g

B e
=

’ ir—-——«-—i_

INSTITUTE FOR
FUSION STUDIES

DOE/ET/53088-443 | IFSR #443

" Unified Theory of Ballooning Instabilities
and Temperature Gradient Driven Trapped Ion Modes

X. Q. Xu
~ Institute for Fusion Studies
The University of Texas at Austin
Austin, Texas 78712

M. N. Rosenbluth
Department of Physics, B-019
University of California, San Diego
La Jolla, California 92093
and
General Atomics

San Diego, California 92138

~August 1990

THE UNIVERSITY OF TEXAS

AUSTIN







Unified Theory of Ballooning Instabilities
and Temperature Gradient Driven Trapped Ion Modes

N X. Q. Xu
Institute for Fusion Studies
The University of Texas at Austin
- Austin, Texas 78712
M. N. Rosenbluth
Department of Physics, B-019
University of California, San Diego
- La Jolla, CA 92093
: and

General Atomics

San Diego, CA 92138

Abstract

A unifled theory of temperature gradient driven trapped ion modes and ballooning
instabilities is developed using kinetic theory in banana regimes. All known results, such
as electrostatic and purely magnetic trapped particle modes and ideal MHD ballooning
modes (or shear Alfven waves) are readily derived from our single general disi)ersion rela-
tion. Several new results from ion-ion collision and trapped particle modification of bal-
looning modes are derived and discussed and the interrelationship betweeﬁ those modes is

established.



I. Introduction

In this paper, we present a systematic analytical investigation of the low frequency and
long wave-length modes, such as electrostatic and purely magnetic trapped particle modes
and ballooning instabilities (or shear Alfven waves) in banana regimes. Our analytical
method allows us to show interconnection among those modes proposed in each limiting
case and provide a link between single particle motions and the collective plasma modes.
In additon, the Lorentz collision operator is used to understand the effects of collisions on
the low frequency modes.

In a toroidal plasma the existence of particles trapped in the magnetic field gives rise
to a class of instabilities and kinetic modification of the ideal MHD ballooning modes.1 ™
The underlying physical mechanism which makes these electromagnetic modes so harmful
to plasma confinement has been extensively discussed.'—® Therefore, we proceed directly
to discuss interconnections among these modes and collision effects. The relation with pre-
viously derived models of anomalous transport and with experimentally observed favorable .
current scaling of the global energy confinement time rg from trapped particle modes is
also discussed. .

It is well known that the primary source of free energy available to drive the low
frequency modes in the tokamak is the expansion energy associated with density and
temperature gradients of confined plasmas due to the coupling motion between Ex B
drift and the magnetic (VB and curvature) drift. In addition, unlike the circulating (un-
trapped) particles, which are free to sample many oscillations along a magnetic field line,
the trapped particles in banana regimes are constrained to sample only one local poloidal
magnetic well. The inherently different behavior of these particles not only causes charge
separation, but also compresses and bends the magnetic field lines. This can lead to the
breakdown of validity of the MHD equations and, hence, to the development of compli-
cated electromagnetic modes. Perhaps the greatest theoretical progress lies in restricting
oneself to each separate problem. Upon electrostatic approximation the sources of these
expansion energy drive trapped particle modes,!~® while in the ideal MHD limit (where
EII = 0), the expansion energy (of course mainly due to the circulating particles) drives

ballooning instabilities.® By analyzing appropriate finite 3 (ratio of plasma to magnetic
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pressure) effects and considering the equilibrium condition V(4rP+ B§/2)=& B with
Fz’:go . Vﬁo / Bg? for the curvature, Rosenbluth and Sloan!® found that if B is increased
from 0 to a critical value 8. ~ a/R, the resulting favorable magnetic field gradient induqed
by the presure P of the plasma can nullify the destabilizing unfavorable field gradients
associated with the vacuum magnetic field. However, whenever this happens, the raversal
of the vacuum VB in the bad curvature regions by the diamagnetic plasma pressure P
can lead to a magnetic instability having the polarization Qf compréssional Alfven waves,
i.e., with the perturbed“ magnetic fleld 6B “éo in tandem mirrors.!? Uniﬁca;tion of these
matters in banana regimes of tokamak is a principal content of this pé,per. For general
electromagnetic perturbations, a variational approach constructed from the gyro-kinetic
equation is used to obtain a general analytic dispersion _félation, which is radially local
on each magnetic ﬁuﬁc surface. It turns out to have three types of instabilities in the sys-
tem: electrostatic trapped particle modes, ideal MHD _ballooning instabilities and purely
magnetic trapped particlg modes. Usﬁa.l approximatiéns for each Iﬁodé to be separated
are very good because the couplings are small except for ideal ballooning modes. In the
latter case, trapped particles make a stabil_izing,contribtition in the low § and low shear
limit. Colllisions have a strong stabilizing impact on the _pu.reiy magnetic trappéd particle
modes, a destabilizing effect on the electrostatic trapped particle modes, and a damping
' inﬂuénce on the usual shear Alfven waves whenever ions are trapped. Threshold values
are présented. One interesting result is that when the ﬁnite gyrdradius term is retainéd,
the trapped particles also drive dissipative drift ballooning instabilities near marginal ideal

MHD ballooning stability.

