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ABSTRACT

The linear theory of the resistive tearing mode instability in slab geometry, has been recently
extended by introducing the effect of equilibrium shear flow and viscosity (Einuadi and Rubini’-8,
1986, 1989; Chen and MorrisonJ-5, 1996). In the present analysis, numerical solutions of the
time-dependent resistive equations are generalized to this problem and growth rate scaling is
obtained. The results of the computations are compared to previous work, and the computed
growth rate scalings agree with analytical predictions. Namely, the "constant-y" growth rate scales

as S~1/2 and the "non constant-y" growth rate scales as S-1/3, where S is the magnetic Reynolds

number. The FKR scaling of §-3/5 is reproduced for small values of shear flow. The presence of
flow introduces a new peak in the eigenfunction, which is outside of the peak that occurs in the

case without flow. The introduction of viscosity and small shear alters the growth rate scaling to

2/ (5 \/6
S /3 (?V) where S, is the ratio of the viscous time to the Alfven time. When the shear flow is

large, the growth rate behaves in a more complex way, and Kelvin-Helmbholtz instability effects are

present.



I. INTRODUCTION
Magnetic reconnection was first suggested by Dungey1 to explain enefgy release in solar
flares and other astrophysical phenomena, and since tﬁen the topic has been studied extensively.
Furth, Killeen and Rosenbluth? (hereafter FKR) developed an analytic boundary layer theory of
.r_esistive magnetic tearing, and numerical techniques have subsequently been applied to the
problern3. | |
FKR theory has been widely used and applied to laboratory plasmas and fusion experiments
in various geometries. Numerical computations of linear tearing mode iostability have been
perforrhed by many, in various sub-volumes of parameter space (see, for example, Steinolfson-
and Van Hoven?) usually without equilibrium shear flow or viscosity effects. The importance of
flow and viscosity in the evolution of tearing instability growth rate scaling has been recently
shown using both analytical5 -6 and numerical’-? analyses. Non homogeneous flows “ate
commonly observed in various phenomena believed to involve reconnection, such as solar ooronal
- loops, magnetopause boundary, solar wind, extragalactic jets end fusion experiment510-1 1
We solve the time-dependent equations numerically throu ghout the entire phySical reéion of

instabi_lity, in"contrast to the boundary layer approach in which solutions of two physically

different regions must be matched. This approach enables us to avoid some significant

assumptions required by the boundary layer theory, such as "constant-¥" or conditions on the
growth rate 75’6(see Sect. IT). Thus, we can test the validity of these assumptions and corroborate
various scaling laws predicted analytically.

: Using a finite difference method for the time-dependent problem, we are able to show the
spatial aﬂd temporal evolution of the perturbed quantities and the dependence on the physical
paraineters of the problem. Some relevant parameters examined in our study are the normalized

- wavenumber o , the magnetic Reynold's number S, the shear parameter R, the fluid velocity V
(normalized to Alfven velocity) and the ratio between viscous and Alfven time scales Sy- By
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retaining the time dependence, we are able to study cases on a relatively short time scale, such as
may be necessary when more then one over-stable mode is present in the solutions. This is
particularly significant for the non-linear simulations in which several modes can interact.12

The paper is organized as follows. In Sect. II we present the basic equations. In Sect. III the
main results of the linear boundary layer theory are reviewed. In Sect. IV the method of solution is
described. Section V is devoted to the results of numerical computations. Summary and discussion

are presented in Sect. VI.



II. BASIC EQUATIONS
We assume that collisional magnetohydrodynamic (MHD) theory13 is applicable, that the

plasma is incompressible with constant isotropic resistivity M and constant perpendicular

viscosity5 14 V_ and that gravitational effects are negligible. The basic equations in cgs units are:

ov 1 2 | |
Pl (v-V)v =-VP+E(VXB)XB +VV, v (1)
9B _ o g o | |
= = VX(vxB) - 4—V><(V><B ' (2)
V.v=0;V-B=0 )

where ¢ is the speed of light, p is the plasma density, B is the magnetic field and v is the velocity
of the plasma. The pressure p is eliminated from the calculations by taking a curl of Eq. (1). '.
. We use Cartesian geometry‘ and choose an"equilibrium ﬁlagnetic field of the form
BO(y) = BxO(y)ex + BzO(Y)ez-
Similarly, the equilibrium plasma flow is assumed to be in the (x,z) plane, with the form

VoY) = vxo(Y)ex + voo(yle,.

