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Abstract

We study by cofnputer simulation nonlinear evolution of magnetoconvection in a
system with a dynamical open boundafy between the convection region and corona
of the sun. We study a model in which the fluid is subject to the vertical gravita-
tion , magnetoh&drodynan&ics (MHD), and high stratification, through an MHD code
with the MacCormack-Donner cell hybrid scheme in order to well represent convective
phenomena. Initially the vertical fluid flux penetrates from the convectively unstable
zone at the bottom into the upper diffuse atmosphere. As the instability develops,
the magnetic fields are twisted by the convection motion and the folding of magnetic
ﬁelas is observed. When the .magnetic pressure is comparable to the thermal pressure
in the upper layer of convective zone, strong flux expulsion from the convective cell
interior toward the cell boundary appears. Under approp;riate conditions our simula-
tion exhibits no shock formation incurred by the fluid convected to the photosphere,
in contrast to earlier works with box boundaries. The magnetic field patterns observed
are those of concentrated magnetic flux tubes, accumulation of dynamo flux near the

bottom boundary, pinched flux near the downdraft region, and the surface movement
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of magnetic flux toward the downdraft region. Many of these computationally observed
features are reminiscent of solar observations of the fluid and magnetic structures and

their motions.

subject headings: Magnetoconvection - the Sun: convection: flux collapse



I. Introduction

On the surface of the Sun many magnetic flux tubes are observed that are confined and
isolated. The presence of confined flux with strong magnetic fields was reported by many
observations (continuum, Muller 1977; Fel and magnetograph, Title et al. 1987). It is likely
that this magnetic structure originates from magnetohydrodynamical (MHD) effects and
its motion seems to reflect that of the convection zone of the Sun. Some of the evidence
are inferred from the chromosphere (H,, Dunn and Zirker 1973; Ca, Mehltretter 1974; Mg,
Spruit and Zwann 1981). ]

Over 90% of the magnetic flux through the solar photosphere outside sunspots is observed
to be concentrated in small-scale flux tubes, which have magnetic fields 1-2kG (cf. Stenflo
1989), called kilo Gauss (kG) flux. However, the global average of the magnetic filling
factor is on the order of one percent so that on the average there seem to be only weak
magnetic fields, whose strength is likely to be in the range 10 -100G (Stenflo 1989). From
physical considerations shown below it has been suggested that weak field magnetic flux
is spontaneously concentrated into strong kG -flux tubes under the influence of convective
motion. |

The convective instability due to superadiabatic atmosphefe was pointed out by
Schwarzschild (1965). This mechanism is important for energy and field transport pr,ocess as
in stars, including the Sun. The convective process may also be important for the formatién
of concentrated magnetic flux. Linear processes of the formation of magnetic tubes inciude
the convective collapse (Spruit 1979), while nonlinear processes such as flux accumulation
and amplification at éonvgctive cell boundaries may be also important. In the convection
zone a vertical magnetic flux can be unstable against the convective collapse. This is incurred
by the buoyancy force. This type of instability has been studied by several authors (Spruit
1979, Spruit and Zweibel 1979, Unno and Ando 1979, Moreno-Insertis and Spruit 1989, and

Hasan 1984). Linear stability analysis indicates that the flux region with § = 87 P/B? << 1
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is stable against the convective collapse, while one with weaker flux is unstable. Convective
collapse leads to spontaneous shrinking of the magnetic region. The system then reaches a
new equlibrium, in which the magnetic pressure is comparable to the external gas pressure.
The pressure of 1-2 kG magnetic fields is comparable to that of the thermal pressure at the
photosphere. The above scenario is thus capable of providing the possible cause of the kG
flux formation.

The convective motion can also enhance magnetic fields. In ideal MHD systems frozen-in
magnetic fields are carried to and accumulated at the boundaries of the convection cells (
Perkins and Zweibel, 1987;Tajima and Gilden, 1987). The relationship between the flux
tubes and the pattern of the convective motion has been investigated mai.ﬁly with incom-
pressible approximations (Galloway and Proctor 1983, Proctor and Weiss 1982 and Nordland
1988). They reported that isolated flux tubes can be formed at the boundary of convection
cells. Studies of two-dimensional simulation for compressible magnetoconvection also exhibit
the formation of concentrated flux tubes (Cattaneo 1988, Proctor 1983). They have studied
systems with closed boundary conditions. There are a few works for a fully compressible sys-
tem, namely by Woodward (1988), Stein et al. (1989), Nordland and Stein (1989), Cattaneo
et al. (1989). In their calculations shock waves are often observed to form near the upper
boundary of the box, as the fluid begins to rise, expand, and accelerate to become supersonic.
The shock wave formation appears to be related to the closed boundary condition. On the
surface of the Sun, however, the realistic boundary is an open one. In order to investigaté the
solar granulation, 3-D MHD numerical simulations with radiative heat exchange and open
boundary have been carried out by Nordlund (1983, 1986). The evolution of the magnetic
field in these simulations shows the convective expulsion process and no evidence of shock.
Some simulations, however, use the anelastic approximation (Gilman and Glatzmaier 1981),
neglecting the dp/0t in the continuity equation, which has the effects of filtering out sound

waves and cannot capture the effects related to shock waves. It is still an open question



whether the shock wave is formed or not near the photosphere in a fully compressible MHD

system in an open bounadry system.

