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Abstract

In this paper, the effect of current drive on the tearing modes in the semi-collisional

regime is analyzed using the drift-kinetic equation. A collisional operator is developed to

model electron parallel conductivity. Forfthe pure tearing modes the linear and quasilinear

growth rates in the Rutherford regimes have been found to ha,vevroughly‘ the same forms

with a modified resistivity as without current drive. One interesting result is the prediction

of a new instability. This ifxstability, driven by the current gradient inside the tearing mode ,

layer, is possibly related to MHD Dbehavior observed in these experiments.



*I. Introduction

Low m tearing modes constitute the dominant instability problem in present-day
tokamaks. Feedback stabilization of these modes by lower hybrid (LH) current drive has
been proposed by several authors.!> However, even with LH current drive, tearing modes
are still experimentally observed which saturate at a low fluctuation level, generally well
below the onset of a disruption in tokamak discharges.?

Tearing mode instabilities in tokamaks with lower hybrid waves are examined in this
paper. When the lower hybrid wave is included in the tearing mode theory it is found that
the drift tearing mode is linearly destabilized while pure tearing modes have roughly the
same forms as without lower hybrid current drive in both linear and quasilinear regimes.
In References 1 and 2, the driven current is treated as an additional perturbed current in a
resistive MHD analysis, and it is found that the pure tearing modes are possibly suppressed
by lower hybrid current drive in the Rutherford regime. In this paper, starting from the
drift kinetic equation with collisions and Landau damping from quasilinear LH waves,
keeping LH waves both in equilibrium and perturbed state and following the Chapman-
Enskog expansion to find the perturbed current, we can obtain explicit dispersion relations
for semicollisional tearing modes in the slab model.

The linear destabilizing term arises from the equilibrium current gradient inside the
electron current layer. A simple physical estimate of this term gives a lower bound on the
order of magnitude of the growth rate of the normal drift tearing mode. A similar destabi-
lizing term has also been found in the standard drift tearing modes when the equilibrium
parallel electric field El(l) is included inside the electron current layer. Even so, our results
suggest that feedback stabilization of tearing r;rlodes is possible by a proper combination
of direction and magnitude of these two currents. |

Recent research on the linear theory of semicollisonal tearing modes in a sheared slab
has shown that the width of the layer in which non-ideal effects are important is much
smaller than the ion Larmor radius.* When the full nonlocal ion response is included,
~ the finite Larmor radius effect (FLR) provides a stablizing effect. Reference 4 introduces
an expansion procedure for solving the quasineutrality equation in powers of the ratio of

the width of the tearing layer to the ion Larmor radius, and it is found that the modes
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with A'a < 100 are stable, where A’ = ("7{-—)6 A/ A:(0) measures the discontinuity of the
perturbed parallel vector potential A, across the current layer, and a is the minor radius
of a tokamak. The calculation done here uses the quasineutrality integral equation which
is similar to the early treatment of Antonsen and Coppi‘6 in the collisionless ca;se to obtain
the same result in the standard drift tearing modes. Howevér, we would like to point
out that in the flat density lifniting case n; and 1, — oé, ion orbit effects also become
destablizing if (dT;/dr) > (dT./dr) (see Eq. (41)) in a sheared slab geometry. |
The remainder of this paper is organized as folloWs. Section II. illustrates the basic
physical mechanisms which govern the dynamics of the drift tearing modes by presenting a
heuristic derivation of the new iﬁstability. Section III. gives the equilibrium conditions and
basic assumptions. Section IV. discusses the linear tearing mode instability with the full

nonlocal ion response. Section V. treats the pure quasilinear tearing modes and Section

V1. is devoted to a discussion of the results of this calculation.