Equations (1)-(3) are linearized around the magnetic field and flow velocity equilibrium solutions

assuming perturbations of the form f(y,t)exp(ik,x+ik,z).
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The normalized linearized time-dependent y-components of the MHD equations can be written as

4
2 2

a—+iocG (W”- o W)-iochG"W=iocF(\|f"- o W) - icF"y+ _1_.2__\7_‘{_

ot Sy 4 (4)
op

J . . . af o, 2

a—+1ocG Y- iaFW =S8 \y"- oy (5)

T

where the dimensionless variables are T = ;CtE , U= ay_b , and the perturbed physical quantities
Y= By1/B , W= Vyl/Va- Also, the dimensionless parameters are the magnetic Reynolds
number S = T/Ty, a measure of viscosity S, =T,/Ty, the shear parameter R = a,/a,, and the
normalized wave number o = kay,

The relevant time scales in these definitions are the resistive time T, , the Alfven time Ty and the

viscous time T, given by

1
T,=pa b2/v T.=4ma b2/c 211 Ty=a b('47t p) /Z/B

and in the above quantities ay is the magnetic length scale, a,, is the velocity length scale, V,, is the
Alfven velocity and B is a measure of the magnetic field.

The equilibrium magnetic field and flow velocity are given by

F = (kyBy + k,B,0)kB, G =(kgVyq + K,V 0)/kVy

Specifically we choose k,=0 and the following forms of F and G:

F=tanh |1, (6)
G=Vtanh(RH) (7a)
or

G = V[ sech (RK) - 1] (7b)



where V is the velocity parameter in units of V, and R is the shear parameter. Hereafter we refer to
Eq. (7a) as the "tanh" velocity profile, where Eq. (7b) will be referred to as the "sech" profile.
Equations (4) and (5) are solved numerically without any further approximations. They are
subject to the boundary conditions that W,y —0 exponentially when L — teo. For the
numerical simulation limited to finite boundaries located at p; and [y, the above boundary

conditions become

Wiy 2) =+oaW(Ly 2)
V' (U 2)=Fay (i 2) , . ._ (8)

where primes denote the‘derivatives with respect to W taken at the left (L1) and right (l7)

boundaries of the physical region. ‘



III. LINEAR THEORY
The growth rates of the instability can be found from the time-Fourier-transformed Equations (4)-
(5), using the boundary layer approach.2a5"8 Assuming perturbations of the form

f1(y)exp(iot+ik,x) these equations become

4
2 2
[+ io) (W o W)-iaRzG”W=iocF<w"- o y) - iocF"\lf+SL_a VZ ©)
v au
-1 2
(y+iaG)y- iaFW =S ™ o v o

where Y =Yg +1Y;=1® Ty is the complex growth rate and the subscripts R and I denote real and
imaginary parts, respectively.

The physical region is divided in two regions, namely, an inner region in which |F|<< 1 and
resistivity cannot be neglected (e.g., near U =0, for F(i) as in (6)) , and an outer region in which
the resistivity can be neglected in Ohm's law. The solutions in the outer and the inner regions are

matched continuously through a matching parameter

where the subscripts 1 and 2 denote values at the boundaries of the inner singular layer of width €,
respectively. An important result obtained by analytical means in Ref. [5] is that that flow in the
outer region can drastically change the matching quantity A'. In fact, alteration of the external flow
profile can effect the transition from "constant-y" to "non-constant-y" tearing. A numerical

estimate of A'is discussed in Sec. V.

