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In the local approximation the electrostatic dispersion relation for the (ion or electron)
temperature gradient driven modes is solveci retaining the full guiding-center resonance con-
dition w = kyjvj+k-vp(vi, vﬁ) Increase of the slab-to-toroidal ratio parameter kjvr/kLvp
is shown to directly increase the threshold value of the temperature-to-density gradient pa-
rameter 7.. Therefore the local anomalous heat flux has a strong dependence on the‘safety

factor ¢ when & ~ 1/¢R.

In confinement stabilitj); theory the tempera,tui‘e gradient driven drift wave instability has
been studied extensively in the limits of slab and toroidal geometry. In the slab geometry the
resonant dynamics is from the one-dimensional (d = 1) v motion along the magnetic field
‘B, whereas in the toroidal geometry the resonant dynamics is from the VB-curvature drift
vp(3vi+vf) /v in the three-dimensional (d = 3) velocity space. In fluid theory the threshold
of the temperature gradieﬁt instability is given by the parereeters n=0,nT/0, Inn and
the ideal gas compressibility constant T' = (d 4+ 2)/d. The critical or threshold temperature
gradient value 7, is given by 7. = ' —1 = 2,1, and 2/3 for d = 1,2, and 3, respectively, and
arises from the balance of the thermal energy released by ¥g dp/dr and that taken up by
plasma compression I'p V - ¥. Horton and Varma! give a derivation for ne=2/3forI'=5/3

from the Braginskii equations.



In this letter we show that the kinetic dispersion relation gives a critical 7, that increases
from 7, = 2/3 in the toroidal regime with d = 3, to the value g = 2 for the slab regime
where the effective dimensionality is d = 1. This kinetic theory variation of 5. follows from
the dimensionality of the guiding-center resonance in velocity space and the value of kp due
to the Bessel function weighting of the velocity resonance.

We show the details of the change in the unstable wavenumber domain ~y(ky, k) as
the transition from the toroidal to the slab regime occurs. The parameter governing the
transition is = = kjjvr/wp =~ kj R/k, p which, for fixed &, p, is proportional to 1/¢(r) when
27/ ky| is taken as the length between the good and bad curvature regions ¢ R. The increase of
the threshold n with 1/¢ was found in Hong et al.2 from a ballooning mode calculation, which
gives the proper averaging over the poloidal angle of the local dispersion relation used here.
Here we restrict attention to the local, electrostatic stability taking k| as a parameter. From
ballooning mode analysis we estimate that the relevant range of kjj is —1/¢ R <k <1 /qR.
A shear-dependent formula from the ballooning mode weighted average of k)| is given in
Horton-Choi-Tang?.

The electrostatic kinetic dispersion relation, Dy(w)®; = 0, in dimensionless units is

w0 p+oo [rw — ky(1 4+ 1(v2/2 = 3/2))] JE(kL vy [TY?)e™¥*/? vy dv dy)
D=D,— y §
/o /_oo Tw — kyen(3 01 + 0f) — Ky o/ (27)1/2 (1)

with analytic continuation from Im(w) > 0. Here D, is the adiabatic part of the plasma
response. Equation (1) applies to both the electron (7,) and the ion (7;) temperature gradient
driven instabilities. For the g, mode*, D, = 1 + T./T; and the quantities k1, k), and w are
normalized t0 pe; = Vei/Wee, Tn = Ln = —(01n n/0z)™1, and ry,/ve; with ve; = (T;/me) /2.
For the 7; mode, D, = 1 + T;/T, and ki,k, and w are normalized to p; = ¢5/Weiy T,
and r,/c, with ¢; = (T /m;)}*. We note that for B > 2m./m; the n, mode develops an
1/2

electromagnetic component for (m./m;)*? < ki < (8e/2)

In the higher frequency domain |w| 3> ky €, kjj, the resonant dominator is expanded to



obtain the fluid theory response Dguq ~ A + B/w + C/w? which tends to limit D(|w| —
) = A = D, — Io(k%)exp(—k%). At frequencies comparable to the guiding-center drift
frequency, the small k limit is analyzed by Similon et al.® and shown to have a w/2 branch
point on the w > 0 resonant side of the real w axis and Im D = 0 for w < 0. For &k, &, < k”
the function reduces to the one-dimensional plasma Z(¢) function which is regular at w =0
with Im Z(4) = /2 exp(—¢?).