We should point out that the comprehensive analysis conducted by Tang, Rewoldt,
Cheng and Chance!??3 for determining the stability properties of ballooning modes and
trapped particle drift modes is different from that of our theory. Their work was nu-
mericaily concerned primarily with ballooning modes and trapped electron modes, and
frequencies higher than ion bounce frequency. The present paper, however, analytically
investigates the long wave-length ballooning modes and trapped ion modes. This choice ob-
viously enables a more natural understanding of anomalous ion loss from a number of recent

experimental observations.!*~1% Although trapped ion modes have smaller growth rates by
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comparison, transport coefficients, at least in simple mixing-length estimate (D ~ v/k 13
where 7 is the linear growth rate and k| the wave number perpendicular to magnetic field)
would not be necessarily smaller in magnitude since they support a large “convective cell”
of width 8z = [keh(6)]~! with k2 = k¢?[L + h%(9)] (see Eq. (17)). Modes remain unstable
for small &y untill the frequency falls below the ion collisioa rate.

The structure of the paper is as follows. In Sec. II., we discuss the variational form
of the general electromagnetic modes in banana collisionality regimes. In Sec. IIL., we
derive a general analytic dispersion relation by using a trial function of the modes and
perturbed distribution function of ions. Several new results and several corrections to
the well-known modes are obtained. It is shown that both trapped particle modes and
ideal MHD ballooning instabilities can be derived from a single dispersion relation, which,
in its simplest form, follows from the “disconnected-mode boundary condition”.?? The
implication, of course, is that although trapped and untrapped particles play a different
role in the perturbed electromagnetic fields, the structure of the modes is essentially the
same. However, untrapped particles can extend along the entirety of the equilibrium
magnetic fleld lines, and the “disconnected mode” approximation is not valid at the low
shear limit in the magnetic field. In Sec. IV., we thus carefully investigate trapped particle
modification of low shear and low 3 ballooning instabilities. The results are summarized

and conclusions are drawn in Sec. V.



II. Variational Principie

We start with low-frequency gyro-kinetic equations derived in the high mode number
limit using the eikonal representation. The appropriate set of field variables are: ¢ the
electrostatic potential, §B) the perturbed parallel magnetic field, ‘and A| the parallel

component of the perturbed vector notential or, eqtiiva.lently A, where
Ap= —8-VA.
tw
The perturbed distribution function f is given by
F = fexp[inS(r,8,¢) — iwt], | (1)

where

f= —(‘%ij + g5 Jo(kLpi)
J

with S being the usual eikonal (£, = VS), r the minor radius, § the poloidal angle and
¢ the toroidal angle. Fi,; is assumed to be Maxwellian for each species. In Eq (1)yg; is
~ the nonadiabatic portion of the perturbed distribution function and is the solution to the

gyro-kinetic equation!?+1®

' .0 | g; v | VL - . ‘
(W —wgj + w||-a—l)gj = (w — w?);fj—_ij {Jo (6,15 - %A”) - zT'LA_LJl] +1:C(g;), (2)

where [ is the arc length along a field line, ¢ is the speed of light, Ji = Ji(kLpj) is the
usual Bessel function for [ = 0,1. C (gj‘) represents collisions which we approxima.te by the
gyro-averaged pitch é.ngle scattering operator appropriate if k1 p; < 1,2

| oyl 0 9g;
Here we list below the definitions of the terms which appear in Egs. (1)-(3).
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with P; the pressure of the jth species. w.; = —kgpjvinj/(2Ln;) is the diamagnetic

drift frequency, p; = vinj/SQc; the Larmor radius, ven; = 1/(2T;/m;) the thermal speed,
Qcj = qjB/(mjc) the cyclotron frequency, L,; = —(dlan;/dr)~! the density gradient scale
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length, k9 = —m/r the poloidal wave vector, and n; = Lnj/Lr; with L7; the temperature
gradient scale length.
Eq. (2) may be rewritten by noting C(Fp;) =0 and C(w:‘,’}ij) = 0 and defining

g9i = (1— %) Q%JOA“}'hj’ (5)
and
p=¢—-A
to obtain

s 0 o T\ 95 ] Wi 0_21_ . )

where we have neglected a small term proportional to C(Jp). Since we are interested in
kip; <1, we have taken the lowest order expansion for J1 = (k1p:i/2)(vL/viri) and used
Jo =1—((kLpi)?/4)(ve/veni)?.

In this form, the gyro-kinetic equation (6) is solved for ~; and the result is used in

the quasineutrality condition

noe
T;

nge? k% p? Wai -
(147 )“"OTI‘Ep 1- (1+n,}/\+zq,/deo-o (7)
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with 7 = T, /T; and in the component of Ampere’s law in the é, direction as follows:

47r . 3
5B“ = —ik_]_:’li_ = Z ——?;#%(1 -+ 77]')A - B,. (80)
j .

Here B is defined as

By = 4‘&“2%/ ‘)Q hj. ' (8b)
cj€

Note that B has the polarization of compressional Alfven modes.

