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Abstract

lon temperature gradient driven modes in the presence of ion-ion collisions in a toroidai
geometry with trapped ions have been studied by using a 1’%(1 linearized gyro-kinetic par-
ticle simulation code in the electrostatic limit. The purpose of the investigation is to try
to understand the physics of flat density discharges, in order to test the marginal stability
hypothesis. Results giving threshold conditions of L7;/Rg, an upper bound on ky, and
linear growth rates and mode frequencies over all wavelengths for the collisionless ion tem-
perature gradient driven modes are obtained. The behavior of ion temperature gradient

driven instabilities in the transition from slab to toroidal geometry, with trapped ions, is

shown. A Monte-Carlo schemne for the inclusion of ion-ion collisions, in which ions can

undergo Coulomb collisional dynamical friction, velocity space diffusion and random walk
of guiding centers, has been constructed. The effects of ion-ion collisions on the long wave

length limit of the ion modes is discussed.



I. Introduction

Recent experimental results from a number of tokamaks such as DIII-D and JET
have indicated that the electron density profile in H-mode discharges can be nearly flat
over most of the plasma.?~® The conditions have very interesting implications for pictures
of anomalous thermal transport based on the presence of ion temperature gradient (ITG or
VT;) drift instabilities.” Most of the theoretical analyses of this instability have considered
the various wavelength limit cases, such as long-wavelength trapped ion modes, toroidal
branch VT; modes, and slab-like VT; modes.” ~1%42 Small parameters invoked in theoretical
analyses are in reality often of order unity. The present work provides a full kinetic
description of the VT;-mode in the presence of ion-ion collisions over all wavelengths, and
demonstrates the transition from one mode to another under certain conditions. This
is an important issue because the real experiments in tokamaks are not in the extreme
model conditions of previous theory. From the quantitative comparison between theoretical
calculation and experimental observations one can gain confidence in understanding the
mechanisms of the observed anomalous thermal transport in the H-mode cases.

The stability threshold condition of the VT;-mode in the flat density profile limit
has received considerable attention recently”’ 122415 hecause of its possible importance
in mechanisms of anomalous energy transport in tokamak H-mode discharges. Various
theoretical and experimental studies have argued that a large diffusion coefficient should
provide a local flattening of the ion temperature profile until the mode reaches an almost
marginally stable situation.’® The relevant stability parameter governing these modes is
characterized by a critical temperature gradient; for the slab modes, one obtains a critical
value of L1;/L, (L7; is the ion temperature gradient length and L is the shear length),
whereas for the toroidal mode, a critical Lp;/Ro (Ro is the major radius) is obtained.
Observed values of Lt;/Ry for stable profiles from DIII-D!* exhibit a lower bound of the
order 0.1, somewhat smaller than the expected stability boundary for toroidal ITG modes
based on the various kinetic models.”~!? In addition, to test and confirm the ion tem-
perature gradient driven turbulence (ITGDT) marginal stability of the tokamak plasma,
the TFTR group has conducted perturbed experiments in L-mode,!® in which the peaked

density profiles of supershots have been transiently broadened using either a helium gas
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puff or a deuterium pellet. The consequences of the different perturbations are the same:
the plasma 1s driven far from. the theoretical ITG stability boundary during the pertur-
bation, but the ion heat flux remains unchanged. Doubt regarding the contribution of
ITG modes to the jon thermal transport has therefore been raised.}*!® The uncertainty
regarding this question affects both the interpretation of the experimental results on the
ion thermal transport in tokamaks and the theory of anomalous transport associated with
the VT driven microinstabilities. Qbviously, for such a situation a careful evaluation of the

stability threshold is indeed needed. In order to properly treat the regime near the critical

value of Lp;/Rg, we provide full kinetic calculations of the VT; driven instability in order

to obtain a realistic value of the threshold as o function of various relevant parameters.

Ion temperature gradient driven modes in the presence of ion-ion collisions in a toroidal
geometry with trapped ions have been studied by using a 1%(1 linearized gyro-kinetic par-
ticle simulation code. The code is developed in the ballooning representation with a new
particle 6 f algorithm,'” which integrates the ion electrostatic gyro-kinetic equation”aldng
pa'rti‘cle trajectories. The ballooning mode 1'epres‘entation is employed to reduce thei§ystem
to é,one dimensional spatial problem in the extended poloidal angle variable.'®:*® Complete
trapped and circulating ion dynamics are included in this analysis, which is valid for arbi-
trary mode frequencies compared to the particle bounce or transit frequency and ion-ion
collision frequency, and also for arbitrary perpendicular wavelength compared to the parti-
cle gyroradius or banana width. Hence, all forms of resonances améng bounce, transit and
magnetic drift frequencies as well as ion-ion collisional vdis_sipation afe taken into account
here without approximations. As the density gradient is flattened, the dominant electro-
static microinstability in toroidal systems is an ion mode driven by the interchange and
VTi-destabilizing mechanisms, with the nonadiabatic trapped electron dynamics making
negligible contributions.” Thus in this work we retain only the adiabatic electron response.
While our method is easily generalizable to arbitrary geometry, we have so far only made

detailed calculations for unshifted circular equilibria.

The low frequency long-wavelength trapped-ion mode was discovered by Kadomtsev
and Pogutse in the banana regime.?® Such a potentially dangerous unstable mode is rel-

evant for transport studies because modes at the long wavelength limit are expected to
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produce larger transport than at the short one. Thus much subsequent research in the
past decades has been directed towards achieving a better understanding of the stability
criteria and the possible effects of such modes on plasma confinement.?! =27 With regard
to analyzing the stabilizing effect of ion-ion collisions on ion temperature gradient driven
trapped particle modes, Xu and Rosenbluth?’ have used a variational method with the
Lorentz collision operator to obtain a stability threshold condition for the mode in the
radially local limit. In this approximmation the perturbed potential was assumed to have a
moderately ballooning structure in the outer part of the torus, which can be destabilized
by the combined effects of the trapped ion temperature gradient and the local unfavorable
curvature with adiabatic electron and circulating ion responses. Thus to address this is-
sue more accurately it is important to develop a more sophisticated numerical Coulomb
collision operator. The analysis presented in this paper accounts for the full dissipative
kinetic influence of ion dynamics on the trapped ion modes and toroidal branch of VT}
modes with the use of a linearized Fokker-Planck collision operator.

The paper is organized as follows. In Sec. II. a general equation is derived for the
electrostatic potential when nonadiabatic electron dynamics are neglected. The numerical
techniques employed to generate gyro-kinetic particle simulations are described in Sec. III.
A comparison between theory and simulation results from a linearized electrostatic 1%(1
gyro-kinetic particle code in a sheared slab geometry is given in Sec. IV. In Sec. V. we
present our full kinetic calculation for a toroidal geometry. The results are compared with
those obtained from two different realistic Tokamak discharges: H-mode in DIII-D, Hot-ion
H-mode (T; > T.) in DIII-D. Finally, conclusions are discussed in Sec. VI. and the new

Monte-Carlo collision scheme employed is derived in detail in Appendix.



