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Abstract

Effects of strong and random inhomogeneities of the magnetic fields, plasma den-

. sity, and temperature in the solar atmosphere on the properties of magnetoacoustic -

waves of arbitrary amplitudes are studied. The procedure which allows one to obtain -
the averaged equation containing the nonlinearity of a wave, dispersion properties of
a system, and dissipative effects is described. It is shown that depending on the sta-

tistical. properties of the medium; different scenarios of wave propagation arise: in

“the predominance of dissipative effects the primary wave is damped away in the linear

stage and the efficiency of heating due to inhomogeneities is much greater than that in-
homogeneous medium. Depending on the interplay of nonlinear and dispersion effects;

the process of heating can be afforded through the formation of shocks or through the

storing of energy in a system of solitons which are later damped away. Our computer

simulation supports and extends the above theoretical investigations: In particular
the enhanced dissipation of waves due to the strong and random inhomogeneities is

observed and this is more pronounced for shorter waves. -



1. Introduction

The studies of large-scale motions of strongly inhomogeneous or multiphase media is the gen-
eral problem very important for various physical objects, where the parameters of medium
are random functions of coordinates. This problem is of particular importance for the physics
of the solar atmosphere, which can be simply described as strongly inhomogeneous plasma
with random magnetic fields (see, for example, Stenflo, 1989, 1990). A great variety of mag-
netic structures of the solar atmosphere can be roughly divided into two classes. One class
represents magnetic elements which are bundles of field lines penetrating a nonmagnetized
plasma and far removed from each other. The transverse dimensions of these elements are, as
a rule, much less than their length. These are, for example, pores, or photospheric flux tubes,
knots, filigree, spicules and others. A sketch of the cross-section of a region containing such
a kind of inhomogeneities is shown in Fig. 1(a). In Fig. 1(b) is a sketch of the other class of
magnetic structures in the solar atmosphere, where magnetic elements are tightly settled. In
this case all the parameters of medium magnetic field, plasma density, temperature, the size
(across the magnetic field) of these elements change from one domain to another by an order
of magnitude. From a theoretical point of view we now deal with a plasma containing strong
and random inhomogeneities of magnetic field, density, temperature, etc. As observational
examples these can be faculae, plages, spots (umbrae and penumbrae), prominences, etc.
The interaction of all these magnetic structures with large-scale acoustic and MHD-waves as
well as with plasma flows are the most important agent contributing to the energy balance
and dynamics of the solar atmosphere. This is the reason why we stress here the importance
of the study of strongly inhomogeneous media as a necessary step toward the understanding
of real processes in the solar atmosphere. However, the extracted physics is also of interest
from the point of view of general physics and it can include different multi-phase media such

as liquid crystals, fluids with vortices, accretion discs, molecular clouds, polycrystals, etc.



The propagation of magnetoacoustic waves in a plasma with small-scale inhomogeneities
of density, temperature and magnetic field can be described in principle by the averaged
equations under the assumption that the characteristic wavelength of magnetosonic wave A

is much larger than the scale length of inhomogeneities R
A>R. (1)

 Even in this case the explicit procedure of derivation of averaged equations is not trivial.
Some aspects of this problem were considered in previous papers (Ryutov and Ryutova,
1976; Ryutova and Persson, 1984). Ryutov and Ryutova investigated the plasma containing
the random ensemble of magnetic flux tubes far removed from each other (the distance
between flux tubes assumed to be much larger than their radius (see Fig. 1(a)). It was
shown that such systems reveal some very important properties in the processes of transfer
of the energy from the convective zone to upper layers of the atmosphere. First of aﬁ', sound
oscillations excited in the convective zone can be absorbed by magnetic flux tubes due to
the effect similar to the Landau damping. This effect consists of resonance excitation of
oscillations propagating along the flux tubes. After that, over a considerably longer time
than the damping time of the resonance absorption of sound waves, rﬁagne’cic flux tubes give
off their energy in a form of secondary acoustic waves in highér 1a§érs of the atmosphere.
Beside resonance absorption, the resonant scattering of sound waves by magnetic flux tubes
can take place depending on the magnetic filling factor. In this case the energy of primary
sound waves is transferred directly to the energy of secondary a,coustié waves without the
preliminary accumulation of energy in natural oscillations of flux tubes. |
Ryutova and Persson (1984) studied the propagation of long-wave magnetohydrodynamic
(MHD) oscillations in a plasma containing the ensemble of tightly séttled magnetic flux

tubes. This collection of dense magnetic tubes may be modelled as a random strongly

inhomogeneous plasma (Fig. 1(b)). The averaged linear equations describing large-scale
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motions of plasma with random inhomogeneities are obtained in two dimensions. It was
shown that unlike the propagation of linear magnetoacoustic waves in a homogeneous plasma,
in the present problem large local gradients of velocity, temperature, pressure, etc., associated
with the presence of small-scale inhomogeneities (flux tubes) appear, which leads to the
enhanced dissipation of the energy of magnetoacoustic waves. The enhancement factor of
dissipation is of the order of (A/R)?, which is much greater than unity. The physical reason
for this effect can be easily understood. Since all the plasma parameters change from tube
to tube, the velocity ‘amplitude of perturbations as well as all other perturbed quantities are
different from the neighboring tubes. This can be shown to lead to the appearance of vortex
part in averaged equations. The characteristic scale of vortex part is of the order of the tube
radius R (the scale of inhomogeneities), at which dissipative effects are enhanced.