By taking the 3. g; [ d®v moment of the gyro-kinetic equation (6), and by making
use of the quasineutrality condition, the number conservation property of the collision
. operator, and the parallel component of Ampere’s lé,w, this mqmént equation becomes

¢ 8 OA nge? k2 Wai
47rw25(k 8l> TT 2 [1— (1+77=)] W +4)

nJ‘IJ W*deJ LR |
— 1 \ 1 .
§ 2 ( + 77])1 Z w ( + " )5?:”;;.

Substituting Eq. (8a) into (6) and (9), one easily finds that this only leads to the
cancellation of the diamagnetic pressure terms from wy. ‘Thus these two equations have

simple forms

2 9 OA n;e? ]"J_P; w*;
4rw? 3l (L 01) T2 [ (1 +77:)] W+ A7)

nj q Wy i@k
_Z a3 i) J(1+77])A+Zq1/d3v JJ'OhJ, o (10)
7 ‘ ‘

and

= q; . ff_ v.L ) . ‘
(W —wgj + iy 3l)h (w - w”) T,F [Jo (1/1+ " A) e Bl} +:C(h;). (11)

If we consider the evolution in Eq. (11) to occur on a long time scale associated
with the drifting motion of particles across field line and collision, we have the following

expansion procedure. To the lowest order, Eq. (11) requires

Oh;

e el =0
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that is, k; is a constant along a field line.

The next order Eq. (11) when averaged over the bounce motion of the particle yields

an evolution equation for h;

(w — @aj)bj = (w ~wT) ‘11 [Jo <$+%A>- 2&:051'“0(};,-), (12)

with G = ([ dIG/|vy|)/(f dI/|vy|) being averaged over a trapped-particle trajectory. Note

that parallel compression (by extension, acoustic wave) has been removed from the analysis
by bounce-averaging in restricting the width of the modes. Thus, some modes of interest,
e.g., slab-like n;, modes are not considered.

We now consider the boundary conditions on h;. Since the distribution function is con-
tinuous at the boundary between trapped and untrapped particles, and the nonadiabatic
circulating particle response is negligible, i.e., h; ~ O(w—“:]-) & 1 (this removes a potential
dissipation mechanism, namely, Landau-damping on the non-adiabatically responding cir-
culating ions which must be taken into account in the radially nonlocal analysis), we may

impose a boundary condition on h;
hi(E, i)l ym g2 = 0. (13)

For deeply trapped particles (v = 0), we choose

Oh;(E, p)
—%;_I p=gE— < 0. (14)
The bounce-averaged drift kinetic equation (12) together with the boundary conditions
(Egs. (13) and (14)), the quasineutrality condition Eq. (7), and moment equation (10)
complete the formal specification of the problem.
We now construct the variational form. Multiplying Egs. (7), (88), (10) and (12) by
¥/Bo, B1/B, A/Bg and b i/ [Fmj(w— w:;'; ], integrating along a field line and over velocity
space, and adding them together, we obtain the following variational principle:

‘ c? dl OA\? ne
Q(hj,¢7A,B1)—47rw2/—(kJ.—aT> - [

_ J‘-’J“’*J‘ g [ ar ety [d
Z s (1+17_,)/Bwkr\. T 1+7179) Btb

dl k3
)] [ S5 44
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97 Z

[ #2w —og) h,C(hy)
—dEdu : T | = Ll
/;—~,. Iv”| { [ij(w —wf} ij(w - wz;. .
dl

41' Bl

dl Wk v =
+ 2 ZQJ/ / d Uh [Jo JA) OQ-;CBI] (10)

The vélocity space integration in Eq. (15) is understood to be performed on trapped

populations. We observe that by dema.nding Q(hj, ¥, A, By) to be stationary with respect
to hj, ¥, A and B, we reproduce Egs. (12), (7), (10) and (8b), respectively. It further
follows from the kinetic equation, the quasineutrality c_ondition,. and the first moment
equation that, for the functions in which @ is stationary, the value of @ is zero.

We emphasize that k; in the variational form (15) was constrained to satisfy the
kinetic equation (12). We then use Eq. (12) to rewrite the final term in Eq. (15) and

obtain B : ‘ L

. 'c2 - OA dl

* dl- " nge? - dal ,
-Z ’q""’(1+m>/§wm2— "Ef 1+ [ v

. Mo =Tg) |, hClhy)
+‘77rz /Tr|vnldEd {{F - }

mj(w —wi;) ij(w—wf})

_2
S -] dBfk%fi(wwA?) o (16)

-

T;

The terms in Eq. (16) have the following simple physical interpretation. The first term
represents the energy required to bend macrnetic field lines, the second term is the work
done in compressing the magnetic field and plasma, and the thlrd term drives the ballooning
and mterchange modes. The fourth term is the energy needed to produce charge sepa.ratmn
due to the long1tud1na1 electric field and the fifth group of terms which represent the
energy réquired to compress the plasma in the MHD model, are the interactions among
various electromagnetic perturbations through the plasma. The last term is polarization
and the finite Larmor radius term of ions. If we take thev]imit C(h;) = 0, Eq. (16) is

the collisionless and the low-frequency kinetic energy principle for isotropic equilibrium
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pressure in high toroidal mode number limit(n — 0).192% It is worth to point out that
the similar variational form was also constructed in the electrostatic limit in the tandem
mirror.24

We note that if we substitute into Eq. (16) three test functions A, ¥ and B, with a
first-order error, the eigenvalue w will have an error of second order.