In the present paper we shall consider two-dimensional fully compressible magnetocon-
vection with an open boundary with many orders of magnitude of density variations. We
consider an initially horizontal or vertical magnetic field and follow its linear and nonlinear
evolution. We describe the basic equations,v numerical method, initial conditions and bound-
ary conditions in Sec. II. In Sec. III we show the results of our simuiation. Finally in Sec. IV

we discuss and make comparion of these results with the recent solar observations.

II. Equations of Magnetohydrodynamics and
Numerical Method

A. Equations

Our systém is described by the ideal MHD equations

op '

5 = —Vv), | (1)
pv 1 1,

2 = v .pv-v+PI+4—ﬂ_<BB—§B 1>]+pg, ()
oB : |
5 = Vx(xB), (3)
U |

5 = ~VS+a(gv)+A, (4)

with the tbtal energy U and its flux S defined as

2 2
P 5
U = S 47t (5)

s = <U+P+§B;)v_(v-13)g, (6)

where p is the mass density, v the velocity, P the pressure, B the magnetic field, g the

gravitational acceleration, A A denotes a diadic tensor, and I is the unit tensor. As pointed
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out by Deinzer et al. (1984), the variation of the adiabatic gas constant y due to the ioniza-
tion rate can be important. We treat the non-adiabatic thermal process( radiative transfer,
radiative cooling and heating with MHD waves) by the term A, as introduced in Eq. (4).
We will discuss the thermal term A in detail in subsection E. We allow only two-dimensional

motions. The calculations are confined to the z,z plane and v, = 0, 8/0y = 0 is assumed.

B. Initial condition

The convective motion is studied in a model atmosphere, including what we may call the
convective zone, the lower corona, and the “transitional” zone between the upper part of the
convection region and the bottom part of the chromosphere and the photosphere. Note this
“transitional” zone is not the same as the solar transition zone. These different regions are
initially set in hydrostatic equilibrium under the gravity. In order to determine the initial

state of this system, the vertical temperature distribution T(z) is assumed as

T(z) = Ty (1 _ (-Z_‘-A-Z—")) « [1 — tanh (z ;Z")] +G(2) (7)

Glz) = ofy+ Tyl -a) [1+ tanh € ‘AZ°)} , ()

where Ty and T are the temperatures in the base of convectively unstable layer and in the
corona region, respectively, Zg is the distance between the convective zone and the coronal
zone, and A the scale height of the temperature in the transitional zone.

In the first example (sec.III-B), we give the profile of magnetic field B,(z) as

2o - () <9

~—

with



where [ is the ratio of the gas pressure to magnetic pressure at the base of the convection
zone and A, is the scale height of magnetic fields. The magﬁetic field initially concentrates at
the bottom of the convection zone. We obtain the initial distribution of density and pressure

from the integration of the hydrostatic equation

%[P+§§—S—)} = —pg, (10)

P = pT.

We can obtain the density profile from the pressure and the temperature.

We normalize Egs. (1)-(10) as follows. The unit cell separation Az is the unit length.
The total length of the simulation box in the x and z directions is L, = L, = 100Az.
The unit time is determined as the free fall time ¢; to traverse the vertical lengthofkthe
. system 100Az. Thus our gravitational acceleration is ¢ = QOO(Aw /t3). The souncf‘speed
minimum is Csmin = 12.18yAz/ts and the sound speed at the bottom of the coni;ecfcion
zone is Cy o = 31.67A$/t_f such that the tempareture at the bottom is T, = 1000mAz?/t2 =
mC?,/~, where m is the mass of ions or molecules and ~ the gas costant. The souﬁd transit
time at the velocity minimum is #;,e, = (100/12.187)t;. We have the transitional point
Zy = 60Az, the scale height A = 5Az and a = 0.01. The initial proﬁies of the density and
the temperature are shown in Fig. 1 for the case of a constant magnetic field or the case
B = oo, where we define p = 100 in the normalized unit-at the bottom of covection zone.
The profile in a finite B case is similar to this as long as 8 >> 1. Note that the variation
of density is over many orders of magnitude; however, thfa variations of T" and p are still far
from the actual solar atmosphere. Here we are content with the present model resembling

only qualitatively the nature of the solar variations. |



C. Perturbation

A perturbation of a convective motion is imposed on the initial equilibrium. The form of

the perturbation is

_ log __19¢
V: = paw’ Vg = _paz, (0 <z< ZB) (11)
: 2\ 1/2 ) T
¢ = Acos l<27mz> ] sin (27rmex> , (12)
A = €Z,p(2,)Cs(Z), (13)

where pv is the divergence-free density flux, Z, the height of the top of the perturbed region,
Xmax the horizontal size of the computing domain, C; (Z;) the sound velocity at the top of
the perturbed region. A is the amplitude of the stream function ¢, which is controlled by the
parameter €. If we take € < 1 and C; has the minimum value at Z;, the perturbed velocity
can be chosen as that of subsonic flows in all the perturbed region. We use 0.1 as the value

of €.