The general form of the linear dispersion relation is as follows:

ool (e o

where Qup is a tensor whose symmetry is determined by the field of density fluctuations, vy

is the adiabatic gas constant, po = po(z,y) is the unperturbed background plasma density,
po = po(,y) is the gas-kinetic pressure and
Py = po(@,y) + Bs(z,y) /87

is the total pressure. For some special cases Q4 can be found analytically. If, for example,
there is no statistically preferred direction in zy-plane (in the plane of wave propagation)
then Qup = Qbup, where @ is constant and 6,4 the Kronecker delta. For isotropic fluctuations

Qop = 0 and the dispersion relation can be written in a usual form
w=k- v , (3)

with the renormalized phase velocity

e = <(g - 1)1p0 + Po> - <%> o W
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The present paper is devoted to the further development of the theory which includes the
influence of plasma inhomogeneities on the proiaagation of large-scale magnetoacoustic waves
of an arbitrary amplitude and on the dispersive properties of the system. We then further
study by removing the restriction (1), allowing both A >> R and A ~ R by the method of
numerical simulation.

We investigate here two problems.A First, we obtain the nonlinear hydrodynamic equa-
tions describing the evolution of the averaged characteristics of the medium and show that
these equations are similar to those of a homogeneous medium presented in Sec. 2. In par-
ticular, if remains valid that the finite amplitude perturbation splits into two simple waves
propagating in the opposite directions. Each of the simple wave has a tendency of steepening
and overturning with the subsequent formation of shocks. This is discussed in Sec. 3. The
information on random inhomogeneities is carried in the expression of the averaged.(Eq.(4))
pressure and density. We describe the proceciure that allows to obtain this dependence in
terms of statistic properties of inhomogeneities.
amplitude magnetoacoustic wave and find the higher order effects in the powers of wavevector
k. It turns out that the presence of inhomogeneities gives rise to a cubic (in k) correction to
the frequency of magnetoacoustic waves, so thai the phase velocity of waves possess a finite
dispersion. For a small but finite amplitude one should take into account both (a sfnall)
nonlinearity and (a small) dispersion. We obtain then a Korteweg-deVries (KdV) type
equation with the coefficients determinéd by the statistical properties of inhomogeneities.
The addition of dissipative effects greatly enhance the presence of inhomogeneities Whicil
leads naturally to the KdV-Burgers’ equation. This is discussed in Sec. 4.

In Sec. 5 we present results of computér simulation which support our theoretical inves-
tigations. We then generalize our results by exploring the regime where the wavelength can

be as small as the scale length of inhomogeneity; i.e. A ~ R, which is beyond the theoretical



analysis.

2. Nonlinear Equations

We restrict ourselves to a one-dimensional problem and assume that all plasma parameters
are random functions of coordinate z only: po(z), po(z), Bo(z), To(z). The lifetime of such
inhomogeneities is determined by the thermal conductivity and diffusion which should be
small in a strongly magnetized plasma in the direction (z) perpendicular to the flux tube
direction. This means that the inhomogeneities belong to the “entropy” class (cf. Ryutova
and Persson, 1984) and can be considered as stationary, providing at the same time the

constancy of the total pressure

Bi(z)
8T

Py = po(z) + = const. (5)

At the same time we make no assumption that inhomogeneities are small: all parameters
can change from one tube to another by an order of magnitude.

To describe the magnetosonic waves, we use the ideal MHD-equations

EZX._ oP
pdt_ Oz’

7 (o77p) =0, (6)

where £ = 2 +v-2. From the second and the third equations of the system (5) there follows

the frozen flux condition
B By
— = (7)
P Po

where By(z) and po(z) are the values of B(z) and p(z) at the point where a given element of

the medium was located at the initial instant of time (¢ = 0). Similarly, from the equation
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of the entropy conservation we have

P~ = popy” . o (8)

We average the first and the second equations of the system (6) over the scale L that is much
larger than the size of inhomogeneities R, but much smaller than the length of magnetosonic

wave A: R € L < A. Denoting this averaging by angular brackets, we find

dv\ 0 L ‘ '
(Z)=—m® ©)
IO " -
98 9 iy =0. 1
% T 52 (pv) =0 ’ _ (10)
Now, because of the averages <p%> and (pv) the system (9)-(10) is not a closed one any
more. To solve it, we have to find drway to “split” ‘these averages. For this we iise the

following considerations. Let us return to the exact energy equation presented in a ‘fqrni'

9 1 14 o
Oz y+1pdt’
which follows from the equations of continuity and the conservation of entropy. Since we are
considering the motions of the scale A >> R, the logarithmic derivative d In p/dt; which can
be estimated as v/A, is small with respect to v /R. So that we have the following estimation -
from (11):
: v v v

—_— A — —_ 2
52 _)\<<R" , (1)

This means that despite the presence of inhomogeﬁeities of density, pressure, and magnetic
fields which have the scale R, the velocity v is a “smooth” function, changing only over the

- scale A > R. This allows us to Writé the following relations:

<p%> = (p} fl;? ,

(pv) = (p) (v) .