The FKR result, without shear flow or viscosity is
YR= R Ty ~ §-3/5, (11)

This scaling can be used as a benchmark for comparison with new numerical results.
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Equations (9)-(10) in the outer region, where S — e and S, >> 1, become

Y- Fw=0 N | | (12
[(&32-G2)w '] -az(FZ-Gz)w=O . (13)
WhereWE%,

In the inner singular layer, we take

F'=F'(0), F'=F"(0), G'=G'(0), G"=G"(0), and F=uF'.

Nekt, introducing the stretched coordinate €= E the rescaled Egs. (9) and (10) become

fY .G| iGll \aw G'? lFl! FIV 2) ’
e N ec/ e T U - }l 18_W+B——+O( (14)
BC et
Y .G’ iG" ) iF" L
aF'eH_F_{ o }v L+5gre C)W C—y— 0( ) : . (15)
where B and C are defined as
B=— 1 | co_t
3 3
- oFe S, oF'e S

The quantities B and C measure respectively the diffusion of the vorticity and magnetic fields in the

‘g ,
singular layer. Their ratio % determines the importance of viscosity as compared to resistivity in
the inner region.

Equations (14)-(15) are too complicated to be solved analytically, therefore, the growth rates

and their scalings are found by taking the following limits of the parameters:




LA D
oF'e

(16b),

slow growth

T <<t (16a), fast growth
£

<<1 (16c), comparable shear ‘F ~1 (16d).

small shear l%

The results for the inviscid case, as obtained in Ref. [5], are summarized in Table L
For the "non constant-W" tearing mode and small or comparable shear (16c)-(16d), the growth
rate scaling is

2/
ya-al3s s (172)
In case of the "constant - Y tearing mode when the velocity shear is comparable to the magnetic

shear, (16d), the growth rate scales as

1 R
YR"OL/ZS /2. (17b).

1

F' < 1 is satisfied, (17b) is modified to

When viscosity is present and the condition

Vs
2
1 S G S
- sThqhs 4__+—(1--—)
TR Q v 2l Sy (17c)
_ ' G2 G' '
where Q = aF'|1- —|  Ag -13-.—’ —1, the growth rate approaches zero as Q3. When |&+|>1,
Fl

the tearing mode disappears, and Kelvin-Helmbholtz (K-H) instability effects are present. When the

shear is very small (16c), the growth rate scaling (11) becomes

YR"(O‘F')%S-%

10

1
ﬁ /5 (17d)
S/ .




% in Egs. (17a)-(17d) has been verified

The dependence of the growth rate on S, Sy, and

-numerically. These results will be presented in Sect. V.
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IV. METHOD OF SOLUTION

We solve Equations (4) and (5) using an implicit finite difference scheme3.,4 with a variable spatial
grid. The following system of equations in the complex plane, generalized to accommodate flow

and viscosity, are solved numerically:

iO(.Fj Wn+1 : oF; o OLF”J- n+l1 ioF; n+1
O ——— c+1 T — ———— .
2 Ap;Ap, Ap,Ap. 2

1 n+1 1 {04 1 n+1 1 n+l
- 7S AL A Zj+1 +7Gj+ Z. - j-1
VAR AR At SyAp_Ap, Sy Au;Ap.
2 . 3 .
o 100 o 2 ., n+l
2
1 n+1 1 io 1 o n+1 1 n+l n+l .n
SR SN N e +2 |y - — Ly -2 Ewied
2Au;Ap.S T At 2 7 ApjAp,s 28|70 2ApAps P20 1(19)
7 0+1 1 Wr_l:II + 2 wht! 1 WI'Hil _ an (20)

Toapprs T Apap T Appp T

Hivi - By

> A =Wjs1 My, AP =pjpy,

where A}.tj =

The variable grid spacing Ap ; expands from a minimum of A}.Lmin=10‘5 near the singular surface
to Ay .. =0.5 near the computational boundaries according to the prescription
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where J denotes the boundary grid point. Up to 240 grid points were used.
The purpose of Eq. (20), which is a finite difference form of Z(t,u) — W"(t,)t) = 0, is to enable

4

.10 W ) o
the numerical calculation of the fourth order viscous term Sy in Eq. (4), while maintaining
oy
the tridiagonal form of the finite difference equations:
n+1 n+l n+1 j
- AU +BU; - CGUy =Py 21)

- where A, B, C are 3 X3 matrices and U, P are 3 dimensional vectors. Equation (21) is solved for
U by using Gaussian elimination.