D. Boundary conditions

In the horizontal direction we use the periodic boundary condition; all physical values at
T = Xmax are repeated at z = 0. We impose the free boundary condition at the z = Zna
and the hard wall condition at z = 0, where Zpnax is the vertical size of computing domain.
We do not consider the overshooting phenomeﬁon of the convective motion into the core and
we are interested only in the upper convection zone and its immediately adjacent areas. We

add the damping zone in the region Zyp < 2 < Zmax-

E. The treatment of the thermal process

The thermal process is complicated on the surface of the sun. In particular the transi-

tional zone between the convection and coronal regions includes the photosphere, where the



property of energy transport by photons drastically changes. Furthermore, the temperature
increases toward the corona by heating processes which have yet to Be understood.

We introduce a simple (and ‘perha,ps crude) model by treating the nonadiabatic ther-
mal process represented by A separate from the adiabatic part in Eq. (5) in the present

calculations. We insert the following expression in each numerical time step

oT

= = V(&I =To(2)], ‘ (14)
where v(z) is an empirical coefficient of the thermal process and Tp(z) is the temperature
profile of the assumed thermal equilibrium that is taken to be the same as the initial con-

dition. This formula is known as the Newton approximation. The form of the coefficient

is

v(z) = Vo {exp [- <%) 2} + exp {— (Z%) 2] } ) (15) :

where Zy, is the scale height of the thermal relaxation layers. With this empirical treatment

the temperature is kept to a value close to Tp(z) at the equilibrium in the transitional zone
and at the bottom of the convection region. In our calculations we have the cooling effects in
the transitional zone and heating effects at the bottom of the convection region. Thereby we

can approximately incorporate the transport and thermal processes of the solar outer layers.

F. Numerical method

In the previous works (e.g. Graham 1975, and Hurblert, Toomre, and Massaguer 1984

without magnetic field; Hurblert and Toomre 1987 with magnetic field), in which no steep
density gradient like ours was present, they used second-order-accurate numerical methods,
such as the Lax-Wendroff scheme and the MacCormack scheme. These second order schemes,
however, are unstable for advective motions with a steep density gradient. This is the
case in our situation with the transitional zone, resulting in a break of the monotonicity of

caluculated values in the system.



In astrophysical problems in which variations of physical values exist over many orders
of magnitude, the flux-split scheme or second order donnor—cell schemé is often used recently
(Winkler and Norman 1986). Most of these are based on the method of approximately solving
characteristics of the Riemann problem in hydrodynamical systems without magnetic field.
In our case, however, we must treat the advective motion of the magnetohydrodynamics
including the surface of the Sun that has a steep density gradient in the transitional zone.
The Riemann problem in the case with magnetic field is more complicated than that without
it, because of the presence of three characteristics instead of one (simple sonic wave): the fast
magnetosonic wave, the Alfvén wave, and the slow magnetosonic wave. It is, therefore, not
easy to apply the method based on the Riemann problem of hydrodynamics. In calculating
many astrophysical problems by the Euler scheme we face numerical problems related to the
advective motion with a steep density gradient, which induces numerical instabilities (e.g.
Tajima 1989). To overcome this problem, we take a type of asymmetrical finite difference
scheme. The doner-cell scheme is popular in astrophysical problems. However, the original
doner-cell has only first order accuracy. We need at least second order accuracy.

We use a hybrid scheme that combines the second-order MacCormack (1969) scheme
with the first-order donor-cell method through a self-adjusting switch (Harten 1978). The
method is hybridized through numerical fluxes in order to keep the conservative properties
and the monotonicity of equations, introducing the flux mixing switch function. As the value
of the switch function varies from 0 to 1, the numerical fluxes vary from the second order to
first order (see Appendix A). This method starts with a higher-order method and adjusts the
fluxes to give a lower-order method near the transitional zone ( the steep gradient region).
This scheme is related in spirit to the TVD (total variation diminishing) scheme. We checked
the accuracy of this code with Alfvén wave propagation with a constant density and straight
magnetic field. Further, the numerical results for an explosion problem agreed well with the

Sedov-Taylor solution (Sedov 1959).
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ITI. Results

In this section the results of our simulation are presented. We first make an introductory
estimate of the stability criterion and associated time scale of convection. Then we discuss
two cases:(i)convection with originally weak horizontal magnetic fields and (ii) convection

with originally vertical magnetic fields.

A. Criterion of stability and characteristic time scale

We consider the criterion for the convective instability and estimate the typical time scale
of this system. First, the problem of convection is examined in an unmagnetized stratified
fluid (Cox 1980) with the pressure P and density p depending only on z as the unperturbed
initial condition. Imagine a fluid element which is initially at zo that is displaced to-a new
position zg + 6z. The density of the fluid element is in general different from that of the
surrounding material. The density difference between the fluid element at the new position
and the surrounding material is represented by Ap. The buoyancy force fj is related to the

density difference Ap by

fo = —glAp=pgAbz (16)

1dp lldP)

4= (G2-33% an)

If f, and 6z are of the same sign, the fluid is convectivély unstable. The growth rate of this
instability w; is obtained by Im (N) where f, = —pN26z, and N = /—Ag. When A <0, N
is referred to as the Brunt-Vaisila frequency. _The typical growth time scale of convection is
T=1 / VgA = 1/w;, where w; is the growth rate of convective instability. With no or very
weak magnetic field the convective instability sets in for A > 0.