These relations are valid with the accuracy of the order of (R/A) < 1. Recall that the scale
L over which the averaging is made is small compared to A and large compared to 2. As a

result we obtain instead of equations (9) and (10) the following equations:

(p) dé? = _a%- (P) , (13)
d{p) , 0 _
5 T, () (v)=0. (14)

The form of equations (13) and (14) is similar to that of the equations for 1-D gas dynamics.
The analogy would become complete if we could find the “closing” relationship between the
averaged quantities (p) and (P).

Now we proceed to this part of the problem. First of all, we note that the density p of
each plasma element can be expressed in terms of its initial density po(z), pressufe po(z), and
full préssure P at a given spatial point. By using the definition of P and the relationships
(5), (7), and (8), we obtain

o
p Po—po ,
P =po (——) +——p". (15)
Po P8
This relationship determines implicitly the dependence of p on P, po, and pg (Fo is assumed

to be known)
p = p(P,po,po) - (16)
In what follows, it is convenient to introduce the distribution function f (po,po) of the
random quantities po(z) and po(z), which is defined as follows: the fraction of those segments
of the axis &, where po and po take the values in the intervals (po,po + dpo), (po, o + dpo),
is proportional to f (po, po) dpo dpo
dzo ~ f (o, po) dpo dpo -

We now choose two Lagrangian planes with the distance L

R L.
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The amount of the matter between the Lagrangian planes (which by definition are “sticked”

to plasma particles) is constant

N[z/pdx=/ po dzo = const.
L Lo

This condition leads to the obvious relation determining the connection of the segment dz

in MHD wave with its initial value dzg

po(2)
dz = dzg (P po) (17)

Note now that the total pressure P is a slow varying function with the characteristic scale

of the order of A [see Eq. (13)]. Since the distance L is much less than ), the change of P

between Lagrangian planes is small and we can substitute P by its average value (P).
Thus we can find the density of each element of plasma with the help c;f Eq. (16), .which

can be written as
p=p((P),po, po) - | (18)

In place of (17) we now have

_ go__pol3) |
do=d "o ((P),po, po) (19)

Taking into account that

dzg ~ Lo f (po, po) dpo dpo ,

from (19) we have

| -Po
~ 75— (Po; po) dpo d
L=L0/p(<P>aPo,Po)f(po po) dpo dpo |

/ f (po, po) dpo dpo

(20)

The whole mass of the substance between the Lagrangian planes is obviously following

/ pof (Po, po) dpo dpo
/f Po:Po) dpo dpo
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Dividing this mass by the distance defined by (20), we obtain the expression for the average

density
0 0, MO d Od 0
~ /pf(p po) dpo dp ZF(P) . 1)

{p) = -
/ mf (o, po) dpo dpo

So, in principle, one can find the relationship between (p) and (P) for any distribution

function f (po,po). Thus, (21) together with Egs. (13) and (14) forms a closed system of
dynamical equations, describing self-consistently the propagation of long-wave magnetosonic
oscillations of a finite amplitude in an inhomogeneous plasma. The specific features of the

system are determined by its statistic properties represented by the function f.

3. Formation of Shocks

There is a clear analogy of the problem under consideration to the problem of a one dimen-
sional compressible gas, as it was already mentioned above. But, in general, the conclusion
about the steepening of a wavefront and its overturning is connected with the dependence of
pon P, that has a specific form of a function p = F'(P). For an ordinary gas this dependence,
which is p ~ p¥/7 and v > 1, automatically satisfies the condition of overturning (see, for

example, Landau and Lifshitz).
du

%>0, (22)

where u = v + ¢ and
c dp
= [ -d P= 2
° / ST
To analyze the shock formation in our problem, first of all we have to represent the
condition (22) in a more general form through the relationship between the density and

pressure, and then check if the relationship (21) satisfies this condition.