The fraction of particles of species s resonant with the fluctuation ¢y, is given by R (w) =
/5(w —k-v,.)fs(v)dv with /+°° dw Rj (w) = n,. The resonant particles lie on the ellipse in
vy — v)| space with center at v J_°°= 0 and vy = —k)/2¢, k,. For each w the resonant particles
are in a band of width wr,, where 7, is the correlation time of the fluctuation, along the

ellipse

€n o . B\ _w M |
PR & (v” i 2e, ky> - ky i den k2 (2)
For marginally stable toroidal 7 modes the frequency is wn, < &y 26, and ky < 2¢, kj-so the
radius of the ellipse is of order the thermal velocity and it is centered at v, = v = 0. For slab
modes the center of the ellipse moves off to a high parallel velocity |v|/vr = k)/2en Ky > 1
and the resonant particles have v = w/kj. The transition in velocity space is shown in
Fig. 1. The toroidal resonance involves both v, and vy and is thus a three-dimensional d = 3
resonance. The slab resonance is a one-dimensional d = 1 resonance for k; < 1 where all
vy ’s contribute. For k; > 1, however, only the v; < 1/k, particles contribute significantly
to the resonance so the small pitch angle particles are more heavily weighted, changing the
effective T | |

In Fig. 2 with €, = 0.1 we show the transition of the critical temperature gradient 7, as
a function of z = ky R/2kyp = kyjrn/2€, ky for several values of k) = k, from 0.1 to 1.0. The
curves are obtained from the marginal stability analysis of D(w, k) = 0. There is a rapid

transition from the toroidal value 7. ~ 2/3 to the values 7. R 2 to 3 as the slab-to-toroidal

parameter k) 7,/2¢n ky increases through one.
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In Fig. 2 we re-express the results of the marginal stability analysis in terms of z =
kyTn/26n ky = kj R/2ky, p by means of two simple parameterizations of n.(z). We find it

convenient to express the function as

@) = {rars ®)
giving a rapid change from 1 to 3 as z increases from zero to z > 1. From Fig. 2 we see
there is some residual k,-dependence that is not contained in the simple formula of Eq. (3).
An alternate parameterization (1 4 z2)/(1 + z?/5) is also shown for comparison.

In the toroidal limit z — 0, Nyquist analysis gives the marginal frequency

Wm = 2€n Ky (g-n—l) /(77—26n), (4)

which must be positive for a resonance to occur in Eq. (1) at & = 0. Thus, the condition
n > 2/3 is necessary for instability. For small e,, the condition 7 > 2/3 is also sufficient
to have instability since Re D(wy,) = D, — ¢cin/e, < 0. For finite aspect ratio &,, the
compression of the plasma in the no'rmniform toroidal magnetic field leads to the additional

condition from Re D(wn,) < 0 that

_ Cy ~ 0.7
er = €nfn < D~ D. (5)

as obtained earlier by Horton-Hong-Tang* and Dominguez and Waltz®.

In the slab limit 2 > 1, the condition of marginal stability™® gives

kr2 2 I ,
k”ﬂw—i—kﬁrﬁ[;—l—ij(l i)}:o. (6)

2
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For small k, and n > 2 there are two real roots and the system is unstable at small &) rn.

The marginal frequency is then

9\ 1/2
W, = Ek| Ty (l - 5) . (7)



The condition Re D(wy,) < 0 from the Nyquist analysis then gives

k” T kylo e 04
< =
n < D, — D,

(8)

kjrr =

where the upper limit 0.4/ D, occurs for k, 2 1 where the slab 7, drops to one™®.

Above the critical n > 7.(z) the change in the unstable wavenumber domain is shown

by the growth rate contours v(k1, k) in Fig. 3. Figure 3(a) shows the toroidal system with

e, = 0.1, and Fig. 3(b) shows the slab system with &, = 0, both for n = 3. Both systems

have a critical kj(ky) curve below which || < k(k,) the modes are unstable and above

‘which v, < 0. vBoth systems have growth through all k,. The slab system has no growth for

kj = 0. The toroidal system, however, has a large maximum growth rate <o, ~ 0.23 ~ 27941
along ky = 0. The toroidal system has a local maximum growth at k, < 1/(1 4+ 7)/? and a
secondary maximum growth rate at k£, ~ 1.5. Clearly, the faster growing, long wavelength
modes of the toroidal regime make the transport in the toroidal system larger than in the
slab system. An example of this dominance of the transport in the toroidal regimé':'for the
heat flux is shown in Fig. 4 of Hong and Horton®. _ |

The marginal stability frequenc.y is important in controlling both the E x B t~f§nsport

in profiles near marginal stability and also the division in the ion energy spectrum between

~ those particles giving energy to the mode and those receiving energy from the mode. In the

local electrostatic limit the transfer of energy from the fluctuation ¢y, to the particles given

by (j - E) reduces to
5 B) 16wl = g [ dee (9 re(e) SNC)
where
P (€) = w [w — Ry (L +n(e = 3/2))] ,
and Ay, (€) is the pitch-angle averaged resonance function