II. Heuristic Derivation of the New Tearing Instability o

We examine here the tearing mode instability with LH current drive. From the kinetic
point of view, LH current drive flattens the Maxwellian distribution function of electrons
within a certain range of velocity (u;,uz) along the direction of the magnetic field,® thereby

producing a current. The linearized Ohm’s law is written as

~

~ . _ ~ — — 3T,
noen«(J) — Re€¥p) = noeBy — AyP — ngaA T + "ﬁ;nerﬁ, (1)

where 7, is the Spitzer-Harm resistivity with the correction from LH current drive (which
is approximately 2-3 times smaller than wiﬁ\hout current drive for LH waves and is the
result of pﬁshing more electrons to the high velocity limit by LH waves), and n¢evp is the
drive current. The derivation of Eq. (1) is given in detail in Eq. (4.1) in the Appendix.
Tlle sAtandard linear tearing mode theory shows that there is a central current layer
around the rational surface where nonideal MHD effects such as inertia or resistivity are
important. Analysis carried out in a slab model shows that the perturbed current f”
within this narrow current layer, which results from the field line élipping with respect to

the plasma, produces a discontinuity in Ey. The tearing mode equation can be expressed
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approximately as

A4y = _’LLAJII(O) (2)

If the drive current is assumed to exist in the current layer, the new instability follows
immediately once f“(()) is evaluated.
For the sake of simplicity, the perturbed temperature ﬁ(O) is ignored in this section.

The linearized electron continuity equation is

~

. o m0ed eB, 0

—1wT,e + zk“—— — Wy, T, + 7 9201 = 0, (3)
where
n cTRk 1 1 dng
“re = B, rn  ng dz (3a)

An adiabatic ion response and quasineutrality condition imply that

. nge
=22, (4)
and .
~ Wl ngd4) 0
Ae(0) = —xe 22 2L 2 g0 (5)

Substituting Eq. (5) into Eq. (1) gives

Wie nof’vDAn 0
O R e A CE oL+ ne(1 +a)l) 2L (6)

Combining Eq. (6) with Eq. (2) gives the dispersion relation as

et A w? neevp 0
A wtwr T On Ji = iou{w — wi[1 + (1 + )]} (7)

The real frequency and growth rate of the drift tearing modes follow from Eq. (7) and are
wo = w1+ a(ne)], (8)

and

s 2 i AA i 2 veUDd
’ Al +zl+ a(ne) wi, v dn

on = AT e, an "), ®)



where a(n.) = (1 + a)n.. The width of the semicollisional current layer is defined to be

Wy

A? = —2— 10)
Z( “lllvT)Z ) ( )
and
drngT, L§

The first term in Eq. (9) is the growth rate of ‘the standard drift tearing mode (with
a slight numerical difference). The second term is the new destabilizing term which comes
from the current drive. As the local driven current gradient becomes large, the growth
rate of this new instability may be comparable to or exceed the previous growth rate.

It should be emphasized that the equilibrium parallel electric field E" essentially plays
no role in this new instability because the perturbed temperature Te(O) has been neglected.
The quantities 7, /n and T, /T, however, are the same order in the tearing mode activities.
Thus, in a more careful calculation where T, is included, the equilibrium electric field E“_

will drive a similar instability. This calculation is done in section IV.

ITII. Basic Theory

The electron distribution function f evolves according to the drift guiding-center ki-

netic equation

of ¢cEx B eE_u@f of
ot +9)- Vit B2 Vit m v —C(f’f)+3v|| By

L
where g = (CE x B)/B? is assumed to dominate the particle guiding-center drifts. The
quantity C(f, f) represents the self-collisions of electrons and the scattering of electrons
off the ion distribution f;. The last term on the right-hand side of Eq. (12) is the lower
hybrid current drive term, and v) is the electron velocity parallel to magnetic field B.

It is pointed out here that an analytic solution for the tearing modes with current
drive is made possible by approximating the collision operator as

o  f v2

C(f,f) = =—V' Fo— av” Fo) V' = V(v)-g—l, ' (12a)
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where it appears in the equilibrium and Ohm’s law equations. The full collision operator is
used in all other cases. This collision operator is obtained when the full Fokker-Planck col-
lision operator is integrated over the perpendicular velocity direction, where f is assumed
to be Maxwellian, and for high parallel electron velocity.®

As usual, we consider a one-dimensional sheared slab model with density and temper-
ature gradients in the  direction and external magnetic field B = Bo[2 + (z/L, )] where
L, is the shear length of the external field. We look for a mode with a rational surface ut
2 = 0 and therefore take the mode to have no variation in the z-direction giving &k, = 0.