II. General Formalism

The low beta toroidal geometry linearized gyro-kinetic Vlasov equation written in the

ballooning representation?®?9 iy
s, o . 0 qj i —i
3 T U7 T iwa)hi() = (5 + iwl E,J]fF,ano¢+ <elC(hj)e il >, (1)

where we have included the finite Larmor radius effects through the usual zero-order Bessel
function Jo = Jo(kLp;). The quantity < e!*C(h;)e™*f > represents the gyro-averaged
Foller-Planck collision operator, which we discuss in detail below, and [ is the arc length
along a field line.

The perturbed distribution function f is given by

f = FexplinS(r, x, () — iwt], | - (2)
where ‘
qi (1l
ORES e SEO)

- with S being the usual eikonal (k, = VS), r the minor radius, y = I/(¢R) the poloidal
angle and ¢ the toroidal angle. The distribution function F,,,; is assumed to be Maxwellian
for jth species, and h; is the nonadiabatic portion of the perturbed distribution function.

Here we list below the definitions of the terms which appear in Eqé. (1) -(3).

r Tk xb-VEF,,; E 3
. . = = .3 1 . ,
e : (IJBEnJ Wi + 77J(TJ ' 2)
Wy = LDk'(QE - /LB)/T' ‘:)k' = C—TJ- (i-n,' X Z—)‘ g)
j i 1k =B ,
K= (E Vl_)'),
2
m;vy Y
= 1L 4
:u' 2B2 ) ] ( )
) ,
_ mj v
E= 5
Wej = —kypjvini/(Lnj) is the diamagnetic drift frequency, p; = vi4j/Qe; the Larmor

radius, viy; = /(Tj/m;) the thermal speed, Q.; .= ¢;B/(m;c) the cyclotron frequency,
Lnj = —(dlnn;/dr)~! the density gradient scale length, k, = —m/r the poloidal wave
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vector, and n; = Lyj/L7; with Ly; the temperature gradient scale length. For the model

MHD cquilibrium,'® we then have

ki =nVS=-ké +3(x — xo)er],

bx &k = h[coay-}-s(x—xg)sinx],
0
d - d 1 0
7= (b'VX)aX = Ror 0%’ (4a)

where § = dln¢/dInr measures the average shear and yq is the parameter in the ballooning
hierarchy.

Since detrapping due to ion-ion collisions can result in stabilizing contributions to low
frequency and long wave-length trapped ion instabilities,?” it is desirable to use as complete
an ion-ion collision operator as possible. To this end, the ion-ion Fokker-Planck collision
operator is derived by employing the gyro-kinetic formalism summarized in Eq. (4.28) in

Appendix, and can be written as

el C(hj)e 'l > =

. 0
(vsr(v],v)vh;) + 0—0" (vop(v)vyhj)

vy
1 92 1 9
+ 5(001)2 (vi(vd,v)vih;) + ¥r 2 (v"(v“, ) h])
02 k2 v?
+ ——002 E)v| (u“_L(v”,v_L)‘vshj) - 2—§2-1§—(2G + ;)—'%—H)hj
Fuj
— <v|J0/d voJoFhj +v_LJ1/d vvJ_Jth>
0VT;
02 3 :) ]
_ m d3 2 _ _ N
(g~ Vi / w(v F — 3G — H)Joh; (5)

The definitions of the terms which appear in Eq. (5) are given in Eqs. (4.17a) and (A.22)-
(A.26) in Appendix. Looking at Eq. (5) we see that the first two terms represent the
dynamical friction required to relax the test particles’ velocity to the centroid of the velocity
distribution of the Maxwellian background particles, that the next three terms give the
velocity space diffusion causing the velocity distribution of the test particles to maintain
a thermal spread comparable to that of the background particles, and that the sixth term
drives the classical diffusion due to the random walk of particle guiding centers. The last

two terms are the sources needed to conserve the energy and momentum of the system.

6



Since it is not convenient numerically to retain terms involving 9¢/0t, Eq. (1) may

be rewritten by defining

P '
hj = & T'}é-]o + 95, o (6)
J
to obtain
v . . k2 _L k2 'U2
[Z'-t- + de] )QQ (‘)C + }I)]JJ( ) = { (LU - wd]) - 292 (2G + ;,‘%H)
J1 k& k :
° _ . 271 1 L 4G
[I/S-L(U_L)v)v To r)ch'U + V-L(U_La 'U)’U (9\/—Qc1v_]_) ]}T] Fm] Jog
— Y al(J0¢) m]
Fm 3 3
+ nov o Jo | dooyJoFhj+vrJy [ d vuy JyFh;
v? 3 -FM , - , . |
208~ —)3 " Jo/dd-v(v?F- 3G — H)Jyh;. (D
The operator
d 0 d %) (9 '
791 = (57 T vig)es "o (vsr(vi,v)v?g;) = (Vsn(v)vugz)
| 1 9 _ 1 8
~ 37auryE (Lelivvtes) - 2507 (V|n(vﬁ,v)v2w)
o 3 ' -
T 82 Oy (Lo v)v*es) | (8)

represents how the individual motion of the charged particles is subject to the action of
magnetic fields and also random walk arising from collisions with a plasma whose compo-
nents have Maxwellian distributions.

Upon introducing the integrating factor along the particle orbit,

¢ vl - SL,
. B = t dt [wa;(t') 992 = H) = ﬁ+w*1 [vu(l-10)—v||(to)(l(t0)——10)] (9)
where
9502 2 2
B = 05———/ dt waj | (v +v||)cos(l/qRo)+ “ %LT(QG—{—%H)
2Q%;




and setting
g=7ge*, (10)
the following equation for ¢; is obtained:

d_ . T I\:%_ p 'Uﬁ_
&'f/j(l) = {Z(w*j — wyj) — OQ.%]‘ (2G + ;‘{H)

Ji ok ki
2Y1 L (IJ ip
Vg yU)V +vi(vy,v —_— F, i J
[ .L(U_L v) JO ‘)QC] l( L 9\/—QCJ’U_L) ]} nj oge
9 4 :
— vy (Jop(1)) L Fypje'?
oi T, ™
+ —= Fm] 'ﬂ (v“Jg/clsvv||Jthj+vJ_J1/cl3vvJ_J1th)
novT
v? 3 Fm
+(2.ng - ;)312 UJ Joe' /(l3v(v2F'—3G—-H)J0hj. (11)

The perturbed ion density response is

ﬁi(l) = _I'lu:,({;(,b(l - Io(b Je~ bi ) /dgvﬁiJoe—iﬁ,

where b; = k2 p?.

By assuming an adiabatic clectron response the dynamics of a low-frequency electro-

static perturbation is described by the quasi-neutrality condition

¢ = (14 1/7 = Ly(b;)e~%)? /cl3vJ,Joe ng T

12
nogi (12)

The complete set of equations (11) and (12) determine the basic form of the low-
frequency ion mode problem. Our theoretical investigations of these modes will be done
based on a numerical particle simulation technique. The advantage of this Monte-Carlo
approach is the better sainpling of phase space as well as inclusion of ion-ion Coulumb
collisions with less approximations as compared to solving the time dependent gyro-kinetic

equations either directly or by cigenmode analysis.