+1 d k2 . -1/2
Akw(e) = /_1 5((.0 - k“ Y| — wD) ?'u = g I:(-—z-u + &, kyw> € — 6721 k: 62} >0 (10)
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for energies in the range emin < € < €max, With Ay, (€) = 0 outside this range. The lowest

resonant energy is
w2
L= 11
i = R 26, kyw + (k] + 4y y0) /2 (1)

which reduces t0 €qin = w?/2 kf for &, < kff/kyw and emin = w/2en ky for € > kit /kyw. The

maximum resonant energy moves in pitch angle from p = 0 as k| — 0 to u < 0 for &, — 0,

and is given approximately by

ki
262 kéi forz>1
Emax = (12)
d forz 1.
En ky

At marginal stability there is no power transfer, (j - E) = 0, due to the balance of higher
energy particles emitting into the wave and lower energy particles absorbing energy from the
wave. The critical relative energy €., above which the particles emit energy into the mode,

is given by

on =Tt =3 (22 ) [y - (13
Below this energy the particles absorb energy. At marginal stability the rate of absorption
and emission are in balance when the energy integral over the energy spectrum is performed.
In.the toroidal limit the marginal frequency vanishes. From Eq. (4) at n = 2/3, w,, = 0 and
only the lowest energy particles are resonant as shown in Fig. 1 and Eq. (13). For n > 2/3,
the division between absorbing and emitting particles shifts to higher energies according to
Eq. (13). As k) increases, the marginal frequency increases, first in the negative direction,
and then reverses at ¢ = 1 to 1.5 and becomes positive, reaching a few tenths of kjvr
at £ = 3. When the mode is rotating in the negative direction, only a few particles with
negative k) v are resonant.

In Fig. 4 we show the effect of varying the toroidicity €, on the growth rate when n >

ne(z). For finite &y, Fig. 4(a) clearly shows how the transition from the slab mode to the



toroidal mode occurs as the toroidicity e, increases. The transition point in toroidicity is
given by €, =~ k);/2k,, which is the point where the nature of the velocity resonance changes
from slab to toroidal. In Fig: 4(a), for 2k, = 1 the change in character is particularly
strong along the k| = 0.2 growth rate curve. The small toroidal resonance contributes to the
stabilization for the slab (k”' = 0.2) mode. Similarly, the slab Landau resonance contributes
a stabilizing effect on the toroidal mode, which is also shown in Fig. 3(a) by the decrease of
v with increasing .

The toroidal mode is restabilized as the toroidicity exceeds a critical value. In previous
studies which used the fluid approach*®, this resta.bilizatibn was shown to be due to the

compression effect, and the critical value of the toroidicity was given to be (€n)erit = 0.357

or (e7)eris = 0.35 for T; = T,. Figure 4(b) shows that the value of (&, )at also significantly

depends on the wavelength 1 /ky, and a more general formula is
(en)crit = 0127]/ky

orer =é€n/n =rr/R < 0.12/k, < 0.4 ~ 0.5 for instability at fixed kjr, = 0.1. As seen from
Fig. 4(b), the flat density profiles with ¢, > 1 require that er be less than a critical value for
instability as shown in Horton et al.* (1988) and Dominguez and Waltz et al.® The longer

wavelength modes are the first to become unstable as er is decreased from large values.

The fluid turbulence formulas for the thermal diffusivity X are proportional to ., (n—n.)™.

In the toroidal limit Ref. 3 gives m = 0.5, and in the slab limit Ha.maaguchi-Hor’con10 give
m = 1.0. Here we calculate maxv%(k) and find that m = 0.7 with 4/, = 0.13 for €, = 0.1
and kj = 0 (toroidal modes), but m ~ 1.0 with 4/, = 0.06 for &, = 0.0 (slab modes). We
suggest that the fluid turbulence formulas®!® are good measures of the thermal diffusivities
X provided that the kinetic values of 7 are used in place of the correspondirig fluid values.

In conclusion, both the toroid@l regime and the slab régime are important sources of

anomalous heat flux.. The toroidal regime, however, has both a lower threshold in 7 for onset



and a larger small k, growth rate, which lead to a considerably stronger anomalous heat
flux. Therefore, if there is either a small ¢ and/or strong magnetic shear to force the system
into the slab-like regime, the anomalous heat flux can be strongly reduced. Clearly, this
variation with & = ky R/kyp ~ g/q(r) of the marginal stability condition n.(z) and the shift
of the maximum growth rate in k,, k| space give a strong ¢ dependence to the anomalous
heat flux. Database studies of X; and X. do show a strong improvement at low ¢ (high
toroidal current); however previous theoretical studies®!! have typically given only a rather

weak ¢ dependence for the transport.
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Figure Captions

1. Resonant particle velocity regions (shaded) as a function of kw. (a) The toroidal

regime. (b) The mixed slab-toroidal regime. (c) The slab limit.

9. The transition of the critical temperature gradient from toroidal to the slab regime as
a function of the parameter & = kyr,/€, ky p = kjjvr/wp for several k, p compared

with the fitting function in Eq. (3).

3. The growth rate in the wavenumber domain when n = 3 (a) in the toroidal regime

with €, = 0.1 (b) in the slab limit with ¢, = 0.0.

4. The toroidicity dependence of the growth rate when n = 3 (a) for kr, = 0,0.1,0.2
with &, p = 0.5 (b) for k, p = 0.5,1.0, and 2.0 at kr, =0.1.
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