We rewrite the Eqgs. (13) and (14) in a form (we omit herewith the brackets and bear in
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mind that in our problem we deal with the averaged quantities)

dv dP dp dv ‘ ' ‘
T T dvds (23)
dp dv Ov
Eliminating dv/dt in these equations, we ﬁndi that
dP dp dv _ ,0v/0s

- = ) 2
dp dv dz P dp/dv (5)

Substituting this expression in the right-hand side of Eq. (23), we obtain the general form

ov f - dv\ Ov ;

of nonlinear equation

As we introduce now the following notation e
u=v+c,

the analogy with an ideal compressible gas becomes complete and the condition for over-

turning (22) of the wavefront remains the same o
do d [ dv)_ o
a2 == . : 2
dr " dp (pdp> > - 20

We now have to express all terms in this condition thrbugh the function p = p(P). It is easy

dv _ [dP

L
do \[p(P)’

to find from (25) that

or .
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where the prime means the derivative with respect to P. For the first term in condition (27)
this expression yields simply

dv_ 1

—_—— (29)
a0 p(P)\/p'(P)
The second term in (27) can be written as follows:
4()-2 2
dp pclp dp OP . [p/(P) ’
or, performing the differentiation
d [ dv 1 p'(P) ' .
— =] = L 30
dp (pdp> 2 [o(P)? o

With the help of (29) and (30) from (27) we obtain the most general form of the condition
for steepening of a wavefront in a medium with an arbitrary relationship between the density

and pressure (of course, under the condition that nonlinear equation of motion has a similar

2 (j—é) > p(P)-d%D% . (31)

We elucidate whether the condition (31) is satisfied in our case when p = F ((P)) is

form as (27))

defined through the expression (21). The first and second derivatives of the function form

dF P_gdd; i

e [/ Z(@());Pr I h
2 [ po_dp_ ] L 2 :
| a3 B )

. / podl’ (33)
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where dI' = f (po, po) dpo dpo.
Combining the condition (31) with (21), (32), and (33) after some algebra, we have -

odll i . 2 o d2
o] FARA Y2

a0

It is obvious that /po dl' >0 and / %df > 0.

dr < 0. (34)

The first and second derivatives in (34) can be easily found from the equation (15) where

P is substituted by its average value (P) (see the explanations before Eq. (18))

dp p

d(P) ~ v(P)+ (2 —7) (Po — po) p¥ p}

and
dp 2/ 2
2o 3(Ey VP =@ =) (Po—po) #7el] — e
d(P)* [y (P) + (2 = %) (Po — po) oY ]’
These derivatives taken in the point (P) = F, become
dp — po
d(-P) Po,po 7P0+2(P0—P0) ’
d*p _ polrpo =1%o = 2(Fo — po)]
d (P)? |Pyes [0 +2 (Po — po)]”

Substituting these expressions into the condition (34), we obtain

(v +1)po + 6 (Po — po)
[vp0 + 2 (FPo — Po)]s

In accordance with the equilibrium condition (5) the magnitude (P, — po) is always positive

dpodp <0 . (35)

~ [ £ (zo: o)

2

B
Pg—p0=8—72>0.

This means that the integrand in the expression (35) is positive definite. Thus the condition

(35) as well as its general form (31) is satisfied for any distribution function f (po, po) and it
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is valid that the magnetosonic wave of finite amplitude propagating in a plasma with random
inhomogeneities can split into two simple waves with subsequent steepening and overturning.
Note that when the width of the wavefront becomes comparable with the characteristic scale
of inhomogeneities, our assumption is not valid. In this case the dispersion effects play an
essential role, since at A ~ R the dispersion of magnetosonic waves becomes nonlinear and

steepening of wavefront ceases.

4. The Influence of Inhomogeneities on the Disper-
sion Properties of the System

As it was mentioned above, the dispersion relation (3) may be considered as a first term in
the expansion of w in series of (kR). Now our goal is to find the next term in this expansion,
that is to find nonlinear dependence of the frequency on the wavenumber, which determines
the dispersion properties of medium. We consider again 1D-problem and start with the
linearization of the system (6) introducing small perturbations (unperturbed quantities are

random functions of coordinate z)
b= po(m) + 5p(x,t) )
p = po(z) + 6p(z,1) ,

B = By(z) + 6B(z,t) ,

v =év(z,1t) .
Linearized equations are
oo _oop .
Pt = " og (36)
06p 0 .
r - £p0($)5v =0, (37)
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06B 0

5t g Bo(@)bv =0, | (38)

1 dpo 1 dpo
= ZF_1 Z P 2 %P) 39
po Ot po Ot v (po dz 7p0 dz 0 (39)
Using the equilibrium condition 6P = ép + B%ﬁ@-, from the system (36)—(39) we can get the
equation for §P

5 a3 ®

Equations (36) and (40) form a closed set of equations describing linear perturbations in an
inhomogeneoﬁs medium.

All perturbed quantities can be represented in the following way -

5P = (sPO) +.5P(1)_',v

Sv = <§v(°)> + 60 | ' (41)

~ where <5P(°)>, <6v(0)>, etc., are linear perturbations averaged over the distance L: K <
L < X and 6P, §u(1) etc., are fluctuating parts of perturbations caused by the presence
of inhomogeneities. For slow motions §/0t ~ ¢ K 1 we have the following estimations from

Egs. (36) and (40)

960® 96PO
52 ~e K l; 5 ~eKl.