III. Numerical Techniques

In this section, we will discuss the numerical schemes for solving the gyro-kinetic
equation (11) and quasiﬁeuti'ality condition (12) based on the §f algorithm.!” A simple
6 f numerical particle algorithm which we will study below can be outlined as follows. The
system is described by N particles with coordinate ! and velocity (v),v1) which evolve
according‘ to the equation of motion Eq. (13), which is suitably time differenced. The
perturbed distribution function g; in Eq. (11) is computed by integrating source terms
along the particle trajectory given by Eq. (13). The fields ¢ are obtained from? on a grid
by accumuldting particles to nearby gridpoints using various weightings, instead directly
computing integrals of § over some regions of phase space in Eq. (12). This technique can
greatly reduce noise and/or particle requirements for investigating the ion temperature
driven mode, since equilibrium thermal noise is eliminated as g¢; is much smaller than the
Maxwellian background distribution F,,;.

As we know from Eq. (8), an individual particle undergoes Brownian motion: the
permanent motion of these particles is maintained by fluctuations of their 'velocitiés during
collisions. The phenomenological description of Brownian motion in the framework of
individual particle description can be obtained as follows. Between two collisions the

particle moves along the particle orbit which is determined by the external magnetic fields.

-Therefore energy v? and magnetic moment u of the particles are conserved. Considering for
g : , ‘ 1]

simplicity a toroidal geometry with circular magnetic surface equilibria, the unperturbed
magnetic field strength may be written as B(I) = By /(1 + € cos x), with € = r/Rg, where
Iy is the major radius at the center of the magnetic surface. Thus the equations of the

particle orbits between two collisions are given by

Ul
El_t = v (1), = qRox
(1) = (v = 2uB(1)/m;)'/2, o (13)

We indicate by r = r(®) the magnetic surface on which a guiding center orbit is centered’

so that ©
q(oy = vy )
r(t) =@ = —“——Lpi.
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Meanwhile the particle orbit will be changed by the Coulomb collision. To develop
formulae for a probabilistic numerical approach for the inclusion of Coulomb collisions, we
examine the collisional evolution of the velocity of a test particle for short times At > 6t
(for validity of the dynamic friction and velocity cliffusiun.coeﬁ'icients) where the velocity
changes are small. By assuming a scattering in which Avj and Av? — BAvy have square
probability amplitudes, from Eq. (8) we find that the new velocities vl,l and v'? can be

evaluated from the old velocities (vy, v3,v) by (see Eq. (4.36) in Appendix
> VL

vj =l = voy(v)At] + 2V3(Ra1 — 0-5)\/1/“(vﬁ,v)v2At

I/_L(U“,'U%_)
V"(‘Uﬁ, 'U)

+2V3(Ry1 — 0.5)0% | /iy (v3,v)At | (14)

v =0 —vir,1(v],v)At + 2v3( R — 0.5)0° \/[VJ-(U.ZL’ v) - At

where R,; and Ry are two independent random variables which are evenly distributed
between 0 and 1. This provides a Monte-Carlo algorithm for advancing the velocities )|
and v} taking into account the Coulomb collisional dynamical friction and velocity space
diffusion occuring over the short time At, where At is the time step for the simulation.

Unlike the trapped particles, which are constrained to sample only one local poloidal
magnetic well, the circulating (untrapped) particles are free to sample many oscillations
along a magnetic field line. We therefore require that whenever a circulating ion reaches
the end of the system at [ = L, it is reflected with an adiabatic response on the perturbed
distribution function. The physical background is that ions must have the same response
as electrons when [ — co. This boundary condition is only valid when the system length is
big enough so that the electrostatic potential at the end of the system is much smaller than
it’s value at or near the origin of the system. In general this will be true when growing
modes are present.

The centers of trapped particle orbits are at x,, = 2rm;, where m, is an integer. For

a trapped particle the turning points are given by

B
x? =2rm,; + cos—l(iE—2 —1)/e. (15)

To find an even solution we need only run one half length of the system, that is,

solve for ¢ only for positive values of x because of the even symmetry of ¢. In this case,
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whenever a particle moves away from the origin of the system, the particle will be replaéed
by a virtual particle on the other half of the system because of the even symmetry of
motion of the particles

Eqs. (11)-(14) can be solved straightforwardly with the standard numerical particie
pushing methods. Our code uses an Euler’s first order scheme for Eq. (11) and (13),
subtracted dipole weighting for the charge for Eq. (12), and accumulation SM(k) smoothing
of the charge density.®* The time steps were chosen to satisfy the condition v, At < AL,
where AL is the grid spacing.

In principle, the collision model Eq. (5) has several important general properties:
particle conservation, momentum conservation and energy conservation. In order to keep
momentum and energy conservation, besides taking into account the changes of the particle
orbit given in Eq. (14), one would have to include the last two terms of Eq (5) into the
source such as the last two terms on the right hand side of Eq. (11). One way to, do that
is to calculate the veloc1ty mteg,l als at each spatial grid point from the continuous partzcle
positions and then calculate the values of the last two terms in Eq. (5) at the particles
from the velocity integrals on the grid points by using some form of interpolation.,l_fI‘llis is
demanding statisti'caliy. In the problem considered, we found that momentum and energy
are adequately conserved over the time scales compared with ion teml-)erat.ure gradient
driven instabilities without tllése terms. Thus, motivated by the analytlc results that
pitch angle scattering is the dominant effect, we will neglect the 1ast two integral terms in
Egs. (5) and (11) in the simulation.

For the purpose of the linear analysis, we are interested in the dependence of frequency
and of structure of the modes on the various physical parameters. The 1—,3,-(1 code was used
to compute the total energy of the systems [ dl¢?(l,t) in arbitrary units versus time ¢ in
units of w,r. A typical plot is given in Fig. 1, from which we >can measure the growth and
the real frequency of the modes. The snapshots qf the corresponding poloidal harmonics
were plotted at several different times to monitor the mode structure.

The algorithm outlined above, based on §f, has given us a very good benchmark of its

numerical efficiency. The code is normally performed on VAX station 3200 with an hour of

computer time. Some runs are done on San Diegb Supercomputer Cray Y-MP with several
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minutes CPU time. This puts a rather bright prospects on the applicability of our approach
to cases of practical interest. It is worth pointing out that recently a number of papers
have appeared in which the stability properties of VT; mode are studied by either solving
the correct integral eigenvalue problem or using a standard particle algorithm in toroidal
geometry. The most directly relevant previous calculation is that in Ref. 7 and 31, where a
linear integral formulation has been applied to the toroidal study of fully electromagnetic
kinetic eigenmodes. The present work differs in several respects. First, with regard to
collisional dissipation, the validity and accuracy of the energy and pitch-angle dependent
Krook operator used in Refs. 7 and 31 is questionable for intermediate collision frequencies,
v/e & |w|. Second, the mode ¢(2) is expanded in Hermite polynomials. As noted by the
authers of Refs. 7 and 31, the number of basis functions, L, must be chosen sufficiently
large so that the eigenvalue w is independent of L to some acceptable accuracy. Thus
it is quite time-demanding. A first fairly comprehensive two dimensional gyro-kinetic
particle simulation of the VT;-mode has been given by Lee for a sheared slab geometry.3?
Along this line an electrostatic, three dimensional standard particle simulation model which
follows the electron guiding center motion and gyrophase-averaged ion guiding centers in
cylindrical geometry was developed recently to study the linear growth and saturation of
trapped electron instabilities. Alternatively, turbulence transport simulations, based on
either the kinetic éf particle algorithm®* or the kinetic §f finite difference grid method33
in a sheared slab geometry with an adiabatic electron response have been undertaken. By
contrast, the main purpose of our linear code is to produce quick, accurate estimate of

various thresholds of VT; mode.