In what follows, we consider for simplicity shifted circular magnetic surface equilibria,
and the equilibrium magnetic field strength is B = By/h(6), where h(d) = 1 + ecosb,

€ = r/Ro, and Rp is the major radius at the center of the selected magnetic surface. For

the model MHD equilibrium,? we then have

k1 =nVS = —ke[éh + h(6)&;],
bxR-k= ic-g-[cosg + h(8)sin 4],
R
h(6) = 3(8 — 6x) — a(sind —sin ),

0 - a 1 0

==0b-V)==—= 7

a1 =" V03 = Rog 06" (17)
where § = dlng/dlnr measures the average shear, and @ = —q2>RodB/dr is a measure

of the local Shafranov shift, with ﬁ = 8r . n;T;/ B2. For the latter calculation, we will
take dr = 0, in the lowest order in the ballooning hierarchy, corresponding to the fastest
growing modes. Also, v(8) = ov[l —uBo/h(8)E]}/?, and vy (8) = v[uBo/h(8) E]'/?, where
o = *x1. Circulating particles correspond to 0 < pBy/E < 1 — ¢, and trapped particles to
1 —¢e < uBy/E < R(9), at a given 6.

III. Dispersion Relation

This section is divided into four parts. In the first part, the quadratic form of Eq. (16)
is solved to obtain a general dispersion relation. The dissipative dr'ift ballooning instabili-
ties and the damping shear Afven waves driven by trapped particle collisions are discussed
in the second part, and the third part is devoted to the study of the effect of ion-ion colli-
sions on temperature gradient driven trapped particle modes. Finally the purely magnetic

trapped particle modes are derived.
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A. General Dispersion Relation
To proceed, we will consider the frequency ranges of
Whey Wte > Veieff 2> W, Wde, ,

Whi, Wei > W, Wi, Viiyef f- (18)
Due to collisions the electron response is adiabatic, that is, k. = 0 and trapped electron
drift modes are dropped at this point. In order to find out the ion nonadiabatic response,
hi, we construct a trial function and seek for the qualitative form of the true solution by
recalling the difference in response between trapped and untrapped ions. The collision

operator acts mainly through pitch angle scattering to enforce that h; vanishes at the

trapping boundary. Thus, we write the simplest trial function in following form
h = ho(w,E, ¢'07 A-Ov-BlO)(/“ —,ut); ‘ (19)

with the variational parameter ho(w, E, %o, A, B1o). Here py = (E/Bg)(1 — €) is. the
trapping boundary and 1, Ao and By are three constants along the magnetic field lines.
By looking at the quasineutrality condition Eq. (7) and B; in Eq. (8), we can make

the following assumptions:
¥ = (1 + cosb),
B; = B1o(1 + cosb), (20)
A = Ag(1 + cosh).

These functions are even in 6 and satisfy the disconnected-mode boundary conditions
whose eigenfunctions vanish at the inside of the torus. Note that they give reasonable
values for the marginal stability points where w = 0 only for high shear ballooning modes.
The physical basis is that the destabilizing effects associated with trapped particles and
unfavorable curvature are known to be strongest at the outside of the torus.

By substituting the trial functions Egs. (19) and (20) into the variational form Eq. (15),
performing relevant 8-integrals and pitch angle integrals, and making a variation of quan-

tity @ with respect to variable kg, we obtain

1-b, 2 bwyrg 2 _ T .2
hy = 1.20 eFn (w - T, ( 12%) (o + prt A?) eB; T on. (21)
. T; w— ajwrer? + 0.41viieff .
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Here

kepivr
Ry ’

a; = 0.36 + 0.215 — 0.21(1 +

wko =

62
b =0.38 — a + 0.223,

b = (k.LPi)2
L= __9———-’
v 4
r = —
vTh

From Eq. (21), we can see that except for the numerical difference, the energy-dependent
Krook collision operator is a good approximation. The fact that the magnetic drift fre-
quency (aiwko, bwio) depends on a represents a measure of the diamagnetic plasma pres-
sure.