The time step At was selected so that AT < min {L ’ -5—1—}, and the simulation was evolved
Tr 21

for N time steps until only the fastest growing mode is present in the solutions. Usually the
number of time steps satisfied S0<N<500.

From the complex solutions“W(t, i) and y(t, ), which are symmetric or antisymmetric
relative to u=0 (the symmetries are determined by the functions F(u) and G(u) in Egs. (4)-(5)),
the growth rates were obtained in two-steps (see Fig 1). First, the real part of the growth rate ¥y is
found by fitting a straight line to the logarithm of W(t, o) (where H¢ is an arbitrary point in the
domain). Nexf, the exponential trend is removed from the solutions and a Fast Fourier Transform
(FFT) is performed on the remaining oscillatory part of W(t, lg), which thereby determines the
imaginary part of the growth rate ;. If more than one overstable mode is present at the same time,
the result of the FFT will show a corresponding number of well defined peaks, indicating the
values of the ;. This occurs when the real parts of the two modes have very close values:

eXP(YRy i) eXP(Yatm) ~ 1 (22)
13




where t,=NAT.
If the modes are purely growing (no time-dependent oscillations are present), then only the first

step in the above method is performed.
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V. NUMERICAL RESULTS

The method of finding the complex growth rate (Sec. IV) is clarified in Fig. 1. In Figs. 2-10
we present the results of computer simulations of teanng mode 1nstab111ty In Figs. 2-4 the spatial
behavior of the complex solutions W(to, W) and y(tg,it), normalized to their respecnve peak
values, 1is presented. In what follows, we have used the normahzatlons

V=By/Byimax and W —‘-ivyl/vylmx ,

the absolute maximal values are given in Table 2. Figs. 5, 7-9 show the various scalings of the
growth rate, as in Egs. (17a)-(17d). In Fig. 6, the dependence of the growth rate y on the shear
parameter R, for "sech" and "tanh" flow prof11es is shown. ‘ '

In Figs. 2 and 3 the "constant-y" solutions- are shown. This is clearly seen from the fact that
the teaﬁng layer, defined by the inner peak of Wp, is located in a region where Yy is constant. The
presence of flow introduces the imaginary parts of the perturbed quantities and the euter peak:in
Wr, as compared to FKR type solutions (see, for example, Ref. [4]). The inviscid solufions in
Figs. 2a and 3a agree with Ref. [7]. The ﬁgures of the eigenfunctions in Ref. [7] are drawn with a
linear scale in the y-direction, rather than logarlthmlc scale used in this paper. In Fig. 2a the
equilibrium magnetlc field was (6), the ﬂow proﬁle was "tanh" (7a), and the velocity shear,
determined by V=1 and R=0.73, was comparable to the magnetic field shear. The antisymmetric
solutions, namely, Wy, (short dashes line) and ‘VI (long dashes line), for the positive and negative
vahies of u are plotted on the positive logarithmic L axis. The solutions in Fig. 2b are for the same
pararneters as in Fig 2a, but they include viscosity comparable to resistivity S=S —106 Its effect is
to reduce Wx, and relatlve to WR (see Table 2) and therefore, reduce the reconnecting ﬁelds and
the growth rate. Figs. 3a-3b show the behavior for a "sech” equ111br1um flow. In Fig. 3b the
antisymmetﬁc solutions are Wy and Wy (dashed line). The solid linev is Wg and in this case it
merges with the normalized Wy that has similar shape. The effect of viscosity on this solution is
shown in Fig. 3b. The: inner peak of W has practically disappeared, and the growth rate is smaller
than in Fig. 3a. |

15




In Figs. 4a-4b a "non constant-y" tearing mode is shown. In other words, most of the spatial
variation of the perturbed flow Wy is confined to the region of the maximal variations of yg.
Viscosity, in Fig 4b adds additional features to the eigenfunctions, reducing slightly the growth
rate. The more complex dependence of the solutions on W is due to the mixing of Kelvin-Helmholtz
and tearing instabilities.

