 10%° K).
Zero-frequency peak still present in 2-D.
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d) €nS(k)/So from 2-D simulation of e™,et plasma. Yinerm = 1.05. Line is from
simulation results. Dots represent —2.6 —fn(1+c? X k? e¥ ¢*) where —2.6 was obtained
r

from least squares fitting.

6. Cartoon illustration of zero frequency magnetic fields and their influence on the plasma. -
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