IV. Simulation of Slab n; Modes

The slab 7; mode (which was developéd theoretically in the 1960’s) is basically a sound
wave destabilized when the ion temperature gradient is steeper than the density gradient.
Since the first clear evidence (from measurements on DIII-D) that ion heat transport is
anomalous®® and the first indication that the n; mode was linked to the significant thermal
transport in tokamalks,®*? experiments on all subsequent tokamaks have confirmed these
observations. With regard to the formal theoretical and experimental basis in support
of the relevance of the n;-modes, linear properties of the mode and the various nonlinear
models for x,-‘associated with 77; modes have been extensively discussed. 3,44

In this section, a 1% gyro-kinetic particle code in a sheared slab geometry, based on
the techniques described in section III., has been developed. Formally we can simply let
Ry — oo in our general toroidal code. The simulations of slab 5; modes have been carried
out in order to compare with the linear growth, mode structure and threshold cond1t10n
predictions of theory for the normal density profile. We thus can test the code.

The simulation parameters used were: B

N = 4096 (the total number of sxmulatlon particles), L = 5000 — 30000p, (one half
length of system), ng = L/AL=128 (number of grids). w*,At 0.05, L, = 40/)3, Ly = |
10 — 40p4, n; = Ln/LTi =4-1,Ls/L, =5,20, kyp, =0.2, 7 =T, /T =1, Ry — o0. The
simulations were run from w,;t = 0 — 100.

The partlde posxtlons were initialized with a bit-reversed qulet start (uniform in phase
space). _

Let us first consider the case with Lg/L,=5 and 20 in order to verify the linear
growth rate and mode structure predicted by theory. Based on adiabatic electrons and
small Larmor radius expansion, the linear properties of the modes can be obtained from

the solutions of the kinetic eigenmode equation,

o, T+ 1+ (7 + & = BED(E) + e} HEEEE)
s, .= 0. 16
o ot (r+ &+ 6l + e HEE Y

Here @ = w/wye, & = w/(2V2kjvy), by = k%p2 and Z(&;) is the usual plasma dispersion

function for ions with argument ¢;. Equation (16), which is valid for (k2 +k2)p? <« 1, has
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been solved numerically by using a WKB shooting method.

For the case Ly/L, = 5, the resulting linear mode frequencies from the shooting code
are =0 = (—0.31,0.17) and Qi=; = (—0.93,0.13), and the higher radial harmonics of
the eigenmodes are found to be stable. The corresponding frequency from the simulation
(which treats only even modes) for the most dominant mode is Q=g = (—0.22,0.151). The
agreement with theory is found to be very good.

In the weaker shear case, L,/L, = 20, the linear mode frequencies are Q=g =
(—0.05,0.11), =1 = (—0.25,0.22) and Q=2 = (—0.43,0.23). The highest radial har-
monic of the eigenmodes, namely [ = 2, is the most unstable. From the simulation the
I = 2 radial eigenmode is dominant, the frequency =, = (~0.313,0.19) being in good
agreement with the shooting method result.

It is well known that for 0 < L,/Ls < 1, there exists a threshold value of ni for
the normal deunsity profile. Results from a number of numerical studies have indicated
that 1 < n; < 2. In the case where Ly/L, = 5, the shooting method gives the threshold
Nic = 1.75, while the simulation shows that n;c &~ 1.25, which is shown in Fig. 2. The
difference between these two values may be understood as follows: as we approach the
threshold, the mode width becomes broadened in ballooning space, and Eq. (3. 16), which
employed an expansion for small Larmor radius 43 p? « 1, becomes invalid. This can be
scen in the resulting linear mode structure shown in Fig. 3, which shows typical poloidal
harmonics for n; = 4 and »; = ;..

The comparisons given here confirm the fact that our gyro-kinetic particle code works
well on the slab 7; mode. This lends credence to the comprehensive toroidal gyro-kinetic
particle code predictions for the ion temperature gradient mode which will be studied iis

next section.
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V. Simulation of Toroidal VT;-Modes.

In this section we present results obtained when the toroidal geometry fof the VT;-
mode is taken into account. In short, the problem is that of solving the ion gyro-kinetic
equation (11) with the realistic tokamak parameter: L; /Ro and 7/ Ry. These will intro-
duce the vy modulation along the orbit due to the equilibrium magnetic field, and therefore
add trapped ion dynamics and magnetic curvature drifts including finite banana width.
These new ion responses play a crucial role in the stability analysis of the VT:-mode in
toroidal plasma which will be studied below.

The plasmas considered here correspond roughly to a typical H-mode dischargé in
the DIII-D Tokamak with By = 1.7T, Ry = 1.60M, and a = 0.63M. For the region
where the anomalous transport associated with microinstabilities is expected to dominate,
we focus our interest at the ¢(r9) = 2 rational surface. From typical equilibrimﬁ if)roﬁle

measurements, the local parameters are rg = 0.50, n.(ry) = 5.7 x 101243, Ti(rg) =

500eV, € = ro/Ry = 0.3, and vl = effective ion collision frequency/average tla%peé ion
bounce frequncy = vjj 5 /wpi = 1.02. '

The simulation pa'rameteyrs used were as follows:

N = 4006 — 8192 (the total number of simulation particles), L = 3wqRy — 347quo
(ohe half length of system), ng = L/AL = 64 (numbervof grids), w,rAt = 0.05, and the
simulations were run from w,;t = 0—120. Particle positions were inifialized with a random

number generator and initial velocity distributions were Maxwellian.
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A. Transition From Slab To Toroidal VT;-Mode

As originally formulated in slab geometry, the slab-like VT;-mode evolves when unsta-
ble ion acoustic waves couple to radial ion temperature gradients, yielding negative com-
pressibility instabilities. The growth rate is approximately given by v & kyc,[(1 +n:)/7]*/?
where ky =~ kyAxz/L,. As the aspect ratio beconles very small, the introduction of toroidal
curvature and trapped ions in the low plasma collisionality regime change the nature of
the mode. In toroidal geometry, the mode has more of a ballooning structure and is driven
by both unfavorable magnetic curvature and acoustic waves. The first thing we study is to
continuously change the major radius R in units of the DIII-D major radius Ry from slab
(R — o0) toward toroidal geometry (R=0.4Ry), keeping all other parameters Lp;, L, and
ro fixed, and thus illustrate the toroidal behavior of the ion-temperature-gradient driven
drift instabilities. During the transition (R = co — 0.4Rg), the corresponding character-
istics of toroidal geometry arc represcnted by the ratios wy/war = L1i/R = 0.1Ro/R and
e =ro/R = 0.3Ry/R, where r¢ is the radial position of the ¢(rg) = 2 rational surface.