The scaling of the growth rates for the inviscid case is presented in Fig. 5. The lower line
represents the analytical scaling and has a slope of -1/2 on a log-log scale. It fits very well to the
calculated points, which were obtained from the type of solutions shown in Fig. 2a, having values
of resistivity $=103- 107, and it agrees with the analytical results in Table 1 for the "constant-y"
case. The lower the resistivity (higher S) the closer the inner peaks of Wy and yj are to the
singular surface =0, while Wy and Wy remain almost unaffected. This result is expected from the
analytic scaling of the inner layer width € ~ S~2/5 (small shear, Fig. 5b) and € ~ S"1/3 (high shear).
The upper line of Fig. 5a has a slope of -1/3 , in good agreement with the calculated points from
the solutions shown in Fig. 4a and the "non constant-y" tearing mode (Table 1). The dashed curve
is the imaginary part of v for the "non constant-y" case. The oscillations of the fluid appear due to
K-H instability and therefore exhibit a different behavior than Y, which is dominated by tearing.

The dependence of the growth rate on the shear parameter R is shown in Fig. 6 for "tanh" flow
profile (empty circles), and "sech” profile (full circles), and its Y agrees with Ref. [7] (which
were obtained there using a different numerical approach). For small values of R the FKR growth
rate is recovered. When R is of order one (R=0.73), the "tanh" profile, produces a peak in the
growth raté, which satisfies conditions (16b)-(16d) and scales as s-1/2 (17a). The "sech" profile,
produces a different behavior for R>1, namely the solutions become "non constant-y" solutions
and the tearing mode is further destabilized. The "non constant-y" is most evident for 3>R>2 with
V=1. At R>4 a transition to ideal K-H instability occurs”>/. The oscillating part appears in the
"non constant-y" regime and reaches its peak value near the transition point to ideal instability.
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The matching quantity A’ was estimated numerically for the solutions in Figs. 2-4 by calculating
W'/ near the singular layer. It was found that A’ is drastically affected by the flow in the outer
region (e.g. by the value of R), while almost unaffected by the resistivity. For the "constant-y" |
case A'~0(10) and for "non constant-y" case A'~O(100) in agreement with the analytical
calculation of Ref. [5].

When the viscosity is comparable to or larger than resistivity, and with no shear flow, the
classical FKR scaling (11) changes to (17d). In Fig. 7 the dependence of the growth rate on Sy is
shown. The line with the theoretical slope of 1/6 agrees with the calculated points, which have a
least mean square slope of 0.168. In Fig. 8 the dependence of the growth rate on Q (Eq. 17¢) is
verified and is found to agree well with the analyfical result in the range 0.02< Q < 0.2 . When Q is
very small, the influence of flow on the matching quantity A' should be accounted for in the
analytical growth rate scaling, thereby modifying ‘(17c).. (Note that in the numerical solutions,

and ' are continuous everywhere, therefore A' is not well defined).

The dependence of the growth rate on viscosity for the "sech" profile is presented in Fig. 9.
For R=0.44, V=1 the analytical scaling of Svl/ 6 is recovered (lower stfaight line). For R=6 (high

shear) the tearing mode is stabilized, and the instability becomes a Kelvin-Helmholtz mode. The

K-H instability is practically unaffected by intermediate to low viscosity (Sv=104- 108 ), but for
higher viscosity, when the viscous time scale is comparable to the instability growth time scale, the
mode is stabilized (S, <1O3) in agreement with the results in Ref. [8]. It is interesting to note that
the imaginary part of the growth rate exhibits similar behavior to the real p-art, unlike ¥y in Fig. 5
where both K-H and tearing instabilities are present.