We now substitute trial functions Egs. (19) with Eq. (21) and (20) back into the
quadratic form (15), and construct the variations of quantity Q with respect to variables

Bio and Ao, respectively. This manipulation then produces the following dispersion rela-

tion:
{—3(1 +7r7 )+ 6 - ——5——] (22)
6/5: + &3
2,9 52 3 Wi
- 35202 — 2 1 )
X {Il al, + 638q 6/3.+63/3 IBQ [1 » (l'f‘fl:)]}
3 i §2/Bb 826 bg )2
—(kepi)2 {—;-7392 [ w (1+ } 2\/— q 203 \/ﬁ- Q} 0.
2 kepi  6/Bi+ 83 kep;
Here
Q=2
WA
3 , 8, o, 1
I1_4a —3.>a+s ( 3 —2)-4-1,
9 5
o=2 - —_- - 2
I +3.> 405 (23)
5 ., 10, | o7 15
Is—l')a g Sats 3 16)+1,
2 2¢ 2\ W = wai(l = §m0)] — waimiz?
b = 9643\/1/ dzate=(1— b, _)[u wai(1 — 3n:)] weiiT
w3 0 W — ajwroT? + 04div; ez



with w4 = va/qR, the transit frequency. of a shear Alfven wave between the regions of good
and bad curvature and with vy = \/m the Alfven velocity. We only keep finite
Larmor radius corrections in §; which is crucial to reverse propagation from the electron
to the ion direction in usual electrostatic trapped ion VP-driven modes (see Eq. (31)),%
instead for all &;.

The ideal MHD ballooning instabilities (or shear Alfven waves) and trapped particle
modes (electrostatic and magnetic) are three roots of the equation (22) and are coupled
via the finite-ion-gyroradius term and the diamagnetic pressure evolution by compression
across the magnetic field due to the last group of terms. Because of the large differences
in the various mode frequencies, which are given by w? 3> wawig, w? ~ wWiwie and w? ~
VEBwawao, respectively, it is impossiBle for resonarices to occur among these modes, except

near marginal MHD stability.

B. Dissipative Drift Ballooning Instabilities and

Damped Shear Alfven Waves
When w? > w,wig, We obtain ballooning instabilities from Eq. (22

3
2

Wi

L0 1= 251+ )] = I — of; + 6848, ()

w
where we have neglected the compressional Alfven wave terms, charge separation due to
the longitudinal electric fleld, and coupling terms, which are at least order /2 smaller than
the trapped particle term in Eq. (24). If we ignore the finite Larmor radius and trapped
particle effects, Eq. (24) is the usual finite § ideal MHD ballooning modes dispersion

relation,?! which clearly shows the two marginal stability boundary points of « for fixed §
| 13 21 o
2a2—?§a—2a+§2(%-—§)+1=0. (25)

The trapped particle terms without collisions tend to contribute stabilizing effects
on ideal MHD ballooning modes but are relatively weak since they are order £3/2 smaller
than the pressure ‘gradient driving term. However, collisional effects introduced by trapped
particles near marginal stability are worthy of being discussed in detail. Eq. (24) can be

rewritten as

2 2
(w— wl)(g —wsp) = E&ﬁqzb‘wg, (26a)

13



where

1
wiz =3 [w*;(l +mi) £ \/[w,.,-(l +m)l? +4Lwh |
and |
4 Il - CMIQ
I ==
T3 I

At marginal stability, we have
wai(l 4+ 1) > Liwa.

By assuming w = wa;i(1 + ;) + 1y with w.i(1 +n;) > v, from Eq. (26a) we obtain

__Puld o 1076v3 [* . (§-a?)ste (26%)
7= wfi (1+7:)3 ) A tt,eff1+[0'4“’:-'(:'1‘3-*_["[‘)]2.

where w, = /Bwa = vwi/(qRy) is the séund transit frequency. The threshold for the

dissipative drift ballooning instabilities is given by
ni >0

and

Vii,efflcr > 1.3w*,~(1 -+ 771'). . (.-?.GC)

Since the frequency ordering of Eq. (18) was assumed in arriving at the dissipative drift
ballooning modes, and if we estimate wy; =~ v /(2¢Rg) for typical tokamak parameters,
the results thus apply only to perturbations with sufficiently low toroidal mode numbers
n < 10 —20.4!

On the other hand, if a is further below the marginal stability threshold and satisfies
the following conditions

wpi > Liwy > wai(l + 7:), (27a)

the usual shear Alfven waves are excited. By substituting w = £lyws + iy with Liwa > ¥

and w; 2 = £l4w,4 into Eq. (26a), we obtain

212 7 = 6 ,—z2
_ Bg*b 81;/::/ ze (27%)
2

d ne 14
LI e T oA

waly

Therefore, we find that the introduction of trapped particle ion-ion collisions results in the

damping of shear Alfven waves.
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C. Effect of Collisions on Ion Temperature Gradient Drive Trapped -

Particle Modes

If we assume that w? ~ w,.wqg, we obtain normal electrostatic trapped particle modes -

29. 64\/’2

7‘{'2

0=-31+7"Y)+ —5—

*:1 i—*iiz
/dmex(l_m)[w wyi(l = $73)] — wamiz

W — aywroz? + 0.4ivi; e rs

(28)

Here we have gotten rid of the couphng terms which are c@ite small. We now examine
thé dispersion relation (28). The first term in Eq. (28) is the adiabatic electron and ion
response. The second set of terms represents the non-adiabatic trapped ion response.
These terms survive because the trapped ions respond differently than circulating ions and
electrons, resulting in incomplete charge cancellation, and hence trapped particle modes.