In the present research, however, we need another criterion for the convective instability

with magnetic fields. A sufficient condition for stability of a stratified atmosphere through
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which magnetic fields wieve has been derived by Gough and Tayler (1966). Our derivation
of the linear criterion of the convective instability is shown in detail in Appendix B for
the case with the vertical magnetic field. Using the stellar notation of the superadiabaticity
§ = V —V,, where V is the logarithmic temperature gradient and V, the adiabatic gradient,
f3 the ratio of the gas to magnetic pressure and « the ratio of spacific heat, the superadiabatic

convective instability condition is (Appendix B)

§ < 1/[1++vB(2)/2]. (18)
This relation can be rewritten as
1dP\™" 1
(%) 4 < mrom 1)

The mesh size in our simulation is Az = Az = 1.0. We consider two cases. They have
the same temperature structure, but different magnetic field configurations. One is with
a horizontal field at the bottom of convection zone, where we have taken S = 100 at the
location. The width of magnetic flux sheet is taken Ay = 20. Another is with a vertical field
case, where we have taken various magnetic field strengths.

We chose A ~ 0.0052Az~! at the bottom of the convection zone, and 7 becomes 1.96 ¢y,
yielding the growth rate w; ~ 0.51t;1. In the early linear instability phase, the convective
motion grows in this time scale. During this phase magnetic fields do not dominate the fluid
motion. Another important time scale 7y is related to the thermal process represented in
Eq. (15). This value is 7y, ~ 1/vg = 0.1¢;. This effect is not important in the early phase,
however, as long as the temperature configuration does not significantly deviate from the
initial condition. When the deviation of tempareture AT = T — T}, becomes as large as
the value of initial temperature T},, the thermal effects play an important role and the time
scale is then 7y, as seen from Eq. (15). In the following we drop the unit to describe our

computational numbers.

12



B. Horizontal field cases

The strength of the initial horizontal magnetic field is chosen to be so small that Gy = 100.
The initial condtions are fixed according to Eqgs. (9) and (10). The effects by magnetic fields
on the fluid dynamics in this case (8 >> 1) is negligible. We take v = 1.1 as the adiabatic
index of the gas.

Figure 2 shows the morphology of the magnetic field vectors. The cell formation of the
magnetic fields due to the convecti.ve instability can be seen. Not only the fundamental cells
whose width is half the horizontal width (and approximately the height of the convection
zone) but also many folded smaller cells whose width is a fraction of the fundamental con-
vection cell are observe&. This is similar to that of the Bénard problem (Chandrasekhar
1970). However, our grid is too small to resolve such important physics as the hierarchy of
supergranulation, mesogranulation, and granulation. We also note that there is no signature
of shocks in the upper convection zone in this run. This is in sharp contrast with the previous
compressible fluid work (Cattaneo 1988, Woodward 1988), in which shocks fbrm near the
upper convection zone.

The folding of magnetic fields prominently emerges, as éhown in Fig. 2(b). The domaiﬁs
of enhanced magnetic fields are concentrated in the boundaries of fluid convective cells. The
magnetic fields are swept into the cell boundaries, as they are dragged and tucked in by
the fluid motion and enhanced on the way through the dynamo effect. Notice also that the
accumulation of magnetic flux near the lower boundary of the convection zone. This ob-
served behavior of the fluid flow and magnetic flux in the convection zone is consisteﬁt with
the previous works on the related subjects (Proctor and Weiss 19.82; Tajima and Gilden
1987; Perkins and Zweibel 1987 ; Rosenbluth et al. 1987). In these works the authors
have predicted that the cell boundaries are confined to narrow boundary regions and that
6. = A/l ~ R™Y/? where A, is the width of the cell boundary, ! the cell width, and R the

Reynolds number or the magnetic Reynolds number. Magnetic fields are tucked mainly into
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boundary layers enhanced by this concentration of flux and stretching of the fields. This
flux explusion from the cell interior toward the boundary region of convection cells in this

horizontal field case is similar to that with vertical fields (subsection C).

It is of interest to note that in Fig. 2 the magnetic fields pile up near the bottom boundary
of the convective zone. Although there appears a small amount of magnetic flux escape into
the corona, the majority stays in the convection zone. This is of interest because Kaisig et al.
(1990) found that magnetic flux in an atmosphere that is even Parker (1984)-stable can be
driven unstable against the buoyancy instability nonlinearly by the presence of shear flows.
Their atmosphere was not superadiabatic and the convectively unstable shear flows did not
exist. The present finding that the (near) lack of flux escape from the convective zone may
explain the ability of stars to hold magnetic fields without quickly losing them through the

Parker instability.

C. Vertical field cases

We study different cases with various initial vertical magnetic ﬁ.eld strengths. We consider
six model cases: model A, B, C, D, E, and F.