In Fig. 10 an example of the dependence of Y on viscosity is shown. For the "sech" flow
profile, R=6 and SV=106 (Fig. 10a) only one value for y; is found, and it corresponds to the
fastest growing mode. When the viscosity is increased and Sv=105 , two overstable modes are
present in the solution (Fig. 10b) due to condition (22). The growth rate of the fastest growing

17



mode for this value of viscosity has a local minimum (with respect to S,)), and is shown in Fig.9.
When the viscosity is further increased to SV=104, the difference be;ween YR, and YR, increases,
and the magnitude of the second mode in Fig. 10c becomes very small compared to the fastest
growing mode.

The boundary conditions in the above solutions required expone_ntial decay of the solutions to
zero at infinity (8). We have found that using conducting wall boundary conditions at large y

(u=10) would not change the results significantly.

18



IV. SUMMARY AND DISCUSSION

The results of boundary layer approach were compared to numerical solut1ons of the time-
dependent, linearized, resistive, viscous MHD equations (4)-(5) for various values of the
parameters o, R V S and Sy In general, a very good agreement with the analytical growth
rate scahngs was found Therefore the approx1mat10ns used in analytlcal theory to find the |
growth rate scalings are found to hold. The spatlal variations of the solut1ons, that were not
found analytically for the viscous and inviscid cases with ﬂow, have been presented. A "non
constant-w" tearing mode and its parameter range have been found numerically to be in
agreement with the analytical predictions. The numerical growth rate scalings have been
calculated and found to agree with the analytical ones, within the given range of their
parameters.

The time dependent MHD equations(4)-(5) for tearing mode instability were solved
numerically, without further approximations, continuously in the region of interest. An implicit
variable grid, tridiagonal finite difference scheme was used to obtain the numerical solutions,
and, Fast Fourier Transform techniques were used to find the imaginary part of the growth rate

after the real part, the exponential growth rate Yz was found. When the shear flow was very

small (V<0.1, R<0.1), in the inviscid case the classical FKR growth rate and inner layer

scalings were recovered. When viscosity is present, the growth rate scaling is changed to

e
YR~ S 3( S ) . For the "tanh" profile, when the shear flow was large, i.e. l—g—] ~01) and

: 1/3
Sy_ . . ' G'(0))° A
3= 1 it has been verified that the growth rate scales as Yg~|1- F(0) . For the "sech
profile, a transition form the "constant-y " to "non constant-y " tearing mode was observed to
be driven by the flow in the outer region (outside of the tearing layer). In particular for a=0.5,

S=106, V=1 and 3>R>2 the "non constant-y " tearing mode is obtained, with the analytically
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predicted growth rate scaling Ygr ~ S~ 173 In case of the tearing mode, small and intermediate

values of viscosity , Sv=107-103, lower the growth rate. For the "sech” profile and R>4,
Kelvin-Helmholtz instability is dominant; it is stabilized for higher values of viscosity
(SV<1O3), when the viscous time scale is comparable to the growth time scale.

The advantage of the time dependent approach over time independent methods (such as
those used in Ref. [7], [8]) is clearly seen when relatively short time scale simulations are
performed, where more then one oscillating ﬁode in the magnetic and velocity perturbations is
present. This is particularly important for the generalization of the problem to non-linear

studies12,
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CAPTIONS TO FIGURES ‘ : .

Fig.1. a. The time dependent solution log[w(t, po)].

b. A linear fit to the maxima of log[W(t, )] . The slope of this line determines Yg.
0

c. The solution W(, 1), with only the oscillatory part remaining. Performing FFT on
. it determines 7y (see Fig. 10). Note that the initial transition time of 1500ty was

removed from the calculations.