In.low collision frequency regimes wyi > W > Wko, Vii,eff, an analytical solution can

be found as

3a; Weiwiko ,

1.27(1 + 71 i
Rl ) 11—3bL<1+n,)1+————w—— (1+7)-

+
V2
0.167 waivis, effog 3

3\/_ w? 97]'

“Ifni >2/3 but n; ~ 1, we obtain

V2e
1271+ 7"'_1)[

=0 (29)

' o 0.28(1+ 77 3
1 =360 (1 4 ni)Jwwi — ¢ o (1- §ni)Vii,eff- (30)

Eq. (30) is the well known dissipative trapped ion modes, which propagate in the electron
diamagnetic drift direction.?? | |
If n; > 1/v/2¢, both ion curvature drift and ion-ion collision drive the instability:
V2 V2e

w =,—m[l - 3b_f_(1 + Wi)]w*i =+ 2_54(1 + T"l) X

o s »  5.08(1+771) 3a; 0.8 3
{[1 —-36.(1+ m)]‘w;i - (\/7—= | 91ww + ﬁl/ii,eff]u«‘*ini} . .(3D)

-

Now we analyze this dispersion relation in two limits: the collisionless and collisional

regimes.
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(i). VP;-Driven Trapped Particle Modes

If aywgo > Viieff, we obtain the collisionless trapped ion V F;-driven modes with

growth rate®
¥~ ed VO1WEOWAT; (32)

where w,r, = waini- When 3b1(1 + n;) > 1, these modes may propagate in the ion
diamagnetic drift direction. However with increased plasma diamagnetism, the magnetic
drift becomes negative and the system is stable. We may determine a.r by noting that

a; =0 at drift reversal. The stability threshold is

171+ 3

, 33
14 50z (33)

Ceor >
which is slightly bigger than the first ballooning instability limit, given by Eq. (25). For
§ = 1, q = 1, we Obta.iIl aballoon’crl = 0.81 and aballaon’cr2 = 9-37 ‘Vhile atrap’cr - 1-25-

Remember that our frequency range is
Whi, Wi > W D> Wai > Viieff

which thus corresponds to the range for the growing wavelengths,

3

Viie R €4 ‘
ZEeIIT0 « kgps € - (34)

Vthi

The resulting anomalous ion thermal diffusivity from a mixing-length estimate is thus given
by

5 2.2 3%
€4 PiYihidi

Xy~ :
' (1 +R%(O)|viiers /LT RS

(36)

which is similar to the result given by Biglari, Diamond and Rosenbluth.® But our model
explicitly indicates the § and « dependence of y;. As the diamagnetic plasma pressure
gradient a approaches the threshold a,,, the ion thermal diffusivity greatly reduced and

eventually vanishes at the threshold.
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(ii). Enhanced Dissipative Trapped Ion Modes

For vij,eff = ajwro, we find that the enhanced dissipative trapped ion modes become

dominant with complex frequency,
wn~ T A e ppoan ) (37)

which always propagates in the electron diamagnetic drift direction.

From our frequency ordering, the maximum growing wavelength is determined by

. ViiessLT _
kgp,->>y—1—£)i—7:—€ 3. (38)

Uthi

Using Egs. (37) and (38), we may provide an estimate of the ion thermal diffusivity

vii ' 62 | p?'u“tzhi. - (39)

Xi 2 2
(14 h2(O))viiers Li

Comparison of x; in Eqs. (36) and (39) shows a large difference in magnitude but
similar scalings and there is no explicitly "a..-dependence in (39). Beth models show very
unfavorable temperature scaling (x; ~ T7/2), experimentally bobseArve'd favorable current
scaling, and characteristics of ballooning modes (x; ~ [1 + (36)?]~! for high shear § > «
in magnetic fleld). .

Eq. (28) can be solved numerically to obtain the instability threshold 7;. for n; > 1
and W, Viieff > G1wio. By setting w = w,, we multiply thé der'iéminator in Eq. (28) by
their complex conjugates, and separate the real and imaginary parts of the resulting ex-
pressions. These equations are then simutaneously solved numerically to give the threshold

for instability:

Viieff (L+771)

Wi 2¢e (40)

ni > nic = 0.65

Eq. (40) also can be interpreted as a threshold for ion-ion collisions for fixed 7;, and shows

that at high collision frequency regimes, there are no unstable 7;-type modes.
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D. Purely Magnetic Trapped Modes

We now consider the magnetic trapped particle modes with w? ~ \/gfw,iwggo. The
crude picture of the instability has been primarily given by Rosenbluth.}? Trapped particles
(with small v)) tend to move on a constant-B surface. Thus the energy of these particles is
nearly a function of | B|. Supposed that | B| is perturbed by an amount Bj, then the energy
change of single particle is pBy. Therefore any purely magnetic perturbation can cause
energy transfer from the magnetic field to the transverse motion of trapped particles. If
and only if the diamagnetic pressure due to the particles trapped in unfavorable curvature
is just sufficient to reverse the vacuum gradient of B, then the region where flux lines
become sparse can be positive particle energy regions and the flux will become still more
sparse, i.e., the system will be unstable.