The strengths of the original vertical magnetic field By are 10, 30, 50, 75, 100, 200 (
B =251, 27.9, 10.0, 4.49, 2.51, and 0.628 at the bottom of the corona) for model A through
F, respectively. Figure 3 shows a plot of the values of 6 and 1/ (1 4+ vB(z)/2) for these cases
as a function of the height 2. For each value of z it is convectively unstable for this plasma
with vertical fields if the solid line sits above the broken one in Fig. 3. In our simulated
cases most of the transitional zone (z = 50 — 60) does not fulfill the instability condition
Eq. (19). We compare these models to illuminate the interaction of magnetic fields with the
convection motion. Figures 4 and 5 are devoted to elaborate model C, while Fig. 6 covers

models A, B, D, and E and Fig. 7 shows model F. In the following we shall mainly show the
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overview of the results and their detailed analysis of model C as a typical example: (i) the
overview; (i) the detail structure; (iii) dependence of various magnetic strengths; and (iv)
discussion of numerical diffusion. The patterns of the convective motion of models A and B

are similar to this case.

1. Overview of evolution of the convection

We first describe the evolution of the magnetofluid and then discuss the structural evolution.
Figure 4 shows the total magnetic, kinetic, and thermal energies as a function of time in
the case of model C. They are represented by Eg, Ex, and Ey, and are integrated in the

simulation box:

B?
EB = -é—;dx, (20)
1
Ex = E/Povlzdxa ~ (21)
) B
By = / e (22)

The amplitude of the convective motion grows exponentially in time with the instability
characteristic time 7 ~ 1.96 or growth rate w; ~ 0.51. We can fit the growth rate of kinetic
energy Ex o« exp (2w;t) with w; ~ 0.51 as shown by L, in Fig. 4. We may devide the
evolution of the system into two phases. The amplitude of the convective motion grows first
(t ~ 3 —10t; ~ 0.5 — 1.5%0s5). Then the magnetic energy increases after ¢ > Tty ~ teross,
roughly the sound crossing time. Until ¢ = Tt; the magnetic field By generated from the
convection motion is smaller than the initial field Bo. In this regime |B;| << |Bo|, we can

write the induction equation(3) as

0B,

el V x (v x Bg). S (23)
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With the estimate of %’- = 21['&-, where L is the size of the convection cell, the velocity may

be estimated with the linear instability formula as vy = v1¢ exp w;t. We obtain from Eq. (23)

v
B, = By <Z):1%> (expwst —1). (24)
With Eq. (24) we can obtain approximately the time ¢, when B; becomes of the order of By
In £
to = ——(—M ~ 6.7 ~ 1.1teross, (25)
Wy

where we used vig ~ €C, and g~ €~ 0.033. We see that at this time the curve for

Weleross
Ep increases its slope in Fig. 4.
The approximation B; <« By breaks down and the system enters another phase when
B, becomes of the order of By. In this phase, we may adopt another approximation for the
induction equation a_gl = ﬂfil. As long as the energy of magnetic fields is smaller than the

kinetic energy, we may estimate v, as vypexpw;t. Then, we obtain

!
B; = Bpexp [3—19— (expw; (t —to) — l)] , (26)
th )
where v}, is the perturbed velocity at that time. When w; (t —to) ~ O(1), we estimate
/
B]_ = Bo exp l%g (t - to)] ~ Bo exp [01 (t - to)] ; (27)

where we used vjy, ~ 5 ~ C, at t = i, and L ~ 50 as a typical size of a convection
cell. Using this relation, we obtain the growth of the magnetic field energy going as Ep
exp [0.2 (¢ —to)]. We write in the theoretical growth of the magnetic energy by line L in
Fig. 4. Both the values of kinetic and magnetic energies are smaller than that of the thermal
energy, which is represented by the horizontal dotted line in Fig. 4. The thermal energy is

nearly constant and slightly decreasing in phase (d), with only AE./Ey, ~ 0.05.

2. Detailed structure

Figure 5 shows contours of temperature and density, velocity vectors, and magnetic field

lines of model C with Figs. 5(a), (b), (¢), (d) at different times. Sequences (a), (b), (c),
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and (d) correspond to the temporal points ma%ked at t = 8.2, 10.3, 12.4, and 16.4 in Fig. 4.
The length of arrows is proportional to the absolute value of the velocity. The magnetic
field structure is shown in the next panel. The evolution of the field line is controlled by the
convection motion in the case of high beta 8 = 10.0 at the top of the convection zone. The
average velocity is approximately 20 and the convection cell is symmetric as shown in se-
quences (c) and (d). The circumference of one convection cell is roughly 200 and the turnover
time of the cell is about 10. We note, however, that since the length of the computational box
is only 100 grid points, the shape of a convection cell probably strongly depends on the size of
the computational box. For example, granulation cells on the solar surface have a diameter
of about 1000 km. Small magnetic flux tubes have one of about 100 km. If we try to include
in a realistic modelling of convection about 3 (2) convective cells and at the same time try to
resolve a magnetic flux tube with about 5 grid points, we need 150 (100) grid points. We can
see in Fig. 5(c) that the magnetic structure follows the winding structure of the coﬁvection
cells. By the time (d) when the cell has turned over twice, magnetic field lines fold and pile
up on top of each other and they are concentrated in the downdraft boundary due to the
convection motion. We see magnetic field lines stretched in the horizontal direction by the
motion of the material at the bottom of the convection region. In the present simulation
magnetic fields at the bottom are "anchored” by the condition of a hard wall. This con-
dition may be a reasonably close apﬁroxima.tion of the boundary between the opaque solar
core and the convection zone, although we neglect the overshooting phenomenon. Symmetry
breaking of the magnetic field pattern is also observed. Even if there is originally only a
vertical magnetic field, the convection generates the horizontal fields, which are swept in the
bottom of the convection zone. This tendency of field accumulation near the bottom of the
convection zone has been recently pointed out by many authors including DeLuca (1986) and
Parker(1984). Furthermore, we see kinked fieldlines in (c) néar the boundary region. This

