INSTITUTE FOR
FUSION STUDIES

DOE/ET/53088-448 » IFSR #448

Rigorous Upper Bound for Turbulent Electromotive Force
in Reversed-Field Pinches
Chang-Bae Kim
Institute for Fusion Studies

The University of Texas at Austin
Austin, Texas 78712

and
John A. Krommes

Plasma Physics Laboratory
Princeton University
Princeton, New Jersey 08543

August 1990

THE UNIVERSITY OF TEXAS

AUSTIN







Rigorous Upper Bound for Turbulent
Electromotive Force in Reversed-Field Pinches

Chang-Bae Kim") and John A. Krommes(®

() Institute for Fusion Studies, University of Tezas at Austin, Austin, Tezas 78712

() Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543

An upper bound is determined for the turbulently generated axial electromotive:
force in reversed-field pinches, constrained solely by energy conservation in the
approximation of incompressible magnetohydrodynamics. The resulting F-© curve is

presented and comparisons are made with the “Taylor state”.

PACS numbers: 52.25.Fi, 52.25.Gj, 52.35.Ra, 52.55.Ez






We compute a rigorous upper bound for the electromotive force (emf) due to

steady-state turbulence in cylindrical pinch plasmas driven by an external electric field.

The reversed-field pinch (RFP) is a device that magnetically confines plasma.! In
RFP experiments it is observed that toroidal-field reversal occurs and the reversed-field
state is sustained, accompanied by fluctuations.? Self-reversal can be understood in
general terms as a consequence of the tendency of the plasma to relax to a minimum-
energy state while conserving total magnetic helicity, as proposed by Taylor.? The

detailed dynamical mechanisms behind the relaxation have not yet been fully explained.

Following the success of Tayloi"s ‘varia,tional method, other authors have attempted
to exploit variational principles based on one or another physical hypotheses®*; however,
none of those principles, including Taylor’s, is rigorous. Furthermore, because of
nonlinearity one needs many approximations in order to proceed analytically®; some
are difficult or .impossible to justify. Many numerical simulations have been done.5”
However, these require very long runs in order to achieve steady state.” Thus it is

desirable to develop a model that requires less effort and time to solve, but still exhibits

fundamental features such as field reversal; ideally, these would be predicted rigorously.

Rigorous analytic prediction of transport rates or mean profiles is probably too
much to hope for. However, rigorous and suggestive bounds on certain transport fluxes
can be obtained. We employ a rigorous, nonlinear variational principle formulated
originally by Howard® (the so-called “optimum” theory®). The principle states

“Maximize a preferred flux under (some) constraints obtained from the dynamical
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equations.” If the constraints are chosen judiciously, the bound can reasonably
approximate the true flux. Furf:hermore, if there is a strong tendency in the real world
toward a state of maximal flux, then the optimum theory offeré model equations that
include important features of the real physical system. It is difficult to quantify this

tendency a priori. However, the utility of the optimum theory has been proven in both

. . . . . o
self-consistent fluid turbulence®!® and various models of passive advection.*!:!?

We consider a steady-state RFP parametrized by specified total axial current. For
this case, the natural quantity to maximize is the spatially averaged turbulent axial
emf £, which is positive-definite and can be interpreted as a generalize.d dynamo effect.'®
We use the so-called “basic” constraint!! obtained from the global energy balance, which
balances lineaf dissipation with the production of fluctuations due to the nonlinear
interaction of the fluctuations with the mean ﬁelds. The role of, and difficulty with,

additional helicity constraint, which plays an important role in RFP, are discussed in

Ref. 14.

We use the resistive, viscous magnetohydrodynamic (MHD) equations in cylindrical
geometry (r, 8, z). We assume for simplicity that the plasma is incompressible (612’ = 0,
u being the fluid velocity), the electrical resistivity n is a constant, and the viscosity v
is isotropic and constant. This is the simplest possible model that can still exhibit
field reversal.® As units of time, space, and magnetic field we use the resistive-diffusion
time 7q = 4ma?/c?n, the radius a, and the toroidal field By. Two natural dimensionless
)"

numbers are the Hartmann number H = (aZBg /2 pony ? and the “magnetic Prandtl”






number Pm = (47/c?)(v/n). (The Lundquist number Lu can be expressed as Lu =
vPm H.) Let E; be the total electric field, the sum of the external field Eeoxy = z By and

the internal field E of the plasma. Then the MHD equations are Ohm’s law Ey + #XB =

3, or
8B/0t =V x (¥xB -7, (1)
the equation of motion
Pm E:—Vp+HJ><B+Vu, (2)

where d/dt = 8/0t + @V, and Ampére’s law VXB = j. At the wall it is assumed
that n-B =nXj = 0 and @ = 0, where 7 is normal to the wall. Thus, we assume a fairly
ideal situation for supplying the magnetic flux such that Ej is uniform and finite inside

the wall but vanishes at the wall.”*

With our assumption Ve = 0, the role of the pressure p is to maintain the
incompressibility. It can be expressed as an instantaneous functional of @ and B by

solving the Poisson equation obtained by taking the divergence of Eq. (2):
V?p = —Pm~!V.(a-V&) + H2 V(X B).
However, we will not need to solve this equation in the present work.