From Eq. (22), the dispersion relation of purely magnetic trapped particle modes is
given by

L is=o0 (41)

i

Eq. (41) resembles Eq. (28) but with a different sign, which exactly represents different
energy sources to drive these two ion instabilities. For trapped ion resnonses, these two
instabilities are essentially similar, but the former instabilities are caused by magnetic
expansion energy whereas the second are driven by ion-electron electrostatic energy which
is negative. This fact shows that whenever the usual trapped particle modes in Eq. (28)
are stabilized by diamagnetic pressure, the purely magnetic trapped particle modes ensue.
We use a similar method to discuss the dispersion relation in the two regimes: collisionless

and collisional.

If we assume that wa; > w > wro > viiesr, Eq. (41) becomes

1.12 15\/; Wai 105\/7? A1WEOWai
_ —_— In:) — ;3 = U. 2
NIRRT (1+20:) - —3 5 (1+37) =0 (42)

We find that if and only if the magnetic drift is reversed (a; < 0), the system is surely
unstable. The instability threshold is given by Eq. (33) and the growth rate is

. L
v~ [B(1+3n:)]7e” Jarwrowai. (43)
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In the collisional regimes, wsi > W, Viiefs > ajwko, We may separate the real and
imaginary parts of Eq. (41) as we did in the preceding subsection. The resulting imaginary

part is given by

(v + 0.4viierr)

*il—g'_*iiz
S LY P SR
w2

w2 + (7 + 0.4v45 055 )?
Dy will not cha.nge sign for any value of vj; .rr. By Nyquist analysis, we thus find that in
the collisional case, the purely magnetic trapped particle modes are stable.

In order to find the minimum collision rate needed to stg.bilize the magnetic trapped
particle modes, we may assume the collision frequency is not energy dependent, which at
most makeé a numerical difference. For wa.i > w > wio, Vii,e 7f, we obtain the critical Valué

of collisions to be : ‘ _ 4 -
Vide fler = 5.T[B(1 + 3m:)] 263 y/arwrowns. . (44)

The corresponding anomalous ion thermal diffusivity from a mixing-length estimate is

B . 1662 : pz th.z =
7~ 1+ 4

We thus conclude that even if magnetic trapped particle modes are quite weak insta-
bilities, on the basis of the simplest estimates of anomalous transport, they possibly cause
anomalous ion thermal diffusivity similar in magnitude and scaling to the usual trapped

p_article modes.
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IV. Trapped Particle Modification of Low Shear Ballooning Modes

In Sec. III., we discussed the general dispersion relation based on the disconnected
mode boundary conditions. Ballooning instabilities are magnetohydrodynamic modes,
usually solved in the infinite series ballooning representation with the boundary conditions
¢, A and éB) — 0 as || — c0.® As Coppi. et al. pointed out, the most unstable (5 ~ 1)
solutions do not show much difference between the two approximations.?! However, for
low values of shear § near the magnetic axis where the disconnected-mode approximation
tends to break down completely, the infinite-series ballooning representation must be used
in order to correctly obtain the trapped particle modification of ideal MHD ballooning
instabilities.

We start with our three basic equations (7), (10) and (12). For a low g plasma, we may
drop the compressional Alfven wave terms. Restricting ourselves to the relevant frequency
ordering

Whe, Wte > Veieff 2> W,Wde,
Whiy Wei > W > Wi, Vii,ef fr (46)

we now ignore the trapped particle drift resonances and collision completely. The perturbed
distribution function can be solved from the bounce-averaged gyro-kinetic equation (12)
as
wi'\ g - Wk -
hj = <1 - -w—> ;ITJ_ijJo (¢ + :A) . (47)
When this equation is substituted into the quasineutrality condition Eq. (7), taking note
of fact that the trapped particle response to the longitudinal electric field ¥ is /¢ smaller

than the adiabatic response of the particles, we find

Kipf 1 Wei
Y= (1+7-1) [1— w(1+m)]A
+ =y Trd vJ; e 1 ) Al (48)

Subsequently inserting the Egs. (47) and (48) into (10) yields a ballooning mode
equation which retains trapped particle modification.

50-5 {[1 + h2(6)]g—'g“} + %{1 + R3O [1-

Wi

(1+47)] A+ alcos 8 + A(8) sin 6]

W
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Q

Fonj wI\ [ E\? Uﬁ
Bq /q:rd v[cos 8 + h(8)sin ] o <1 » ) <2T> (1 + 2

(1 + ] > [cos 6 + h(@) sin §]A

1 ww;,o [
(1+T“1) w

w
Fm] ‘-‘JT E U|2
* (1' w> (2T) (“'vz

1 wwko [ w*'(l + 1)] (1 + A%(8)]

) /T d3v[cos 8 + h(6) sin B][L -+ h2(G)]A

TOE)
x T;dsv% (1- f}) (5) (1+ ) (cos 8 -+ h(6) sin 6]A = 0. (49)