The results in Fig. 4 show that, for the parameters considered, the basic character-
istics of the modes found in the sheared slab calculation persist in the toroidal geometry.
However it is important to emphasize that the toroidal geometry calculation does yield new
information about the instabilities. Although the pressure of sound waves now has a stabi-
lizing influence, as it propagates ballooning information from the region of bad curvature
to the region of favorable curvature, the slab-like VT; branch becomes weakly unstable.
The local unfavorable magnetic curvature drift contributes strongly to the destabilization
of the mode. The instability becomes an interchange-type mode, which is the cause of the
increase in the growth rate shown in the Fig. 4. The mode structure has been changed
from “flute-like” to a moderate ballooning structure in the outer part of the torus, which
is shown in Fig. 5. The instability properties described here are similar to those which
can be obtained approximately in the fluid-ion limit of the eigenmode analysis. For the
same parameters as used in Fig. 4, the two unstable branches have been found with the
toroidicity-induced VT; branch being dominant.!® As the aspect ratio becomes smaller, so
that more ions are trapped in local equilibrium magnetic wells, the radial mode width gets

broader and the modes experience strong dissipation (ion Landau damping). Thus, the fat
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torus provides a stabilizing effect on the VT;-mode.

B. General Dispersion Relation Of VT;-Mode

In the toroidal geometry, the relevance of microinstabilities to tokamaks is associated
with the well-known trapped ion modes and the toroidal branch of ion temperature gradier
driven ion modes, which are separated by wy; and wy;, these being the typical ion bounce
and transit frequencies. In the frequency range w < (ng — m)wsi, (ng — m)wy;, the
trapped ion modes are low frequency, long wavelength instabilities, which are radially
localized halfway between rational surfaces. The modes have interchange character with
the growth rate v given by vy ~ €!/* Vwsrwy. Since the growth is proportional to the
population of trapped ions, we can anticipate that near the edge of the plasma (2 >
q(ro) > 1), the trapped ion modes should make great contributions. In contrastj*in the
frequency range w 3> (ng—m)wii, (ng—m)wy;, the Vtoro_idal branch of VT;-modes consists of
high frequency and short wavelength fluid-like niodes, which are localized radially*around
rational surfaces. As stated in the subsection A, this mode also has interchange character
with growth rate given by v ~ \/w,rwa. The interesting point raised recently by Chen

et al13

is that even in long-wavelength limit, the toroidal branch V7 driven fluid-like
mode still exists, corresponding to a broader eigenfunction in ballooning space due to
the perturbative character of the curvature term. These qualitative: fea'.tures.of the VT;-
driven instabilities have been obtained in our particle simulations.® The results in Fig. 6
present a unified picture of the well-known collisionless ﬂuid—iike toroidal induced VT;
modes over all wavelengths. For 7 = 1, q(ro) = 2, § = 1, L1i/Ro = 0.1, v} = 0.0, the
growth of the modes is peaked at kyp; = 0.2 and becomes stabilized around kp; =~ 1.0 by
ion Landau damping. However, the modes remain unstable in the very long wavelength
limit (kyp; = 0.01). Any further examination of long wavelength modes would violate the
ballooning mode representation assumption (ng > 1) made in deriving Eq. (1). Thus, to
properly investigate the kyp; < 0.01 regime, we would need to carry out a two dimensional
analysis. Fortunately, when ion-ion collisions are included, the long wavelength modes

become stabilized, as is shown in Fig. 7 for the same parameters as in Fig. 6 except

v = 1.02. Unlike the high frequency limit results, which exhibit an insensitivity to
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collisional effects for small collisionality rates, ion-ion collisional dissipation can stabilize
the mode at the long wavelength limit around kyp; < 0.015, since v;; > w at this regime.
‘This result is in qualitative agreement with our previous theoretical studies of the stability
of collisional trapped ion modes in flat density discharges. The actual marginal stability
curve can be determined analytically in the collisional trapped ion driven VT;-mode limit
for i > 1 and w, vji eff > wy, yielding:?’

diefp 1+ 771
Wi 2%

Nie = 0.652

The analytic value of the stability threshold for parameters considered here is kyp; <
0.06. Note that the boundary for k,p; given by the simulation is roughly in a factor of 4
decrease over one given by the theory. A possible explanation of this difference is due to
strong ballooning eigenmode approximation made in the theory. The eigenmode structures
corresponding to short and long wavelength limits are shown on Fig. 8 for k,p; = 0.6 and
kypi = 0.025 respectively.

The stability of VTj-driven modes is also determined by several other dimensionless
parameters: 7 and 3. Fig. 9 illustrates the complex frequency w values for various values
of 7 = T, /T; for fixed kyp; = 0.1, Lp;/Rg = 0.1, v} = 0. The magnetic shear dependence
3 of the modes is plotted in Fig. 10 for fixed Lp;/ Ry - 0.1, kypi = 0.1 and v} = 0.0.
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C. Relation Between Long Wavelength Limit VT;-Mode and
Trapped Ion Modes

It is reasonable to ask whether or not the mode representation described in Sec. II..

is able to account for the VT; driven trapped ion modes since they are radially localized
halfway between the rational surfaces. The basic assumption of ballooning mode represen-
tation comes to mind. Phenomena that can be described in the ballooning representation
are constant along and rapidly varying perpendicular to the magnetic fields, and have ra-
dial va;‘iations on the order of the distance between adjacent mode rational surfaces. This
puts a constraint on kyp; such that (k,p;) min ro/pi = ng > 1. For the DIII-D tokamak
parameters considered above, kyp; = 0.01 gives nq = 4—5. In the ballooning representation
the extended polmdal angle y. and the rap1dly varying radial varlable S = (nq — m) are
conjugate thlough the Fourier transform:

65) = 5= [ o)), e 17)

-0

Thus radial locations of the modes should be able to-be determined from the parameter

Xo in the ballooning hierarchy. For example, if the mode has a Gaussian form in X,
B(x) = ce™Y,
we obtain ¢(S) from Eq. (17)

o= LI(5/2)—iaxo) ~ax3

45) =5

TX

Hence, ¢(S) is a Gaussian centered at the radial position Sy = 4o Xo, where ay, is the

- imaginary part of mode width a. On the mode rational surfaces we have Xo = 0, whereason -

the mode half-rational surfaces, where Sy = 1 /2, we have xo = 1/8am. Lacking a definitive
calculation of the mode width a,, xo has been treated as an adjustable parameter in the
simulations. The largest growth rate as a f‘unction of xo is the relevant one. In our case
where electrons are adiabatic we always find yo = 0 to be the worst value, as is expected
for the type of up-down symmctuc equilibrium considered here.