It is further assumed that the plasma flow is incompressible so that
V- =V -ig=0. (13)

The equilibrium situation is a steady state with an electric field B0 = éEﬁ and current
drive. Then, the equation for the unperturbed distribution function F' is obtained from
Eq. (12) with collision operator Eq. (12a) as

eE} oF 9 2 9F 8 _OF
I _ br Y pnZ
i Ovy Oy g [ ] T or Do (14)

Since 9 - VF = 0, the solution for F' is

o ng ‘ v(v)y) — %Eﬁ
= (Vror) P <_ /dU” D+ '

As a special case, the collision and current drive terms are considered to be dominant so

& - VF +

that
F=F + B, v (15)
where
g v(v)yy
Fy= —_——(\/771)71)3 exp( /dv” Do) (15a)
and

Fy = F CEﬁ d ’1 15b
1="0 7/ N (159)

Note that where D(v)) vanishes, F' is locally Maxwellian, and where D(v)) > v'(v),
F is locally flat. A useful model for lower hybrid waves is to take

_J D, u vy Lug;
D(v) = {O, elsewhere. (16)



where D — oco. The salient features of distribution Fy are pictorially shown in Fig. 1. The

equilibrium current is given as
0 — — —
J|| = no€l = noeVE + noelp, (17)

The first term in Eq. (17) is the inductive current and ngevp is the drive current. Here,

eE? 1 2 wdN
. I = U — Uy Uy
= — = pl—— ), 17
°F = ‘vD Jror o 2 exp( v%) (17a)
and N
2 .
vt g, Lo
* 7 2ng D+ (176)

is the model collision frequency. Further, we make two more assumptions regarding the

electron flow

(1) ‘(-6—>2<<3, : o (18a)

T Vx
1d, n d :
2N = —(nv : — ¢
(2) T;'dn<1w)>,> 1, or Qﬂ an“ > 1, (185)

where Q?l is the equilibrium energy flow defined in Eq. (33a).



IV. Linear Tearing Instability

The linearized version of Eq. (12) for the perturbed electron distribution function is

given by
—i(w — ko) f + @e + vy g) VE+ Bl of + oBy OF =C(f) + __Q_D_Qf__ (19)
, m Qv m Oy Ovy Oy
Neglecting the perturbed compressional magnetic fleld for a low £ plasma,
A= Aybo, bo = By/B =3,
the electromagnetic perturbation is given by
F=-v3+ 56—2'
5 =V X E (20)
ff is driven by the perturbed plasma current
Vi) = _4{'}" (21)
and $ is produced by the associate quasineutral condition
fe = i (22)

since typically ¢?/c% > 1. The perturbed quantities are assumed to vary as exp(—iwt +
iky).

Integrating Eq. (19) once over velocity space gives the electron continuity equation
(3).

In order to solve Eq. (19) for f, it is useful to note that from Eq. (14)



and

~ _ 1)2 a .
o f = vy Fog = = —'Z—a—H(Foj + —2—Fo-a——”~ + v Fpg (23)
where
F=F, + Fp.

Fy is defined by Eq. (15b), and FD is the distribution function in -the plateau region.
Out51de of the plateau region Fp is zero. Fy is Maxwellian distribution function with the
plateau given by LH current drive. '

Substituting Eq. (23) into (19) and rearranging gives

8 . OF B, d eEv"aﬂ

(wFo - l\.”v“FD)g + —tk”vrl Foa o + Unz 9z + _"—'('U| F)

m 3'U”

<, 0 8f 9 eBy 1.,
(f)‘+ 6v"Dav” + oy Fol(=—=+ 5ikyvr)g

By B, 1dR,

24) .
m 2 B FQ dr (24)
For the semicollisional modes, it is expected that
| kjvr
kjor < ve, w (25)
Ve
and the ordering becomes
w K k”'U’]‘ L Ve K Wee. (26)

The Chapman-Enskog expansion technique is now used to solve Eq. (24). Keeping

only the leading order terms in Eq. (24) gives

0f

O+ gy 5D (27)

which has the solution

rs e 3 |
f=F{Z—O+—[m(/clv”qu:I >—-2-T]} (28)
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The symbol T is defined as