Therefore, §P(©) ~ <5P(°)> and 6v(© ~ <5'v(°)>. Note tha.trby definition

(sPW) =0 , (v} =0.

Since we deal with stationary inhomogeneities, we can consider a harmonic wave in time and

replace 8/9t by —iw. It is convenient to introduce the notation

@) = H[(Z-V) i)+ 8]
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Now Egs. (36) and (40) have a form

. 06P
iwpo(x)bv = oz
. 96
twoo(z)0P = _8—:102 . (42)

We can represent po(z) and oo(z) as follows:
po(z) = (po(2)) + pa(2)
oo(z) = (o0(z)) + o1(z) . (43)

Note that the fluctuations of plasma parameters of background the medium and the average
values of these parameters are of the same order: pi(z) ~ (po()) and o1(z) ~ (oo(z))
which reflects strong inhomogeneities we are considering, e.g., that all unperturbed quantities
change from one tube to another by an order of magnitude. But, at the same (p1(z)) = 0,
(o1(z)) = 0. Introducing into the system (42) a fluctuating part of perturbations and of

background inhomogeneities, we have

: . 0
w ({po) + p1) (50(0) + 6v(1)) =% [513(0) + 5P(1)] ;

iw ((00) + 01) (6P + 6PM) = a% [60©) + 60)] . (44)

After averaging, Eqs. (44) become

w [(po) §v(® + <P15v(1)>] = 86811(0),
iw [(00) 8P 4 (016PW)] = 0‘;‘;( ! (45)

The second terms on the left-hand side of Eqgs. (45) are just those which determine the
dispersion of the wave due to the presence of inhomogeneities.
To solve the system (45), we have to express év(*) and 6§ P through unperturbed quan-

tities. The equations describing §v(") and §P®) can be obtained by subtraction from the

16



system (44) of the corresponding equations of system (45)

1)
iw [plév(o) + {po) 60 + <p15v(1)>} = 85;; ,
| &)
iw [016P© + (00) 6P + (6P| = a‘f;; . (46)

Since we are looking for first order corrections, we can omit in Egs. (46) second and third
terms in the left-hand side (these terms give the next order corrections in §P®) and 6v(V)).

Then the system (46) becomes

. 96 P
twpr 60 = Er

v

Oz

iwo,6PO) = (47)

We introduce the following definitions:

) = 22

L RPN

oi(z) = T
Naturally (n) = 0 and (¢) = 0. With these definitions the equations (47) are as follows:
6P = jwn(z)6v® ,k

§vV) = 4w (z)sPO | | (49)

Substituting (49) into (45), we get the final set of equations containing the corrections which

determine the dispersion of the wave due to the presence of inhomogeneities

: . 6P
o ) 840 4 ) 829 = 522
©)
iw | (g0) 8P + iw (o1 60)] = 8‘;; : (50)
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Since the coefficients in the system (50) do not depend on coordinates, we can put 9/0z = ik

and obtain the dispersion relation
(@0} (po) w” + (p1C) (o1m) w* + ikw? ((p1C) + (oun)) = & . (51)

Using the definitions (48), we see that the third term in the left-hand side of Eq. (51) is
a full derivative whose average is evidently zero (p1{) + (o17) = <Z—:C + %n> = <%%7l> =0.
The square of this expression determines the coefficient of w* in the dispersion relation, which

has a negative definite quadratic form

(p1€) - {oum) = "% {<%C>2 + <77%>2} = —qa?. (52)

After transformations of (51), the dispersion relation becomes
(00) (po)w? — d*w* =k* . (53)

In the zeroth order approximation (neglecting the dispersion of the wave), w scales linearly
with &
w=3s (PO7P0>BO) -k, (54)

where. “sound” speed has a form (cf. Eq. (4))

1 1 1 -1/
* (6o, pos Bo) = Joo o) +/ioo) <’)’Po+Bg/47r> : (55)

Using linear approximation (54) from (53), we obtain the next approximation in wavevector
w? = k252 + a2ks®
or, finally,
w=ks (1 + 52k2) , (56)

where 62 is a coefficient which determines the dispersion of the wave due to the presence of

inhomogeneities

§? = %a2s4 . (57)



For a wave with a small but finite amplitude one should take into account simultaneously'
the effects of a weak nonlinearity (described by the Eq. (26)) and that of a finite dispersion.
To do so, note that the dispersion relation (56), if written in the bvel‘ocity frame moving with

the “sound speed” s, corresponds to the dynamic equation of the form

Respectively, the desired nonlinear equation can be written as

v ov _ 50% -

" (in the reference frame moving with s).