The results of interest are displayed in Fig. 11 and Fig. 12 for kypi = 0.1 and kyp; =
0.025. Figure 11 shows that the xo has a stronger influence on the short wavelength V7'-

mode than it does in the long wavelength limit. Indeed, as x, is artificially increased from 0
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to m the radial location of the mode moves rapidly away from the mode rational surface, and
consequently experiences more ion Landau damping. The long wavelength limit behavior,
however, is observed to be fairly insensitive to xo, as is shown in Fig. 12. This characteristic
behavior of w as a function of xo can be best understood by examing the poloidal structure
of the instabilities in Fig. 8. As stated, the width of this long wavelength mode structure
is very broad (Ayx > 2r). Hence, in this case xo only changes the poloidal location of the
potential well, with little influence on the structure. It is important to emphasize that
the long wavelength VTj-driven fluid-like mode and V7T; driven trapped ion mode are two
different kinds of modes with different radial location. However, both modes exhibit a wealk
ballooning poloidal structure with comparable growth and frequencies and are susceptible

to ion-ion collisional stabilization.

D. Threshold Condition For Ly;/R,

In order to determine the qualitative properties of the VT;-mode marginal instability,
a simple fluid ion mode (w > kjvy;) in the flat density gradient limit, containing the es-
sential physics, has been studied recently by several authors.8~12 The results of these local
analyses show that the potentially interchange type destabilizing (w.wa > 0) contribution
due to adverse magnetic curvature can be completely stabilized by a complex interplay
of several physical effects: magnetic drift frequency resonance (perpendicular compression
in MHD approximation), finite ion Larmor radius effects, and sound wave coupling. The
values of the stability threshold have been calculated based on the various kinetic models,
and are suspect in accuracy. In this section, we present a comprehensive stability analysis,
which more accurately maps out stability boundaries over several dimensionless parame-
ters: L7i/Rg, kypi and 7. The results for w and Lti/Ry are shown in Fig. 13 through 15
where we vary the parameters L1i/ Ry, kyp; and 7. In all figures we have fixed § = 1 and
g(ro) = 2. In Fig. 13, the imaginary and real parts of the frequency are plotted versus
Lti/Ro with kyp; = 0.05, 0.2 and 0.6 for collisionless cases. In this case, collisionality make
little difference for the value of the threshold Lr;/Ry, as noted in the subsection B. Since
the structures of eigenfunctions are almost the same when Lti/Ry is varied, it can now

be argued that magnetic drift frequency resonance (or perpendicular compression) make a
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great contribution to the stabilization of the VT}-mode for fixed § and 7. In Fig. 14, the
unstable region in Lp;/Ro—=kyp; is shown for 7 = 1. The maxima in the curves oceurs at
Lri/Ry ~ 0.255 at the most unstable mode kypi = 0.2. The marginal stability boundaries
Lti/Ro with 7 = T, /T; is plotted in Fig. 15 for kyp; = 0.1 and k,p; = 0.2. Note that for
hot-ion mode (7 < 1), the VT;-mode has a lower value for the threshold Lp;/ Ry, which is
in agreement with the experimental observation in DIII-D of hot ion H-mode discharges.!
These threshold ratios are previously calculated based on the different model. The most
complete calculation is that in Ref. 9, where both the numerical and analytical analysis
of full kinetic limit retains magnetic drift resonance effects and the ion transit resonance
but assumes to have no trapped ion dynamics, and obtains analytically an actual marginal

stability curve for CER approximation of magnetic drift frequency:

4 _
Nic = §(1+ T 1\)61,.

For large value of ¢, = L,/Ry, the above formula yields Lri/Ry = 0.37 for = ﬂi:O“and'

Lri/Ry = 0.25 for 7 = 0.5. We note, however, that our numerical results prediéht“ much

lower critical values of L1 /Ry, in better agreement with experiment.

E. Transition From 7;-Mode To Flat Density VT;-Mode

Previous sections have investigated the physics in so-called H-mode discharges where
the ion density can be assumed to be nearly flat (Ln— o). One of the interesting phe-
nomena particularly relevant to H-mode plasmas is that while electron density proﬁles.
on DIII-D, for example, have been observed to be relatively ﬂaf, the corresponding Z
profiles appear to be.centrally peaked.* II-mode discharges with outwardly peaked elec-
tron density profiles have been measured in both the DIII-D and the JET tokamaks.%8
Motivated by these experiméntal observation, previous theoretical studies have proposed
negative 7;-type drift instabilities.’? The investigation of normal (n; > 0), flat (n; — ),
and inverted (n; < 0) ion density profile scenarios thus complete the ion temperature gra-
dient driven drift instabilities. Based on these considerations, the comparison between
negative and positive 7; cases is made in Fig. 16 when 7); is varied for fixed L;/Ry = 0.1,

kxpi = 0.1, v} = 0.0 and 7 = 1. As expected, when |n;| > 1 is satisfied the complex mode
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frequencies are almost symmetric with respect to the sign of n;. However, even though
the growth rates are almost symmetric with respect to the sign of 7;, the properties of the
negative n;-mode are quite different from those of ion temperature gradient modes either
with 7; > 0 or with flat ion density gradients (; — c0), since v < |w,| holds for negative
ni-modes over a wide range of negative n; values. This differs considerably from the posi-
tive n; or flat density gradient cases where y <« |w,| is satisfied only near the threshold nf:' )
or Lr;/Ry. Similar features for the inverted density profile cases have also been observed
in the sheared slab geometry. The implications for the new features of the negative n;

modes is that a weak turbulence analysis of the resultant confinement characteristics is

reasonable.

F. Effect of Finite ¢4, on the ITG Mode

In this section, we investigate the effect of a large pressure gradient (VP) on the ITG
mode. The dominant effect of high poloidal beta is to modify the local shear and the
gradient of the magnetic field strength. 'Motiva,ted by the analytic results that at high
poloida beta, the electromagnetic coupling is small both in the slab*® and trapped ion

driven ITG mode analysis,?’

we will study the electrostatic dispersion relation in the high
beta equilibrium. The finite ¢4, and the real geometry effects enter in evaluating J, k) and
wq, where J is the Jacobian which gives relation between the magnetic field length [ and
the poloidal angle x, dl = JBdy. At zero beta and near the plasma axis the equilibrium is
well approximated by J = (¢Ro)/Bo and Eq. (4a). At high poloida beta we use the s — «

approximation to the equilibrium to gain insights into equilibrium effects.!? In this case,

Eq. (4a) will be changed to the following form:

kL =nVS = —kels + h(0)&]

kx

wej = ]l o
2 2 > ¢ i /1 2 —_
4= 5R0 {(v® + vj)[cos x + h(x)sin x] v"'4—q2 }

h(x) = 8x —asiny
d = 3} 1 0
=) Yy = ——
ol ( vk)ax Roq Ox
Where a = —¢?Rodf/dr is a measure of the local Shafranov shift, with 8 = 87 5 n;T;/B2.