We note that Eq. (49) basically corresponds to Eq. (22) by looking at the frequency
ordering given by Eq. (46). The first th.ree'terms are the usual one-dimensional (along the
magnetic field hne) balloomng mode equatlon The fourth term is ion anisotropic pressure
caused by trapped pa,rticles The last two terms are a trapped pa.rmcle modification of
polarization drift via the finite longitudinal electric field 1. We have thrown away two
small terms, one corresponding to a higher order Lé,rmor radius correction arn.d one to a
trapped particle compression term, both from finite . In order to be able to solve the
eigenvalue equation (49) in the low shear and low # limit, we carry out a two spatial scale
analysis, using x and z = §x. We then write

0 d

. —_— + ‘:.._0_
96~ 9x T oz
and introduce the following subsidiary orderings
@ ~ ot~ VEB ~ [e(1 - ) ~ 5 (50)
Following the procedures developed by Weiland and Chen??® based on the systematic

perturbation expansion for small § and « up to O(a4), we obtain the solvability equation

Oz
—(1+z2)<—§->2[1—“':"(1+17,-)H1+ 2 w"”“/—[ w*'(l-{—n,)]}.f\.

2 [(1+ 0\.0} + (ue — QT,)AO = _ (51)

1+t w «
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Here

a0 (" 3 _ .2
a [,5a (7/32)a +-];a31 z
232 1422 8 1423

Ue =

—&(1- 4_2)]

and

2 1. 05\/_ [ Wai

urr = fBq (1 + 977:)]

Eq. (51) is solved again as in Ref. 23 and a analytic dispersion relation is obtained:

Q[ “’*‘(1+m)]%{1+ 2 “’“’2*[[ c"’"(1+,)]} (52)

1+71 w «

{ﬂ 2 1.05vE 05\/— [1 - “’*'(1+2n,)] Z [az (1— 5759-?) —5-2:3(1 —-q_z)]},

where /¢ is the fraction of trapped particles. The finite longitudinal electric field ¥

correction via trapped particles to the ion polarization drift is clearly seen to be small
due to the frequency ordering given in Eq. (46). However, trapped particles contribute a
significant stabilizing effect due to ion pressure anisotropy, which lead then to a threshold

for instability:
ﬂ>ﬂcr—071 {1+\/1+‘>>3— | (53)
Eq. (53) shows two stabilizing effects: shear stabilization and trapped particle dynamics.

At very low shear, trapped particle terms which corresponds to 1 under square root in

Eq. (53) are dominant over the line bending.

(™)
(3]



Q

V. Summary and Conclusions

We have seen that plasma instabilities separate into different « regimes in which
different sources of free energy are available, and different perturbed electromagnetic fields
are operative. In increasihg order of a, we find the following: A

(A.) Trapped ion V P-drivern. modes are unstable in the low a limit and eventually be-
coxﬁe stabilized by diamagnetic pressure at a sufficiently high value of a., given by Eq. (33)
which is slightly bigger than the first ideal MHD ballooning instability limit. However, dis-
sipative trapped ion modes remain unstable. In th.is range of a, the basic electromagnetic
pertﬁrbations are caused by charge separation in the presence of the trapped particles in
tokamak. ‘ | , |

(B.) At marginal ideal MHD ballooning instability thresholds, the trapped particle
ion-ion collisions coupling with the diamagnetic drift contribute an expansion free energy
related only to ion temperature gradients and lead to dissipative drift ballooning instabili-
ties which propagate in the ion diamagnetic direction. Because they require a high ion-ion
collisionality, these modes thus may become important in the edge plasma.

However, if « is further from the marginal stability.th'resholds and satisfies the con-
ditions of Eq. (27a), then trapped particles introduce a collisional damping effect on the
usual shear Alfven waves with the rate given by Eq. (270).

(C.) In the range asc; < a < apcz obtained in Eq. (25) for fixed 3, we encounter ‘
ballooning instabilities, which are a competition between the stabilizing influence of mag-
netic tension and the destabilizing impact of the expansion-free energy associated with
the unfavorable curvature of the magnetic field. The dual role (destabilizing effect and
shortening of connection length) that a plays results in the appearance of a second stable
region in the a — § plane.

(D.) Starting from ape; < aer < @pe2 discribed in (A) and (C), we have shown
that trapped particles induce purely magnetic modes for large «. These purely magnetic
trapped particle modes are excited via resonances between the modes and the trapped
particle processional drift. The instability mechanism is the energy transfer from the
compressional magnetic field into the perpendicular motion of trapped particles when the

vacuum magnetic drift is reversed by diamagnetic pressure, which possibly persists in the
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second ballooning stable region. Fortunately, these modes are easily stabilized by trapped
ion-ion collisions. |

The basic trend discussed above is that long wavelength toroidal instabilities are likely
to be present over a wide range of «, with the electrostatic branch dominant at low a, the
shear Alfren branch dominant aﬁ moderate a, and compressional Alfven branch dominant
at high a. A model Lorentz operator is used to introduce collisional dissipation into the
unified theory. The collisional dissipation was found to produce dissipative trapped particle
modes and dissipative drift ballooning modes, to damp shear Alfven waves, and to stabilize
the electrostatic trapped ion at long wavelength limit and to stabilize the purely magnetic
trapped particle modes. These residual dissipative instabilities appear to persist up to the

larger a values (@ > apc) associated with the “second stability” ballooning regime.
g g reg
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