structure may be related to the magnetic convective collapse suggested (Spruit and Zweibel
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1979).

3. Dependence of the magnetic field strength

In Fig. 6 we show snapshots of the magnetic structure at approximately the same time for the
cases with different initial magnetic strengths. Magnetic fields not only reduée or stabilize
the growth, but also modify the covection pattern. In the velocity field of model F shown
in Fig. 7 (strong magnetic field case) we notice that two convection cells have split into four
and become shortened in the horizontal direction when magnetic fields are strong. If mag-
netic fields are strong enough to resist the motion perpendicular to the field line, the fluid
motion in the horizontal direction is more difficult. As seen in Fig. 6, magnetic fields are
concentrated in the downflow region as the convection continues. This corroborates the solar
surface observations of the convective patterns that appear in colder downdraft boundaries‘
with concentrated flux and the sun spots (Title, Tarbel, and Topka 1987 ). The convective
twist patterns are similar to each other; however; the models B and D of Fig. 6 show more
concentration of magnetic field than that of the models A and E. We see a significant mag-
netic field collapse in model C. So do we in the model B and D. We observe strong magnetic
flux expulsion from the interior of the cell in models B, C, and D. On the other hand, no
significant magnetic flux expulsion is observed in model A. These results suggest that for
magnetic fields to be expelled from the bulk of the plasma by the convection, it is necessary
to have an appropriate strength of magnetic field with 8 of the order 10(1-100) at the top

of the convective zone.
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4. Numerical diffusion effects and the boundary layer

We have studied the magnetohydrodynamical system by using the finite difference method.
We consider diffusion arising from numerics. We can estimate the diffusion coefficient (Ap-
pendix A) as

_ (1 —¢)Azq|
D= —2'—*,

where a is the typical advective velocity. With this diffusion coefficient, we can estimate

(28)

maximum saturated magnetic field V x (v x B) = DV?B. As shown in Fig. 5, this typical
advective velocity is mainly the velocity of fluid in the horizontal direction in the cell interior

v, << v, and B, >> B,. We thus estimate the maximum saturated field as

U:I:BO _ Bma.x
A -—D AZ ’ Bt

(29)

where A is the scale height of the boundary layer of a convéction cell. As shown in Figs. 5 and
6, most of magnetic flelds are concentrated in the downdraft boundary region of convection
cells. We may be able to approximate the total flux in the tube to be equal to that of the
initial field in this box Bmez ~/B0AX , where AX is the width of the convection cell in
the z direction. Neglecting B, by using the above relation, we rewrite the estimate, Eq.

(29) as

() = (%) ~mn @0

where R,, is the magnetic Reynolds number. This 'eétiniation is 'equivalent to that of the
previous works (Proctor and Weiss 1982, Rosenbluth et al. 1987). With |a| ~ |vs| and
Eqgs. (28) and (29), we can simplify as A2 ~ AzAX. In the present case Az = 1 and
AX = 100, and then A ~ 10. This estimation is in good agreement with the numerical
results in the casés of models B, C, and D. However, even if model A satisfies the condition
for convective instability, we cannot find the flux tube whose scale height is ~ A unlike other
cases. This discrepancy suggests that the approximations used for the above estimation of

the width of boundary region is not suitable for very weak magnetic field cases. We used
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B. >> B, to obtain Eq. (30) in the above discussions. However, if the collapsed flux
tube is disturbed by the small eddies of the convection near the upper region, the fluid
motion tangles with magnetic fields and the strength of B, becomes on the order of B,. If
B2 /87 > P,, concentrated flux tubes are no more disturbed by the convective motion in
the surface region, where P, is the pressure of the transitional zone. Stable flux expulsion
needs the condtion B2 /87 > P;. From this we can estimate the critical value of By for
stable flux expulsion without strong disturbance.

The relation between the initial magnetic field strength By and that of the concentrated

flux Bmes and the condition B2, /87 ~ P; lead to an approximate expression
Bo = BnasAJAz = (87P,) 2A/Az ~ 16, (31)

where the value By is the critical value for stable flux expulsion. The strength of the initial
magnetic field of model A is smaller than the above critical value. The magnetic flux tube
is disturbed even if flux expulsion occurs in model A. We see the disturbed structure at
the surface in Fig. 6A. This consideration entails that significant convective flux expulsion
needs a low 3 region above the convectively unstable region as in models B and C. In real

situations, the low B region can be the corona or the chromosphere of the Sun.