The Jacobian is the same as in the zero beta case.
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The above finite poloidal beta correction have been put into the code described in
Sec. IIL. The results are shown in Fig. 17 with kypi =02, 38 =7 = 1, L7i/Ry = 0.1, v} =
0.0 and 7; = oo, A reduction of growth rate of ITG mode is evident as a increases. This
picture is in qualitative agreement with our previeus analytic calculation where the trapped
ion driven VT;-mode can be stabilized by increased plasma diamagnetism. Combining
strong ballooning structure of eigenfunction and high poloidal beta effects, we obtain
analytically a marginal stability cui',ve for the collisionless trapped ion driven VT;-mode:?"
_ 17143
Cop = 1—_{_—5
For the same parameters as used in Fig. 17, the analytical stability threshold of the trapped
ion driven VTi-mode is a¢r = 2.1. Such favorable finite-§ effects rnay’provide. an eﬁpldna—
tion of the ’good edge confinement in H-mode associated with the sharp pressure gradients. -

R DI
Wi, g

V1. Discussi'on And Conclusions

In this paper a general pr ocedure has been presented for the apphcatlon of gyro k1net1c
partlcle simulation techniques, by the & f algonthm developed in the balloonmg mode for-

: mahsm to low- flequency mlcxomstablhhes in a toroidal geometry. A complete treatment
of the ion temperature g,radlent driven instabilities 1nclud1ng trapped-particle and banana
effects has been pr esented In addition, a new scheme of a linearized ion-ion colhslon op-

_ erator has been developed within the fr amework of the- gyro-kinetic forma.hsm Numerical
results from slab 7; mode are found to be in reasonable agreement with corresponding re-
sults for eigenvalues‘and eigenfunctions from the extensively’used WKB shooting method
or previous particle eixllulzltioils in the limit n; > ni.. Finally, the investigation of the
VT; modes in toroidal geometry has provided us with considerable insight into the uni-
fied account of electrostatic ion-temperature-gredient-driven drift wave instabilities over
all parameter regimes.

The main result of the.present investigation is the evaluation of the Ly;/Ry threshold
for the full kinetic model. The threshold has a significant depe'ndenee.on the parameters
r=T./T; and magnetic shear parameter §. For 7 = § = 1, we found that Ly;/Ry ~

0.255. However, the threshold is lower at low values of 7, i.e., in the hot-ion H-mode
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discharges. For 7 = 0.5 and § = 1, we obtain critical Lp;/Ro = 0.16. These trends
are qualitatively consistant with the experimental observation on DIII-D hot-ion H-mode
discharges.!* However the critical value of Lr;/Ry is still higher than the observed value
which is about 0.1. Given the strong influence of the magnetic shear parameter 3 on
the VTi-mode, we conjecture that taking into account the realistic internal flux surface
shapes and poloidally varying shear with elongation and triangularity will reduce our
critical Lp;/Ro towards the observed value. The analysis given here is in support of the
argument that the anomalous ion thermal transport in DIII-D H-mode discharges should
be controlled by ITGDT marginal stability.

In addition to a more realistic treatment of geometry, the most important remaining
development needed for the present analysis is electron dynamics. As discussed in the
introduction, nonadiabatic electron dynamics make a negligible contribution to VT}-driven
instabilities in the flat density limit on H-mode discharges. However, for the peaked density
profiles in L-mode discharges, both #;-drift instabilities and trapped-electron modes could
play an important role. In particular, as is indicated by Romanelli et al.? and Rewoldt et
al.!!, the effect of trapped electrons on the n;-mode stability is to remove the threshold
Mi = Nic. Thus the usual 7; mode was seen to connect to the usual collisionless trapped
electron mode as 7; decreased, while the propagation direction of the mode changed from
the ion diamagnetic direction to the electron diamagnetic direction. Therefore the above
development would allow us to apply our analysis to this “soft” n; threshold regime of L-
mode operation and provide meaningful comparison with the experimental observations. It
is anticipated that other improvements, such as a systematic treatment of the influence of
electromagnetic (finite- ) effects and of more complicated toroidal equilibria on VT;-driven

instabilities will likely necessitate the further application of this approach.
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VII. Appendix.

The Fokker-Planck collision term for an inverse-square force was derived by Rosen-

bluth et al. (1957) in the form®®

, 0 < AU >qp 1 .
C(fa):‘_“a‘g (Tfa)'*‘gagag-( At fa)) (A-l)
d where
= )
o At Po’ﬁ ab—*Hﬁ(v)7 (A ...)
< ATAT >qp ? | ’ .
At = Lap g7 00 (), (4.3)
in which
4mqalqs? .
Fop = -———l nAqg, _ (A.4)
and
Go() = [ & 515~ | (45)
Hﬂ(v) = Mag /davl IUH( —3[ = (1 + )/d3 Ilvﬂ_( 7 I (A.6)

The Ggeta and Hp functions are the so-called Rosenbluth potentials The dynamical
friction < A% >45 /At and velocity diffusion coefﬁcxents < AVAV >45 [At are related as

follows
< A'L')' Sap mq 0 < AUAT >ag '
At Ot 5 07 At (A7)
The linearized Fokker-Planck equation is
<Av> 1 0 < ATAT >
1 ap . af 1
9 C(fOI) a-‘ ( ) foz) 2 aa‘a—‘ * ( At @
: 8 < Av >a,3 oy, 1 07 <ATAT>L, _

. _70 ' —A——f ) .') a5 . ( N f ) (AS)

PFm
The calculations of < A7 >gﬁ and < AvVAY >9¥ﬂ will be based on the assumption
that the test particle is colliding with a plasma whose components have Maxwellian dis-

tributions; < A7 >lﬂ and < ATAT >cxﬂ are, in general, evaluated using fﬁ) which are
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not sensitive to the detail of fi. Thus, rather than use such a complicated form it is
convenient to employ a simpler p determined by the conservation of momentun and energy
constraints in that the momentum and energy removed by the first two terms in Eq. (4.8)
is replenished in a Maxwellian distribution by the pF,, term.3?

From the linearized Fokker-Planck equation (A.8), we have

o <AT>? 1 9?2 < ADAT >0

; = (T TaB af .
C(f;)—me_ 35’ ( At fl) oal—)oal—;( At f) (AQ)

Specific test particle collisional effects due to dynamical friction and velocity diffusion

can be worked out for a Maxwellian velocity distribution of background particles:

2 2
mg nge " /2v1s

)%e“"’l7lﬂl}2/2Tﬁ = .
21Ty (2m) 70},

f(0) = ny( (A.10)

The Rosenbluth potential G3(7) for Maxwellian background particles can be written

as
Gp(V) = ngvy [-2-[(:1: + 1)¥'(z) + (= + l)\I/(:r:)] (A.11)
B = 1avTH \/; 5 ) .
in which
U(z) = clt\/fe"‘, (4.12)

= mgv? /2T = v? /204, (4.13)

where z is the square of the ratio of the test particles speed to the thermal speed of the

background particles. ¥(z) is the Maxwell integral, which has the properties:

] 9 2
\’=£__.=; -“17\:[; \}’z;'
d da ﬁ\/;e T+ Vid

Thus, for a Maxwellian velocity distribution of background particles the Rosenbluth po-
tential is Gg(v) = Gg(v), i.e., it depends only on the test particle speed v and not its
velocity v, Substituting the Rosenbluth potential in (A4.11) into (A.3) and (4.7), we find
that the relevant dynamical friction and velocity diffusion coefficients are given by

aG
v? g
At =T ﬂ‘?m a7 v2 c’)v( )]
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= ~[(1+ ;’j—zﬁ)\v(m“/ﬂ)}vg”’a, (A.14)