Thérefore, we conclude that the evolution of the initial magﬁetosonic perturbation in a
plasma with random density inhomogeneities can be described by a Kdv equation whose
coefficients are uniquely determined by the statistic properties of random plasma inhomo-
geneities [see Egs. (21) and (52)]. Note that the coefficient § which determines the dis“;;"er'sion,
differs from zero only in an inhomogeneous "plasmd; in a homogerieOUS case Wé have § = 0,
and even al small initiajl perturbaitfon steepens till ‘th_e formatioﬁ of weak shocks.-

In an inhonﬁogeneous plasma the initial perturbation (if it is not too sma.ll)bcla,n give rise
to a formation of solitons. In this .case the width AX of leading (the largest) solution may

be estimated as :
$6°2
oV’

where V; is the amplitude of the initial perturbation. In order for our approach to be valid,

AX ~

this width should be much greater than the characteristic scale of inhomogéneitieé R. Since,
according to (52), at large enough inhomogeneities (p1 ~ po,p1 ~ po), 6 is of the order of R,

and « is of the order of unity, we conclude that our description is adequate for the condition
W<s,

which is a relatively weak constraint.
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As it was mentioned above, a plasma with strong random inhomogeneities of density
exhibits an important feature: dissipative effects connected with thermal conductivity and
viscosity are enhanced. For the complete description of wave propagation in such a media,

Eq. (59) has to contain also the dissipation terms. This leads to KdV-Burgers’ equation

8v+ @_— 52&4_ _8_22
oav— =3 Pom -

ot Oz Oz (60)

Where coefficient p (po,po, Bo) = Hvisc + Mtherm 15 determined by statistic properties of in-
homogeneities and contains parts connected with viscous and thermal losses (Ohmic losses
remain the same as in homogeneous medium and are much less than those two). The pro-
cedure that allows to find u is described in the paper by Ryutova and Persson (1984) (as to
final expression for damping rate see their Eq. (51)).

The equation (60) allows to make general comments. The equation describes the evolution
of the arbitrary initial perturbation (cf. Karpman, 1973): depending on the interplay of the
nonlinear, dissipative and dispersive effects, it can evolve either to weak shocks, or be split
into a train of some number of independent solitons which then will be damped away, or, in
a case of the predominance of dissipative effects, the primary perturbation can be damped

away in a linear stage.

5. Numerical Simulations

We study numerically the influence of small scale background fluctuations on the propagation
and evolution of long wavelength perturbations by using a one-dimensional code of ideal
magnetohydrodynamics. The set of the ideal MHD equations [Egs. (6)] was numerically

solved by computer simulations.
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5.1 Initial conditions

We consider an isothermal plasma with temperature T and assume the gas to be a polytrope

of index v = 1.5. The distribution of magnetic field strength B(z) is given by

B(z) = [8rp(=)/B(@)]'"* (61)
where

B(z) = Bo - rand(z) | (62)

and where B, is the maximum of the ratio of the gas pressure to magnetic pressure. We
used By = 1.0 in all our simulations. In Eq. (62) rand(z) describes the randomly distributed

small scale inhomogeneities of the background.

The initial density and pressure distributions are calculated by using the equation of

sta,te
p(z) = p(z) - T | o (63)

and the equation of magnetostatic equilibrium [Eq. (5)]

5.2 Perturbations

Long wavelength acoustic perturbations of the form
bvgz(z) = A -sin (27r§> , |
ép(z) = <g—2> dv, (64)
8p(z) = pg - Csbvy

are initially imposed, where A is the amplitude of the initial perturbation, A its wavelength,

and C’s the speed of sound.

21



5.3 Boundary conditions and numerical method

We assume periodic boundaries for £ = 0 and z = Xpax, Where Xnax is the size of the
computational domain. The set of equations (6) is nondimensionalized by using the follow-
ing normalizing constants: H the scale height, C, the sound velocity, and po the density.
Equations (6) are solved numerically by using a modified Lax-Wendroff scheme (Rubin and
Burstein 1967) with an artificial viscosity according to Richtmyer and Morton (1967). The
tests and accuracy of such a MHD code have been described by Shibata (1983), Matsumoto
et al. (1988), and Tajima (1989). The mesh size is Az = Xpax/ (Nz — 1), where N, is the

number of mesh points in the z-direction.

5.4 Numerical results

The aim of our numerical simulations is to support and extend the theoretical results de-
rived above from an analysis of the averaged equations. In particular, we want to show that
long wavelength perturbations steepen and form shock waves even in the presence of small
scale background fluctuations and that the energy dissipation due to the small scale inho-
mogeneities is enhanced with respect to the case of an homogeneous background. Although
theory assumes the characteristic wavelength is much greater than the inhomogeneity length
scale, Eq. (1), our computation can remove such a restriction and generalize the dissipation

effect regardless of the characteristic wavelength.

5.4.1 Formation of shock waves

We assume A = 0.5, N, = 1001, Xpax = 100, and A = Xpax. Since the length scale of the
background fluctuations is Az, our theoretical assumption A > R is amply fulfilled. The
magnitude A of the initial pressure perturbation is too large to be realistic. However, our
simulations with different values of A show that the amplitude of the perturbation within

the regime of 0.1 < A < 0.5 does not qualitatively affect the overall evolution. Since the
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time scale for the steepening of the initial wave with wavelength A is of the order of A/v, its
quantitative effect is that the smaller A is, the larger is the computational time. Thus, this
high value of the initial perturbation is chosen simply for computational convenience.