2 i LA
T:5[7?1</d3vF0/(lv'|D+V'+—2* ,

7e and T, are the electron perturbed density and temperature. These quantities represent

particle number and energy conservation in collisions and current drive, where the energy-

vy w2\
m (/dv"D—i—v’ +—2J=>

like quantity is given by

Because of

‘U"l/' v_zl_ _ d U"D N 1 o D
m clv"D+V’+-§— =€—m v1|D+V,~e—§mv”m

— é_mvi, up < ) < U2; (29)
€, elsewhere,
outside of the current drive region, € is a solution of Eq. (12a). Inside the current drive
region, mv3 /2 is a solution of Eq. (27) with collision operator Eq. (12a).
The right hand side of Eq. (24) is large so that using gp to first order and including

the model collision operator Eq. (12a), we rewrite it as

" 0 00 0 ,0F, {n_e—i_ (l/* 3) :% (30)

Clfi)= v Fov du Oy v Ovy | no ;Z_: )

and

dgy eEﬁ 1.0 5 o
—_— (———' + —’lk"'v'p D n V’+

By vt D, 1dR _ B
m 2 B Fy dx m

ﬁe V* 3 Te 1

Re i (Z-2) = NG
no+<uz‘ 2>T2]}D+V’ (31)
where the last terms in Eqgs. (30) and (31) are due to the perturbed collision frequency, and
the collision frequency-like quantities v, and v will be given in Eq. (33a). The quantities

7ie and T, are determined by requiring that both the density and energy-like moments of

the right hand side of Eq. (24) vanish.
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Thus, we obtain the following set of equations to describe the linearized response of

kv, kv T
(w k||vD+ ” )ne+ <zk"v1 + 2” T> -@i;—e-l—

the electrons:

. ner" vTB dny 1 _ dny B, d(noﬁ)
k - =
+z"<mu,, 2 D den ) T T & =0 (32)
and
. . | o 3 zkﬁvq 1. _ Lﬁ”%" -
—ngle (—w—k||02 + —F== oy TT -+ —-?:zk“vp + —2—1;;,1-: el -+
. | rzer|| vi B dng 1 :
ik < mvT 2 B dz le T+
3 . dT dQ" 3,.d(nev) ~ :
—ngUpz— + — | — — =T'——| —nevgEy =0,
+ Zﬁqu dz T B |dz 2 dz nevES| 7 0 7(33)
where
_1.. — %L/d&v FO ,
Vs 2 ng D+ v
_1_ _ vT /d3 1 (ng
vt D+ vl dn’
1 ”V' v2 3
—_— d 4 ) _ 7
vI  ngm D [ (_/ vIlD+V' T3 27 )’
1 3, vuV vi‘ 3,1
el = d . - ~T 3
vIT fnon/d 'D }-1/’ [ (/ “I'p + 2 2
1 3 1 . dF'o / 'U||V 2 3
= d - =T
y'f /d D+V’ dn[ ™ v"D-}- "% ) 2 b
Qﬁ:m/d vv”F</du“D+ ,* ?‘L>,
o XL_% | - _
n 2 V;PT (£/1)2
_ 1_ 3_
o U1 =_§UD+._)'DE)
R I LA
2 = 4vz)-}- <v% - + 21/31_) UE'-» | (33a)

Cowley, Kulsrud, and Hahm point out that in the analysis of the tearing mode stability,

the use of the “unmagnetized” ion response is incorrect. When the full nonlocal ion
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response is included, the ion density becomes
n; e . -~ ~
— = ——[-¢(z) + G- §(z)]. 34
o =00+ G- o) (34
The first term is the adiabatic response of the ions. The second term is a convolution
(integral) operator which gives the non-adiabatic density response of the ions to all orders
in the gyroradius:

6 3= [ " ' §(@)G (e — <)), (34a)

where

B(So—S1)|,  (34b)

1 [ _ wh, T; w,
G(z) = 2—7;[-00 dk exp(ikz) { +1)So T,
Sp = I.(b)exp(—b), I, is the modified Bessel function of order n, and b = ;—k2p? =
k2T;/(miQ?). In writing Eq. (34) we have assumed that z < p; and consequently kyv;/w <
1. Thus, only the motion of the ions transverse to the magnetic field is important.
Solving for n, using Eq. (32) and (33), and considering the quasineutrality condition
as well as Eq. (3), for T; = T, we obtain the peturbed electrostatic potential
~ 3 . _
¢ =[gw(w+wie) = Buky + Bakif — 1Bk — Bakjj] ™ {{{[—w -
—arky + agk" za;k” a4kﬁ]G’ b+ {{Ewwfe ——T;(ni)‘)+