< ATAT >/P 5?
=lop—==CG
At *f g5a50 (V)
0 I
=Lap a—Gﬁ(v)—
o2 10 VU
+Faﬂ[@ QG,B(U) ‘_Gﬂ(”)]‘—g- (A.15)
The reference collision frequency for all these processes is defined by
drngq? ¢
/a/ﬂ _ ﬂfa jﬁ
vy T (v) = ——mgva InAgp. (A.16)
Therefore Eq. (4.9) can be written as
‘ 0 2 .
' I—sz_'—.Fl e — ]! :

where

F=420(a)yy = [(1 + )\I;(xa/ﬂ)]ya/ﬁ

G = %Fa,@ aGaﬂv(v) ,
- lpz[\p(m)(l - L) + ¥'(2)]vo,
H = Jasl 2 Gs(0) - -2 Gs(0)

1
= —5v*[2()(1 - 5—;) + ¥ (2)]vo

In Eq. (A.8) conservation of number is automatic and p is determined from conservation

of momentum and energy. Taking

p=1-p+ - =l ‘ (A4.18)

ovp? 2

p and A are determined from conservation of momentum and energy respectively:

p= L 2/d3-vz7Ff1, : (A.19)

novT

A=

— /d3v[v2F-—3G—H]f1.
o
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The final modified Fokker-Planck collision operator is in the form

R
+ aﬂa—ﬁ'[Cllﬁ_fIEE]f

o | ooy
n0v1

oty =2 ('JFf‘)

U

- = 3 2 _ _ i
+('2v'1 )3ngvT /d v[p*F - 3G Hf". (A.20)

To develop the Monte-Carlo method for the particle simulation, we introduce cylindrical

coordinates (v), vy, ). We note

0 v -
% s drd(0),
o v v

Z&z.__l_ 9 v 9 o 4__1__Qi_
Ty oy _LOU_[_ avﬁ vﬁ_ Op?

LA R A i

Eq. (4.20) can be rewritten in the form

0 0
CUN =g sl 17 + 5ol f)

+ i(a 7): [vi(vl, 0ot f! I+3 : 'g[Vn(vﬁ,v)v?fl]

2

002 Foy [ (o vL)e 31 ]+ T 5 ,,(Gf )+%o_v%—1v d*viF f
2 ~I1u .
*GoF = Do | P36 - HI7 (4.21)
where
2 / 2
2 Vi 4G v
vs1(vi,v) —2v_2F - 2;4—H

= 4 47(:

~2U(@)(1 - o) + W(a)lve

2

1uo[\v(z>(1 - ——) + (),
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Vs||(v) =+ .?.\I/(LIJ)VO = a
vi(vi,v) = [4UJ.G+4 H]_
.ﬂﬁ[\p(m)u - %) + 0 ()]
_ 4&{\1/( (1 — —3—) + T'( )l
)4 ) 2z Hve
vf) =16+ bl
=[T(2)(1 - %) + '(2)]vo

v3
Il

— 2 [P(@)(1 - —) + ' (2)]w,

1 viwv 3
Vlll(vn,v.L)—;— 4 J","H ‘3—;—”[@(w)(1—9—$)+\lﬂ(w)]uo

v
- Now Eq. (4.21) is ready for gyro-averaging. We assume

6"' m

(;5 + hie L= kJ_—cosgo

The gyro-averaged Fokker-Planck collision operator is of the form

< e"LC’(e;"'lei) >——£—

2 | a
v (Vs.L(U_L) v hi) + 8_0” (V3|l(v)v||h£)

1
1 02 ) 4 102
'2—(—8——,;(1/_L(‘U_L,’U)’U h,)

02

+

Fﬂl

+ 3 <v”Ju/d3vv”J0Fh,-—i—v_LJ1/d3vvJ_J1Fh,~>

’IloU

+( '02 3 ..F}\[
203, 27 3ngui,

* 3 (1eh o)

—_— J g 3 N 9 _L
+ 592 ooy (oo, vi)vhy) — 2Q2( G+ —L H)h;

Jo /d3v(v2F — 3G — H)Jyh;.

(A.23)

(4.24)

(A.25)

(A.26)

(4.27)

(A.28)

From Eq. (A.28) we find that the mean parallel and perpendicular components of the

test particle velocity after a short time At are

7| =vll[1 - Vs[l(v)AtL

Y|

v =v?) — vl (03, v)AL
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This result is valid for vy |At K 1, vy1 At € 1 and indicates the monotonic decrease of

parallel test particle momentum due to Coulumb collisions.

The perpendicular and parallel velocity diffusion processes indicated by v 1(v3,v),

v“(vﬁ,v), and vy (vy,v1) have to be treated differently. Because they are diffusive, they

lead to a probability distribution p(& — ¥) of the velocity about the mean velocity given in

Eqs. (A.29) and (A.30). Since the diffusion results from purely random procesess in the

parallel and perpendicular directions, we can anticipate that this probability distribution

will be Gausian and of the form:

p(Av), Ap) =

1
276,62 !
where

AT = sz_‘_ - ﬂAv“.

By requiring
< AFAUH >=0,

the average diffusive spreads of the probability distribution are given by

< Avﬁ >=5ﬁ,
< (AU_ZL)Z >=5 + )62(5”,
< AvjAvi >=p5.

From the gyro-averaged collision operator Eq. (A.28), we obtain

(5” = \/l/"(vﬁ y ’U)’UzAt,

_ i (op,s vi)
vy, vL)
(vy, v
8 =v \/[V_L(U_L: v) - ullfiv”“,v_l_l))]At

(A.31)

(4.32)

(A.33)

(A.34)

(A.35)

The Eqgs. (A4.29)-(A.35) provide a basis for a probablistic numerical approach for the in-

clusion of Coulomb collisional effects in a gyro-kinetic system. From time saving consider-

ations, we use a square probability amplitude for the random process instead of a Gausian
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Eq. (A.31). The diffusive spreads of particle velocity are obtained by computing a ran-

dom number between —1 and 1 and then multiplying this number by the average diffusive .

spreads (A4.33)-(A4.35). Thus we find the new parallel v and perpendicular component v'?

of particle velocity can be evaluated from the old velocities (v, v} ,v) by

v =vjo(1 — vy At) + 2v3(Ro1 — 0.5)6),

v =vly —vPru At 4+ 2VB(Rop — 05)61 + 2V3(Ry — 0.5)86),  (A.36)
or
v =vjo(1 = vsAt) + 2V3( Ry — 0.5)[yy(vF, v At]H,
v =vy —vPr At + 2V8(Ry —0.5){[vL(v2,v) — ﬁt(i’l;’_ﬁ_)w}%vz
| ) ‘
+2V3(Ra = 0.5)[py (v, v)? At - —‘_V:/I”l((:;,”v ‘;EL)) .
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Fig. 1. Total potential energy of the system [ dl¢?(l) vs time w,rt in toroidal
model for 7; = 00, § = 7 = 1.0, kyps = 0.4, v} = 0.0, and L7;/Ry = 0.1. The
eigenfrequency is w/w,p = —0.41 4 10.144. '
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