Figure 2 shows the time variation of the velocity field V, in the strongly nonuniform back-
ground medium. The initially sinusoidal perturbation becomes more,»aﬁd more asymmetric
(t ~ 22), steepens and forms strong‘ shock waves at t ~ 42. In Fig. 3’v;re display the velocity
Vz, the total pressure P, the density p, and the vertical magnetic field stréngth B, in the
final state at £ = 76. The shocks are best resolved in V;, p and Pig. The. profiles of the
density and magnetic field strength are strongly modulated by the small scale background
fluctuations.

In comparison to these results we show in Fig. 4 the case .of‘aJ homogeﬁ_eous background
(B(z) = Bo in Eq. (62)). The overall evolution is similar to the previous case except-for the
fact that no small scale variations occur. In both cases the characteristic Burgers’ sawtooth
shock formation is apparent. Note that the “discontinuities” of shocks in both cases are
mére than several grid spacings so that they are not beyond the numerical resolution.

At this point, we summarize that even in the presence of strong, s_bm’all scale baclqgr011nc1
inhomogéneit_ies the propagation of sufficiently strong a,coustic. waves with wavelengths A >

R is characterized by steepening\ and the formation of shocks.

5.4.2 Energy dissipation

We now study the energetics of the system .and compare the case of inhomogeneous back;
ground fluctuations with that of a homogeneous background. We assume the séme amplitude
of the initial perturbation A = 0.5 as in our previous calculations, but use Xmax = 20. Thev
smaller wavelength of the initial perturbation reduces the fime scale for the. steepening by a
factor of 5 compared to the simulations discussed in the previous chapfer. |

We first consider the case of a homogeneous background. Figure 5 shows the time vari-
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ation of magnetic, thermal, and kinetic energies in the system. It should be noted that
AE = E(t)— E(0). The kinetic energy AEj, strongly decreases within the first 10 timescales.
In this period the waves steepen and form shocks. Within the next 30 timescales 10% of the
kinetic energy dissipates and is converted mostly into thermal energy through compressional
and shock heating, and partly into magnetic energy. The total energy in this simulation is
conserved within less than 1% of its initial value.

In Fig. 6 we show the evolution of the energetics with time for the case of an inho-
mogeneous background. The kinetic energy decreases even more drastically than in the
homogeneous cases. Within the first period (¢ ~ 30) the thermal energy strongly increases
partly due to the damping of the kinetic energy and partly due to the dissipation of the
magnetic energy. The heating effect is gauged by the increase of the thermal energy AE,
or lack of it. For example, AEy, in Fig. 6 in the inhomogeneous case is ~ 0.18, while AEy,
in Fig. 5 for the homogeneous case is ~ 0.09. The main difference between the homogeneous
and the inhomogeneous case is that in the latter one the magnetic field releases also its
energy into thermal energy through compressional and shock heating.

Finally we study the limiting case A — R in which the wavelength of the initial per-
turbation is of the same order as the length scale of the background fluctuations. For this
situation our theoretical investigation is unable to make any predictions.

We assume in our numerical simulations: A= 0.5, Xmax = 20, and A = X, /16. We
again witness the strong dissipation of kinetic and magnetic energy in the early stage of the
evolution. In Fig. 7 we show the time evolution of the thermal energy AEth. Compared to
the case A = Xmax, which is also shown in Fig. 7, the heating of the plasma is even larger.
Due to the strong dissipation from the very beginning, the initial perturbation is rapidly
damped and cannot steepen into shock waves.

In summary, we have shown that the presence of small scale background fluctuations

results in a much stronger dissipation of long wavelength perturbations and a larger heating

24



o

of the plasma compared to the case of an homogeneous medium. Qualitatively, this resuiﬂ
is independent of the amplitude A of the initial perturbation, but the higher the amplitude
the larger the amount of heating. In the limiting case of A — R in which the wavelength
of the perturbation is of the same order as the length scale of the inhomogeneities, our
numerical simulations suggest that the waves do not steepen into shocks but are rapidly
damped out. Compared to the case of long wavelength perturbations the heating of the
plasma is even larger. Computational investigations of dispersive properties will be reported
in future works.

We have numerically studied the influence of sinall scale background fluctuations on the
propagation and evolution of long and short wavelength perturbations. We have shown that
in the presence of strong, small scale backgrOLind inhomogeneities (i.e., in spite of their pres-
ence) the propags,tion of acoustic waves with long wavelengths A > R is characterized by
a steepening and ﬁria,lly by a formation of shocks. Furthermore, the pfesenoe of small scale
background fluctuations results in a much stronger dissipation of long wavelength perturba-
tions and a larger heating of the plasma compared to the case of an homogeneous medium.
Qualitatively, this result is indepemient of the amplitude A of the initial pei‘turbation, but
the higher the amplitude the larger the amount of heating. In the limiting case of A\ = R
in which the wavelength of the perturbation is of the same order as the length scale of the
inhomogeneities, the case that is beyond the realm of theoretical analysis, dissipates their
energy even faster and in fact so fast that they do not steepen into shocks. Compared to

the case of long wavelength perturbations, the heating of the plasma is even larger.