3 ; _,14Q) 34
+ {igw(w - w;‘cu—,- i " I =

v 2, xe
21 dQO d
- 42 9) - Ty — il (g — 5 7 )
v w w Z
lﬂl’T dn(n—)]k - —lﬂ_(l i )kﬁ}}'zl'l'}}}; (35)

where

3
f1 =(w -+ wl)o2 + -va — Enew U1,

(w+ wp, 3w 3 wr]vE
,32 "‘Z[ :;FT +l/* 277& V,T 2)
_(Tp —Up+4vp , 20y v}
b= (-0 e+ )
”TXII
B = Ve 1



or

and

y 2w, | 2°
a Tp —3iUp+T1 Ty vA
3 = 7] - - -
vIT vT Ve ) 27
2
v2 X
ag ==L 20 (35b)
20, n :

In Eq. (35), we have used the assumptions given by Eqs. (18 a-b) to neglect certain small
terms.
| Substituting Eq. (34) and (35) into the electron continuity equation (Eq. (3)), rear-

ranging the result and then using Eq. (21), we obtain the Ampere’s law

cTe
4dmnge?

V2 = = Gl + o) = By + Bk} — i8] — Bukf]™
({0 + L)+ wBi] + an(w + Wl) — whalky+
+ [—La:}(w +w*e) + ZU.),B;;]L” + [—(]{4((.«) +w ) + wlg‘i]}" }G ¢_

n Vx vT

3 ny, .n
- {{ (w +w*e)§w(w Wee 7T V' o, *e)w*e'
1dQj _ d
TEd i ;—(vw)] + i (el + w0) A (n)

v3 1 Q 3d, _. I/T d, _
il ) -2z g - § ) - Zr L)

2 4 n
- ﬂwi‘e;(nﬂ}kn_ +{~(w +w:e)”%%ji§<1 ~ Sy
+ iﬂawfe%(nﬁ)}k + ﬂ4w"d (nv)k }] }}} =0 (36)

Eq. (36‘) may be solved by the consideration of three regions in the variable z, which
measures the distance from tle singular surface where k ﬁ(a:) = 0.5 The three regions
are the fluid region = > p; > A., the intermediate region z & p; > A, and the inner
region z & A, > p. (where A, = (L,w)/(kyve) and p is the electron gyroradius). The
quantity A, represents the width of the region within which the effects of electron inertia

are important. For (47nT./B?%) < (rn/Ls)?%, X” may be approximated as a constant in
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the inner and intermediate regimes. The matching condition between the three regions is
obtained from the integral of the Ampere’s law across the reconnection region. The result

is given as

cTe
pp— A’ A" —A'l + Af), (37)
where . _
©o A
By= [ al o 1L (370)
and
+oo -
A;=/ o - 1G4 (37h)
i e ¢]

The brackets in Eqs. (37a) and (37b) correspond to the terms which appear as the
coefficients of X||/c and G - ¢ in Eq. (36).
The calculation of the stabilization term A] from finite ion Larmor radius response is

quite similar to Antonsen’s calculation.® The result is given here as

0 \ ~
T [ w 1 pi wh, \ " Wi wo omi\4
py =Y (Lﬁ ) o <—A:) (1 - 7*) o (1 o "2) bk (39

In order to calculate the quantity Aj, the quantity —g k) — iﬂakﬁ is assumed to be

small compared to (3/2)w(w+w}, )+ ,sz ,B4k in the integrand of Aj. This is equivalent

to the assumption given by Eq. (18a) . Contour integration of the integral yields
Vi3 1 Sw(w+ w? )i |

A} = G(w) — vn], 39
0 ( /‘H'l" + /Hz) ’}IIHQ 411*164]\:'[[4 [ ( ) 7N] ( )
where N
1 — ., ._V_’L _2 ne X|| Y+ ’ B}
G(w) = (w wy, VL) + {3(1 - (W — wyie),
and

4v, T,
W= 3LU(UJ+w )v2 {{w(w +wl){{v: + 2(\/_H_,1-+\/E_)2.

, (N Vs 0 d _
-{—‘-{—w(wwz)*—,'-'——;} fg Lok }}[T 34 )
+we{{5 (new*el’1+wv)o)+—-—[— (w+ *G)X" . L:"

9(\/—H_;I\J/2’F{—)2{3ﬂ3[_ ( + *e)X” V*]— ( 2 *e T)+’H1+

§§j ’Z< Bl )+ Bok PV (1) (399)
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iHi and iH, are the two roots of the equation
(3/2)w(w + wi,) + ﬂzkﬁzm — B "f|4:1:2 =0.