We denote the average over the directions 8 and z (assumed to be homogeneous) by

angular brackets and fluctuations by tildes: ]7(7', 8,2) = f(r,8,2) — (f)(r). A bar denotes






the radial average f = 2 foldr rf. Steady states are parametrized by J = (7,), a measure

of the total axial current. Then the goal is to maximize the functional

A{Z B} = 2(T) + AaCr + <)\,;(53) <6 5’)> + <A§(5) (6 : E) >

Heree = Q, (@ = (E XE‘)), Cg is the energy constraint, and the \’s are Lagrange

multipliers.

The fundamental nonlinearity in the theory is the self-consistent adjustment of the
mean profiles to the fluctuations. To obtain Cg it is useful to express the means in terms
of the fluctuations. We begin by averaging OhI'I.l7S law. Barring the z component of the
result leads to Ey = J + %, so one may interpret the nonlinear effects as providing
a generalized nonlinear resistivity. By using the mean Ohm’s law and Ampere’s law,

(B) can be found. The (@) can be obtained from Eq. (2). Detailé can be found in

Ref. 14.

‘We can now construct Cg by forming the evolution equation for the energy of
the fluctuations. We add the scalar products of Eq. (1) and Eq. (2) with B and @,
respectively. The result contains third-order moments; however, these can be eliminated
completely and rigorously by applying the barring operation and employing thé
boundary conditions. This annihilation is the essence of the method; it replaces the

uncertainty conventionally introduced by statistical closure. In steady state, we find

0=Cg =8J — K<3’2>+H‘2(_62—>) + (KEE+Q_§)+H2W}, (3)






The first parenthesized term in Eq. (3) represents dissipation; the other terms are
related to production. Clearly Z is positive. One can show that Eq. (3) is nothing but
Poynting’s theorem: The volume-averaged dissipation of the total energy (mean plus

fluctuation) balances the inward Poynting flux.

By introducing the quantity ( = 1 4+ Az’ one can write the resulting Euler-Lagrange

equations in the form

0=Vxj—axE+ 05+ 9N, (4a)
0=H 2V X3& + BXE + Bz + VA, (4b)

where

P =%%— (3% +77), and X' o . The nonlinearities associated with (B) are assembled
inside L; those due to () are represented by the £2’s. To determine \g we take scalar
products of Egs. (4a,b) with @ and B , respectively, bar the resulting relations, and use

the constraints to find

(=2- ({72} +H@ >) JET).
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The multipliers Az and A; can be eliminated by applying the operatérs T (6 X)* (n =
1,2) to Egs. (4). To satisfy the solenoidal constraints, we express tle fields in terms of

potentials; for example,
B=VX @)+ VXVX(xs).

After Fourier transformation in § and z and extremely tedious algebra,'* we arrive at

a 12th-order nonlinear system of o.d.e.’s. Since the equations have a 1/r singularity at

r = 0, we must require that the variables be regular there. We determine appropriate
regularity conditions by performing an eigenvector analysis near r = 0, following Lentini

and Keller.1%

We solve this system numerically. First, we compute the largest possible current J,’
that does not drive turbulence [i.e., 2(J;) = 0]. This (linear) eigenvalue calculation
serves two purposes. First, it is identical to the energy stability problem.!® Second,
in solving the nonlinear problem we employ Pereyra’s algorithm?®; since iteration is

involved it is important to have a good initial guess in order to guarantee convergence.

It is found that the critical maximizing modes are m = +1,n = =£2 when the
aspect ratio A is unity. (To date, we have considered oﬁly A =1, as an interesting and
exemplary case.) The critical current is J. ~ 40H™!. Since H may be very large, J. is
far below the actual value observed in the RFP experiments, as one would expect. The
dominance of m = 1 modes is in agreement with the RFP reséa,rch, both numerical
17

simulations and experiments. Also, it fits well with the speculation of Caramana

that [n| ~ 24.






Now, we consider the bounding curve J(€; H, Pm) for non-zero € when A = 1.
For a preliminary analysis that substantially simplifies the numerical work we shall
neglect the effects of (%) because thé essential nonlinearity for the study of field reversal
is believed to be the #X B term in Ohm’s law. Then H is the only parameter in the
problem. (Pm appears only in the terms associated with (#).) The inclusion of the mean
flow should modify the answer by a relative contribution of at most O(1). We intend to

include these terms in the future; though complicated, they pose no problem of principle.