6. Summary

In the present paper we studied the problem of hydromagnetic wave propagation in strongly

inhomogeneous gas with the focus on the following two problems:

2%



1. the propagation of nonlinear magnetosonic waves in plasma with random and strong

inhomogeneities of density, magnetic field, temperature, etc., and

2. the influence of inhomogeneities on the dispersive properties of propagating waves.

It was shown that the magnetoacoustic-waves of arbitrary amplitude can split into two
simple (Riemann) waves travelling in the opposite direction. Each wave has a tendency of
steepening and overturning with the subsequent formation of shocks.

The presence of small-scale inhomogeneities may lead to the finite dispersion of the wave,
and in the case with weak but finite dispersion effects, this gives rise to the cubic dependence
on wavenumber of the frequency of shift of acoustic wave.

For the wave of small (but finite) amplitude the procedure which allows to get the av-
eraged equation containing the nonlinearity of a wave, dispersion properties of a system
and dissipative effects is described. The coefficients in this equation, which appeared to
be a KdV-Burgers’ type equation, are determined by the spectral density of fluctuations
of plasma density, magnetic field, temperature, etc. That means, that depending on the
statistic properties of a certain region of the solar atmosphere, the different scenarios of the

energy transfer of primary magnetosonic waves to this region can develop.

1. In predominance of the dissipative effects, the primary wave is damped away in the
linear stage and the efficiency of heating due to inhomogeneities is much greater than
that in homogeneous medium. Note that strong enhancement of the damping of the
wave is mostly provided by the viscosity and thermal losses and is connected with
the appearance of strong local gradients of velocity and temperature in neighboring
magnetic elements. Ohmic losses remain almost the same as in homogeneous medium

however.

2. The wave of an arbitrary amplitude with a sufficiently long wavelength has a tendency

of steepening the wavefront and overturning the subsequent formation of shocks. The
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shock formation can have a number of peculiarities in such systems, which is determined
by the interplay of thermal and viscous losses. For example, in predominance of thermal
losses the isothermal jump can occur. The specifics of shock formation in strongly

inhomogeneous medium and accompanying phenomena will be presented elsewhere.

3. The wave of a small but finite amplitude can be dispersive due to the presence of
inhomogeneities under the conditions which are determined by the spectral density
of fluctuations. The sign of dispersion determines the sequence of propagation of

perturbations with different wavelengths, which, in principle, can be observed.

Depending on the interplay of nonlinearity and dispersion, solitary waves can appear and
the energy of the primary magnetoacoustic Waves'is stored in the system of solutions which
are later damped away.

Our computer simulation corroborates the above theoretical picture. It shows in par-
ticular the enhanced energy dissipation of the magnetoacous’picn waves due to the strong
inhomogeneity of the medium. The shock formation is observed in this case as in a homo-
geneous medium case, but the energy dissipation rate is much higher. Furthermore, when
the wavelength of the waves is of the same order of the inhomogeneity, the wave energy is
so quickly dissipated that they cannot form a shock.

Each scenario has a direct relevance to magnetized regions of the solar atmosphere.
The results obtained are important in studies of propagation of p-modes, of oscillations
in sunspots, of wave phenomena in plages including microflares, etc. To make a reasonable
application of the present results obtained, one needs a detailed analysis of observational data
of parameters of the region under investigation, such as cross-section of magnetic flux tubes
or magnetic “islands,” magnetic ﬁéld strengths inside these structures, densities of plasma
and their fluctuations, etc. The appropriate analysis can show which of the processes is

responsible for heating of a chosen area and what is the amount of the energy of primary
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acoustic waves transmitted to this area.
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Figure Captions

1.

Classes of ensembles of magnetic structures. (a) far removed elements, (b) tightly

packed elements.

The distribution in z of the velocity V; at ¢t = 0,22,42 and 76 for the case of small

scale background fluctuations.

The distribution in z of (a) the velocity V;, the total pressure Py, the density p, and

the magnetic field strength B, at t = 76 for the case shown in Fig. 2.

The distribution in z of the velocity V, at ¢ = 0,20,38 and 68 for the case of a

homogeneous background.

Time variations of magnetic (AE,,), thermal (AEy,), kinetic (AE}) and total (AEro)

energies, where AE = E(t) — E(0), for the case of a homogeneous background.

Time variations of magnetic (AE,,), thermal (A FEyy,), kinetic (AE}), and total (A Eot)

energies, for the case of an inhomogeneous background.

Time variations of thermal energy AFE,, for different Wavelengths of the initial pertur-

bation in the case of an inhomogeneous background.
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