IV. Summary and Discussion

We have carried out computer simulation of magnetoconvection of a compressible fluid with
an open boundary under a constant gravitational acceleration and a simplified radiation
function. In our simulations the pressure varies over many orders of magnitude. We sum-

marize our results from our simulations.
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. As convective instability commences and continues, the convective motion helps stretch
and fold the initial horizontal or vertical magnetic field and generates horizontal (or
vertical) magnetic fields at the bottom of the convection zone, as seen in Figs. 2 and 5.
Strong magnetic fields are swept into the boundary regions. Particularly they concen-
trate near the boundary layer of the convective zone. This result may be compared
with the observation by Title et al. (1987). Their observation shows that magnetic
fields are concentrated in the downflow regions due to the flows. On the other hand,
magnetic fields in turn suppress the flow when they exceed a certain value in the bound-
ary layers. There may be a considerable amount of fields at the center of granules. It

seems to be related to the magnetic flux concentration in our simulation.

. Strong vertical magnetic fields enforce the convective motion to develop primarily in
the vertical direction parallel to the direction of magnetic fields, as seen in Figs. 5

and 6.

. No shock formation is observed in our simulation of compressible, strongly stratified

fluid with an open boundary, in contrast to earlier works.

. In the downdraft region the phenomenon called the convective collapse (cf. Stenflo
1989) is observed when the beta value of the originally vertical magnetic field at the
.top of the convective zone is moderate § ~ 1. It is just this tendency. of inhibition
of convection by magnetic fields that causes the convective collapse. When ,3 is too
large, no siginificant collapse is observed. However when f is less than unity, the
convective motion is largely suppressed by the fields and thus again no collapse either.

The optimal 3 at the top of the convection zone in our run was 10 in model C.

. The observed magnetic flux patterns are consistent with previous theory and simulation
on the interaction of magnetic fields and fluid flow under the convective instability (e.g.

Proctor and Weiss 1982). This behavior is one of likely mechanisms that makes the
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solar magnetic flux spatially highly localized (Stenflo 1989) and everywhere else it
is nearly non-existent. Our simulation shows such intermittent prerence of magnetic

fields.

6. Earlier works such as Woodward (1988) and Cattaneo (1988) show shock formation
particulaly in the updraft regions. Our present simulation does not. The main differ-
ence seems to stem from our adoption of the open coronal boundary. Our simulation
seems more consistent with observation: Updraft flows are subsonic and no observa-

tional evidence shows shocks associated with the updraft.

7. Our observation of the concentration of flux near the lower boundary of the simulation
box, which corresponds to the boundary between the convection zone and the solar
core, is consistent with recent contention that the magnetic fields are generated at
bottom of the convection zone (DeLuca 1987; Parker 1984). This may not be also
inconsistent with the recent helioseismic observations (Leibacher et al. 1985). This is
in contrast to the case where the atmosphere is convectively stable and Parker-stable
but with two-dimensional shear flows (Kaisig et al. 1990): In the latter case magnetic
flux may be nonlinearly driven out by the presence of shear flows, although the feet of
flux tubes may be anchored. If the large magnetic structures we see in our simulation

are in fact related to sun spots, it is possible that sun spots affect the solar interior.

Many important effects are still absent in the present investigation. Among the problems
are 3-D effects, Coliorlis effects, the relatively small size of the computational box, and the
relative simplicity of the transitional region. These are left to the future for improvements.
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Figure Captions

Figure 1; The structure of the density and the tempareture for the initial condtion in hydro-
static equilibrium. Z, = 60Az is the coronal boundary. Note the units are those defined in

the text and not degree Kelvin, for example.

Figure 2; Magnetic field vectors for the horizontal weak field case of 8 = 100 at the original

location of flux, v = 1.1 ; (a) t=11, (b) t=13, (c) t=21.

Figure 3; Comparison of the § and the value of 1/(1 + 2v/8) which are functions of the

height z. § > 1/(1 + 2v/pB) is unstable against convection.

Figure 4; Evolution of the kinetic, magnetic and thermal energies in the vertical field case
(model C). The thick solid line corresponds to the kinetic energy, the dotted line to the
thermal energy, and the broken line to the magnetic energy. The lines L, and L, represent
the exponential growth obtained from theoritical analysis. The kinetic energy scale before

t = 6.2 is out of scale so that we add two order of magnitude in this figure.
Figure 5; The contours of the tempareture, the density and the magnetic field lines for
model C (Bo = 50) in the vertical field case. The snapshot figures are at the time of (a)

£=8.2, (b)t=10.3, (c)t=12.4, and (d)t=16.4.

Figure 6; Magnetic field vectors. The figures corresponds to: (a) model A(t=14.1), (b)
model B (t=13.1), (c) Model D (t=12.6), and (d) Model E (t=11.6).

Figure 7; Contours of the tempareture and the density for Model F (t=8.2).
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Appendix A; Numerical scheme and Numerical diffusion
We used a hybrid scheme which combines a second-order MacCormack scheme(1969) with
a first-order doner cell method through a self adjusting swith (Harten 1978). Consider the

advection equation:
ur +au, = 0. (A1)

where a is the advective velocity, and the subscrit t and x represents the derivative respect

to t and x. We approximate this equation by upwind finite difference form of order,

MW (@< 0)

) = — Az

The upwind form can be written as (e.g., Tajima 1989);

(uj+1 - “j)

(uj)t = —a e (Uj+1 - 2uj ~+ ’U:j—l) ) (AQ)
M A

2Az?