We retain only the mode (m,n) = (1,—2). The (1,2) mode is ignored because
modes with m/n < 0 (for which the mode-rational surface falls inside the plasma) are
believed to be more important. We believe that this single-mode calculation is correct
for J sufficiently close to J.. For sufficiently large J, presumably bifurcations occur?®
such that the maximizing solutions consist of multiple modes. This scenario has been

verified in a variety of fluid applications.® It is extremely difficult to compute the onset

and properties of the bifurcated states, and we have not attempted to do so.

The single-mode bounding curve up to HJ = 2 x 10® is shown in Fig. 1. For J
close to J., € «x J — J., which can be proven analytically by perturbation analysis.
For HJ > 5 x 10%,8 ~ 0.4H%!J'1, For higher HJ, the formation of boundary
layers makes the numerical computations rather difficult; however, there is no reason to

believe that the form of the single-mode bounding curve should change dramatically for

larger H. For H = 400, the F-O curve is shown in Fig. 2, where F' = (B;)(wall)/(B.)

and © = (By)(wall)/(B;). Unlike the prediction from Taylor’s hypothesis, the curve






is almost linear near the reversal ¥ = 0 and the reversal takes place at ©¢ ~ 3.0,
which is somewhat higher than the usual experimental and simulation value =~ 1.5.
However, there is a tendency for ©g to become smaller as H increases. (For H = 100,
©y ~ 3.7;for H = 250, @y =~ 3.2.) If we extrapolate these three data points, |
then ©y ~ 1.3for H = 10°. Of course, this value must not be taken too seriously.
However, it is quite plausible that the optimum theory can predict field reversal fairly
close to the experimental observations. Space constraints preclude including a graph of
the bounding mean magnetic fields. However, they display no unusual features, except

that for currents near field reversal (B,) has a shallow maximum near r/a =~ 0.4 which

may not be physical.

For H = 400 the relative fluctuation level B /|B] is about 10%, which agrees with
the HBTXI experiment,! where H can be estimated to be of this order if we assume
v & v?7;, where v; and 7; are the ion thermal velocity and the ion collision time,
respectively. The magnetic-ﬁeld fluctuations are larger than the velocity ﬂuctuétions; the
energy of the férmer is about ten times higher than that of the latter. The fluctuation
level decreases as H increases. Boundary layers with width O(H~1/2) are observed.
(This can be expiained by balancing the linear terms with the nonlinea;' terms in Eq. (3)
and introducing the thickness 6z of a boundary layer; for field reversal B ~ H-Y 2
@~ H'/? and 6z ~ H™'/2)) Between r = 0.3 and 7 = 0.7 the current and the
magnetic field are aligned. They are not aligned in the core and near the boundary. On
the axis (j:)(0) = Ey — ¢(0) < 0, thus (7) and (B) are anti-aligned. The maximal-emf

state is neither force-free nor a Taylor state.
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Although various facets of this work deserve to be refined, we conclude that the
utility of the optimum theory has been demonstrated for this self-consistent problem
of physical interest, inasmuch as it predicts field reversal close to (of the same order
as) the observed values and makes a specific prediction for the turbulent emf. Future
efforts are desirable in the following areas: (1) Include more modes, pursue the bounding
curve to higher H, and include the mean velocity; (2) consider the role of the helicity
consfraint; (3) use a nonuniform driving electric fleld in order to model the e#periments
more closely; (4) include two-point constraints'?:'? in order to include the dynamical

effects of finite correlation time and length.

After the present work was cdmpleted, A. Bhattacharjee and E. Hameiri brought
to our attention Ref. 18 in which a variational principle described as “minimum entropy
production” is prbposed that is formally very similar to the principle considered in the
present work. Those authors concluded that the resulting optimum state is, in fact,
a locally attracting relaxed state, a result stronger than we have been able to deduce
from our strict application of the theory of bounds. At present, the implications and the
rigor of Ref. 18 are not fully understood. However, the results are intriguing, and further

research is desirable.

We are grateful to Dr. J. B. Taylor and Dr. A. Y. Aydemir for reading a draft
of the manuscript and offering useful suggestions, and thank Dr. Taylor for pointing
out an error in our original expression for the asymptotic bounding curve. We have

had a number of stimulating and informative discussions with A. Bhattachargee and
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E. Hameiri. We also Wiéh to thank the anonymous referee, whose detailed suggestions
led to material improvements in the clarity of the manuscript. This work was supported
by U.S. D.o.E. Contract Nos. DE-AC02-76-CHO3073 and DE-FG05-80ET53088.
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FIGURE CAPTIONS

Figure 1. The bounding curve up to HJ =~ 2 X 103,

Figure 2. The F-0 curve for H = 400.
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