For the case in which A, < p; and (/vr)? < w/vy, the integral of Aj and therefore
G(w) in A dominates in Eq. (37), so that the mode frequencies wy are found by requiring

G(wg) = 0, which gives a real root
Wo = w*e[l + a(ﬂe)] k (40)

corresponding to the drift tearing mode frequency.
Substituting Eq. (38) and (39) back into Eq. (37), the A’ integral, the A’ contribu-

tion from the outer region, and the equilibrium gradient term in A} then determine the

instability: -
. 2 , ﬁ a Pi \ - a? : i
7= {A “T ﬁp ln( )[1 + a(ne)? 2+ a(me) 2 ] )
41/*,34]0 \/.H + \/}I )\/Hng )
X 3 +IN. K : (41)
rw(w + wh, -

where d = ¢/w, is the collisionless skin depth.

Current drive tends to push electrons to higher velocities which has the effect of
decreasmg the collision frequency. However, we may assume that the ratios v,/vT and
ve[vIT are not chdnged by the current drive, and use the numbers given by Eq. (A. 4) In
this case, Eqs. (40) and (41) can be greatly reduced. The frequency and growth rate of

the modes are given by

w=wh(1+04n,), * i | | (42)

e |A| , T, a (Pi o’ I N
Ag—Y—3 —n{ ) —00mm—— - :
w*e =130. 48,81, { a—-7 By o In A, ) TEam)p [ + a(ﬂe) 5 ] + Wi

For simplicity, we take n.=2, yn for which has the form as follows:

YN . Vx
T t
Wye w*e UT

dQY T
{(0191);_)-}—13605) 9 — 4 (5.675p — 074vE)d(" )]

Comparing this result with the heuristically derived growth rate of Eq. (9), we see that

the standard drift tearing modes look quite similar. The characteristics of the destabilizing
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terms are the same but the equilibrium electric field now also contributes to the present
instability. The stabilizing effect from FLR is the same as Cowley’s result. We consider
.the new destabilizing terms in four cases:

Case I. There is no equilibrium electric field: Eﬁ = 0. In this case, Q‘I’l =nvpT

-
W _ 5 gotr 20 dnPD) (43)
w:}e Lt):}e vr dn

If D is assumed to be constant inside the tearing mode layer, and u; /vr = 3, using

Eq. (17a) gives

N _, Ve (VD2
= 1104.54 L‘e(v?p) : (43a)

Case II. There is no current drive: op = 0. For this model, Q?I =4.2nvgT

IN. _ 96.41 -2 ()2 (44)
?c fe v

Case IIL. Both electric field and current drive coexist. Taking the same assumptions

as in case I for the drive current we obtain

IV §(104.547% + 33.52050p + 26.410%) —

n
w*e *€

%. (45)
In each of above three cases, the growth rate of the new instability is much larger
than the standard drift tearing mode growth rate and comparable to the damping rate
given by the FLR effect from the ions. In a discharge with 1keV < Te.< 8keV, Bp = 1/4
and n. & 2% 1013em ™3, a typical experimental regiﬁle for present-day large tokamaks, the
growth time of the new instability is on the order of several hundred milliseconds.
Case IV. The current profile is flattened at the m = 2 rational surface. By making

the same assumptions as in case I for the drive current we get

d(nv)
dn 0,
TN . — — o Ve 1
" = 1(0.244%%, + 4.91105Vp +-24.5441)%,,3)w;e - (46)

If we take the ratio of the drive current Tp to the inductive current vg to be

v =(1-X)7, Up = 40,
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¥

O

and keep the total current ¥ constant, the stabilizing effects of current drive are maximized

at

=_0.115, ®p= 1117,

The damping rate of Eq. (46) thus becomes

YN . Ve U g
" =10.002 26(-;) : (46a)
Noticing that G - (z) — (Wi /w + 1)¢(z) as = — 00, it is clear that the inner and
outer regions match asymptotically. Egs. (34), (35), and (36) approach the ideal MHD
approximation for the perturbed density 7, electric field E|| = 0, and the equation of
motion for displacement £ = an /By. Thus , it is not surprising that thé growth rate of the
new instability is on the order of or larger than one of the standard drift tearing modes.
While both instabilities have the same structure, the present case shows that without
current drive, the growth rate is dominated by the gradient of the energy flow rather than

by the current gradient.