+ |a| Az

The first order upwind scheme is expressed as a sum of the second order symmetric finite
difference scheme in the first term and the artificial diffusion effect in the second term in
Eq. (A2). |

| We rewrite Eq. (A1) with the advective flux f = ua as

The first order upwind form of flux f is

fj+1/2 — f (UJ) +2f (uj+1) _ |a| (uj+12_ u.?')‘ (A4)

We have‘options to take which finite difference forms for Eq. (A-4) such as the doner cell
scheme, Lax-Wendroff scheme, etc.
Consider additional flux g:

a
gi+1/2 = ¢J|‘2“| (w41 —u;), (A5)
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where ¢ is the value of order unity and will be called the flux limiter function. We add the

flux g to f

w+(f+g. = 0. (A6)

For ¢ = 0 this formula becomes the purely first order upwind scheme. For ¢ = 1, on
the other hand, it becomes the second order Lax-Wendroff scheme. We control the order
of accuracy of spatial derivatives in partial differential equations by chosing the value of
¢. If we use a second order scheme, we get second order accurate results. However, the
numerical instabilities arise when the monotonisity of the system cannot be retained at the
discontinuity such as shock and contact discontinuities. If we use the first order scheme at
the numerical unstable point where second derivative is large and the second order scheme
at the stable point, we may obtain stable and aproximately second order accurate results.
We introduce the switch function (Harten 1978)

[Auj(Az)'

(9]' =1- ¢j = Az (IAUJI + ‘Auj—lﬂD + éuj.

(AT)

The accuracy of the scheme of (A7) is second order at § ~ 0 when the second derivative is
small, but becomes first order as the second derivative becomes large.

The MacCormack scheme is basically similar to the Lax-Wendroff. We use the hybrid
scheme of MacCormack and doner-cell schemes with the above flux limiter function. From

(AT) we obtain a form similar to (A3), which has the numerical diffusion term:

D = (1-4¢)|a|Az. (A8)
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Appendix Bj Linear analysis In order to consider the convective instability in the
linear phase, we derive linearized equations from Eqs. (1) to (6). We assume vertically
stratified atmosphere in hydrostatic equilibrium. In the early Pha,se, the thermal process is
negligible, which is related to the heating and cooling through exchange with radiation and
magnetohydrodynamical waves. From the linearized system of Egs. (1) to (6) we obtain the

equation for the perturbed velocity:

0*v
Po 12

P,
= V[ (W) 0+ C?V (pv)| -V (pov) g

+4_]7.T- [V x V X (V X Bo)] X Bo, (Bl)

where subscripts 0 represents the values in the equilibrium state, and C is the sound velocity.

We assume that the form of the perturbation is v (2) o ezp (2 (wt + k;z))

. az a T
2 : 2 2 2 2 . 2 —
[w - (C + v4 ) kx +va w] Vg + Zkz (g + o E) vV = 0, (B2)
0 0? , 0

Cohsidering the case in which the thermal pressure is greater than that of magnetic field
or the horizontal wavelength of the perturbation is smaller than the vertical scale of that
variation, we assume that (C? + v3}) k2 >> v4’gs.

We look for the mode related to the flux expulsion with the convective instability. We
neglect the modes with the fast wave. This approximation gives w?/k? << C? 4 v4?. We
obtain a simplified equation for equations from (B2) and (B3).

) !
v2vll + [vg(pAz/vfz) —C? (C’Z/vfe)] v, + [w2 - (72 - 1) (gz/vfz) —C% (1/’Uf2> ] v, =0
(B4)
where v2 = (%%7 and v? = C? 4 v3, where v, and v; is related to the value of the phase

speed of the slow and fast modes, respectively, and primes denote the derivatives with respect

to 2. We can get the eigenmodes from the equation (B4) with the boundary conditions. Our
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boundary condition is v, = 0 at the upper and bottom of this considered layer. We obtain

from Eq.(B4)

2,0 1 ] "‘JZHZ
1 1

If the coeflicient of v, has a negative value in all regions under the above boundary
condition in the third term on the left-hand side of Eq. (B5), we have no solution which has
non-zero value of v,. If § < 1/(1 +v3/2), there is no unstable solution. This condition is
identical to the Gough-Tayler condition. Furthermore, Eq. (B5) can be used to estimate the
maximum of the hump of the unstable eigenfunction. At maximum, v, = 0. The depth of

the hump D is estimated using

1
(1++8/2)

From this relation, the depth of the hump in magnetic flux tubes is given by

2
D> ,/WH. (B7)

If the system is near the critical state determined by the Gough-Tayler condition, we have

H?* w%H?

—5— (1+78/2) + %vﬂ/2 (6 - ) < %,86, (B6)

D" e

786 ~ 1. In a state nearly critical, we can obtain D ~ H. We see that unstable eigenmodes

have a typical scale comparable to the initial scale height H.
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