Fig. 2. a. The spatial variations of the complex solutions W and W (inviscid case) normalized to
“their peak values. The equilibrium flow is G=Vtanh(Rp), and the parameters are V=1,
R=0.73, S=10%, a=0.5.
b. Same as (a) except viscosity Sv=106.
Fig. 3. a. Piot of W and  as in Fig. 2 except the equilibrium flow is G=Vsech(R}L) and the
parameters are V=1, R=0.44, S=106, o=0.5, and the notation is the same as in Fig. 2.

b. Same as (a) except viscosity Sv=106.

Fig. 4. a. Same as Fig. 3a with R=2.5.
b. Same as Fig. 3b with R=2.5.
ﬁg_S . a. Growth rate scaling vs. S for V=1, R=2.5, 0=0.5 and ‘the "sech" flow profile, the
"non constant-\y" case (the squares are the calculated points). The scaling for V=1,
R=0.73, a=0.5 and the "tanh" flow profile (the circles are the calculated points).
b. The scaling with S of the inner layer width €, as defined by the inner peak of Wy,
for the "tanh" profile with the parameters V=0.1 and R=0.5.

Fig. 6.  The growth rate as a function of the shear parameter R, where S=1O6, V=1, a=0.5,
¢ for the "tanh" (empty squares) and "sech" (full squares) equilibriﬁm flows. The peak is

located at R=0.73. For small values of R, the FKR growth rate is recovered.
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Fig. 7. Calculated numerical growth rate scaling with viscosity parameter Sy. The other
parameters are S=106, V=0, a=0.5.

Fig. 8. The dependence of the growth rate on Q (Eq. 17c) for S=SV=106, V=1, a=0.5. The
straight line represents the analytical dependence of Ql/ 3,

&g_9 Dependence of the growth rate on S, for "sech” flow profile and small shear: V=1,
R=0.44, 0.=0.5. The analytical scaling is recovered (the squares are the calculated
points). For R=6, the transition to ideal Kelvin-Helmholtz instability occurs (full
circles).

Fig. 10.  a. Determination of y; for "sech"” flow profile, using FFT for V=1, R=6, $=S,=105,
o=0.5.

b. Sy=107
c. S,=10%
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Table L

s

~constant-y” tearing mode - “nonconstant-1” tearing mode
(a) The growth rate a,r:fd"sca.le (a) The grOVWth rate and scale
length of the resistive region length of the resistive region
are respectively are respectively
o~ a-z/s,_\‘m/ss—s/s‘ § o~ a2/35‘1/3.
e~ (S)7PAN? « 1 e~ (aS) P k1
-[C:_T—,(—OO—)-‘ <1 (b) The “constant-u" (b) In this limit. we have
(0) approximation is valid if e|A"| > 1.
RiAN ! 1 =G/(0)YF'(0)2 A0
(c) Small flow shear G'(0) (¢) Small flow shear G'(0)
destabilizes the “constant-i" stabilizes the “nonconstant-u'
tearing mode tearing mode with sufficiently
large A’
(a) The growth rate and scale (d) There exists a transition to
length of the resistive region : ideal instability when A’
are respectively becomes negative through
7~ (a]d])VE S, A’ = oo (which is made
e~ (aS) Pkl possible by the flow on the
" external region
GO <y | (b) HEO)G(0) = FIO)F(0) #0, gion)
£7(0) A’ > 0 instability criterion is
removed
(c) The “constant-1”
approximation is valid if
‘ﬁ— (0)Y F1(0)?) Ae| < 1
G'(0
F%-O—;- > 1 stabilized stabilized

5
From X.L. Chen and P.J. Morrison, 1993 0.




Table 2

Fig. 2a Fig. 2b Fig. 3a Fig. 3b

Fig. 4a Fig. 4b
VR 1.000 1.000 1.000 1.000 1.000 1.000
Y1 0.145 0.129 0.218 0.490-10°} 1.798 2.156
Wgr 0.145 0.129 0.596- 101 0.135-10"! 1.851 2.166
Wi 0.897 0.898 0.271 0.271 0.984 1.081

The maximal absolute values of the solutions in Figs. 2-4.