V. Nonlinear Tearing Mode Instability

The quasilinear stabiliz&tioﬁ of a single linearly growing drift-tearing mode has been
caleulated analytically in the semicollisional limit using kinetic theory.” The basic argﬁment
is that the electron orbits are strongly altered by the total magnetic field configuration.
In the same way, we can treat the nonlinear tearing modes instability with current drive.
Negiecting the equilibrium gradienﬁs, and equilibrium electric field, and using Eq. (12)

with the model collisional operator (Eq. (12a)), we have

of  of @ np 0§ By OF,
a + VAT B av” (D + v )Fo ) | = . (47)

 When v < Vi, F'=Fy+ ]?is still constant along a givenﬁeld‘ line as long as the
electron completes many orbits around the magnetic island during a time ~4~1. Averaging
F over a field line and eliminating the operator v)(8/0s) gives

2l =-Gris [k

00” av” 81)“ m s
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where s is the length of one period of the field line. Integrating twice, we have
el [* =~ 1

g=|—- IsE dvjj—=—<

g (ms/(, s ll)/ v||(D+V/)+Cl
Particle conservation implies that

/ d3vf= 0
The expression for ¢; is now
c ! / dsE / d*vF, / d
=—— == v
! no \ms Jy gl 0 Il(D+1/')

and the perturbed current is

1
Jl| /d3vv"f (;—T-l-;/ SE”> /(l vv“Fo/dv” (D )-l—clnvD

As D — oo, and for u; < v < uz, the second term can be neglected since it is smaller

than the first term by ¥p/u; , this leads to

~ e 1 . ~
n= <mV* ;—/(; dSE”> . (48)
where v, is defined by Eq. (33a).

The usual nonlinear tearing mode assumption gives

‘le(“”y’t) =

2L (49)

where AV" is essentially constant across the layer, and 6 = ky(s). For this model,

AL,
W=2 (E—) (50)

where W is the half-width of the magnetic island. Substituting Eq. (48)-(50) into Eq. (21)
(Ampere’s law) and integrating over 8 gives
dw 1 dln A" A'c?

=3 Ta T g™ (51)

where

1 2 : s mv,
G= 5 ST /dd:/‘; do cos@/O ds cos[8(s)], =T

With the replacement of 5 — 74, Eq. (51) agrees with Drake and Lee’s result.”
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VI. Summary and Conclusions

The physics of the tearing instability in the presence of lower hybrid current drive

-has been examined. We have shown that for pure tearing modes, the linear growth rate

and the quasilinear growth rate in the Rutherford collisional regime of the island have
roughly the same form as without the lower hybrid RF current drive except with a slightly
modified resistivity. For the drift tearing modes. the situation is quite different. A new
instability is found which is driven by the current and equilibrium energy flow gradient
and this is predicted to occur under the experimental conditions prevalent, for example,
in the Petula Tokamak in France and in the PLT experiment at Princeton. The growth
rate of this instability is comparable -to or larger than the standard drift tearing mode
growth rate which depends on the grad?ent of the equilibrium current. We emphasize
that by making LH waves drive plasma current and equilibrium electric field drive current
in opposite directions with the appropriate ra.tib, andrkeeping total current constant and

flattened inside the tearing layer, the standard linear tearing modes can be stabilized.
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VII. Appendix
In the case without current drive we calculate the perturbed current and energy flow

from the perturbed electron distribution function f. given by Eq. (31). These quantities

are
. ~ — — 3T, =~
noen*(]" — neevD) = ner” - V“P - noaV"T + ?fner", (A.l)
~ 771 — T.
Q” = T(Oz + 5)? — x"V”T + X“eEﬁ E"e-’ (A.2)
where
Vs MV,
& = ;Zf.' hand 1, 77* faand noez) (A'B)
nel . 1 Vi
X = [VE’T - (Vg‘)z]

By comparing with the fluid model in Ref. 8 we obtain the values

Vx X Vs« _ v
= 1~71 77* == nsp, 7‘@ - 1-6. (.54.-4)
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FIG. 1. Flattened Maxwellian Distribution.
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