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Summary

A Vlasov-Maxwéll description of the ubiquitous solar Coronal structures is presented. It is
found that an equilibrium plasma éonﬁgura.tion can live with spatial gradients in density, |
temperature, current, and drift speeds of the éha.rgéd particles. Any stability study must
be carried over this inhomogeneous equilibrium state. In addition, the Vlasov description

admits the investigation of kinetic processes like heating and radiation.
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1. Introduction

Solar coronal loops have been conventionally studied through magnetohydrodynamic pro-
cesses since their shapes betray the underlying magnetic fields. Coronal looi)s are especially
favored for their ability to pick up energy from the convection zone and deposit it in the
corona. The foot points of the loops suffer continuous turning and twisting, producing com-
plex magnetic geometry in which current sheets have been shown to form by many. One
believes that ohmic dissipation of current in these sheets can maintain a million degree
corona. Attempts to show the formation of extremely small scale current sheets constitute
the efforts of Parker (1983, 1987), Low (1987), Low and Wolfson (1988), Ballegoovijen (1985,
1986), Karpen et al. (1990), and many more. The MHD equilibria of coronal loops have been
investigated by Priest (1981), Hood and Priest (1979), Vaiana et al. (1978), Tsinganos (1982),
Krishan (1983, 1985), and Krishan, Berger, and Priest (1988). In this paper, we explore a
Vlasov-Maxwell treatment of a current carrying cylindrical plasma. In this description, it is
possible to derive the spatial profiles of equilibrium plasma parameters as well as the exact
particle velocity distribution functions. It is found that the system develops strongly peaked
current denéity profiles under very commonly occurring conditions. It is perhaps the distur-
bance of these current density configurations that leads to the heating and acceleration of

particles in coronal loops.

2. Vlasov-Maxwell Equilibria

We will closely follow the recent work of Mahajan (1989) on Vlasov-Maxwell equilibria of
several systems the specific cases of which are Z pinches and tokamaks. A coronal loop will
be represented by a cylindrical column of plasma with current density J along the axis of

the cylinder and with no gravity. The particle density n, the temperature T, the particle



drift speeds u are in general spatially varying quantities. Here, we allow all spatial variations
only in the radial direction. The plasma is embedded in a uniform axial magnetic field Bo.

The relevant equations for an equilibrium system are

8 eV R T
‘/,-ar —;z: -E+‘5><(B+ezBO). 6V = 0 (1)
6f,~ € ] V n ] af, _ :

V;-a? H‘ L.E} + -5 X (B + ezBo)- . 5{; = 0 (2)
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[; o (TBo)] = 57 | (3)
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‘where f;. are the single particle distribution functions, and (E,B) are the self-consistent
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fields. A displaced Maxwellian of the form
fe,i = Wal;;/e?' exp [— (V ht ue,g')z/‘/;?i] ge,i('r) o (5)

provides a self-consistent solution of Egs. (1) to (4).  Here ng is the ambient density, Vu; =
(2T.:/ m,,;)ll % and u.; are, respectively, the thermal speeds and the drift speeds, and T

are the temperatures.

Case I

The entire space dependence lies in the factor g.;(r). The current and charge densities (J, p) -

are givén by
J = -—€No [geue - giuc'] (6)

and

p = —englge—gi]. (7)



The drift speeds are expressed as
u,; = &,ul’ + Gus. (8)
Assumption of no charge separation gives

ge=gi=4g 9)

and
J = —eng [u. —ui}g. (9a)

Substituting Eqs. (5), (8), and (9) in Egs. (i) to (4) one gets
1 dg

10 2g
';5;(7'5). = -5 (11)
for
Ueg = Ujg = 0,
where
| el By
b - CTc ’ (12)
Uiz
p = ;;e:,
2C% V2
2 _ &Y _e — . \-1
6e }_ wgc 2,“32 (1 ,‘) *
The solutions of Egs. (10) and (11) are found to be
1
- — 13
I = W+ ryaey 13)
and
r
= - . 1
(8 = ~5 T+ (14)

Thus one obtains a density profile peaked at the axis with a characteristic length scale .

which will be estimated in a later section.



Case 11

Here, in addition to density, gradient, the spatial variation of temperatures is also allowed.
The drift speeds u are still homogeneous. It has been shown (Mahajan 1989) that a series
representation for the distribution functions qualifies as a solution of the inhomogeneous
Vlasov-Maxwell system, the expansion parameter for the series being (u/v), the ratio of
drift and thermal speeds. This is very much appropriate for the considerations in coronal
loops as discussed later. Using the smallness of (u/v), we write for the distribution function

as

PR Y __Vf_]
© T TR (Ve | VAR

1+ 2u. < ) Z Com (7—;)n (%) Zm] - (15)

Veo n=1 m=0

where 1, describes the spatial variation of electron temperature and Vg is the therrrial speed
on the axis (r = 0). Substituting in Egs. (1) to (4) and keeping terms only up to (u/V) one
finds |

;7 = G-t w9
which gives
g =3/ : (18)
and
. a,,( rb) = (%33 - 1) e (19)

with Cio = 1 and C;; = B. Since we are interested in equilibrium solutions, we assume
Y. = 9¥; and B, = f;, i.e., the electrons and ions have identical temperature profiles. With

the wisdom that density variation is generally steeper than temperature variation, one can
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take 8. = B; = —p. Substituting for current density J, as

J, = enggi)? (% - 1) (1 + 7o) ueo

we find
1df d 2
e {p— —_ 2 Q
r dr [rdr ] Sfﬁe ’ (20)
wo __To _ _ _
Ue0 - T::O - 0= H
Q=(5-2/8)ln%, (21)
and
St _ 2
be - 58 -2

The solution of Egs. (16), (17), and (19) gives the profile functions as

p = (1+ r2/463,f)‘5';%5 (22)
g = (1+ r2/46j:’,f)—1("’%5"‘:"‘2Z | (23)
-1
with the temperature
T x ¢*= (1 + r2/46§,,)““% , (25)
the current density
J o gt = (1+rY46%)", | (26)
and the pressure
p x gy?= (1 + r2/4525) -, (27)

One observes that depending upon the value of 3 the radial variation can be positive or

negative. Thus for § > 2/3, both density and temperature fall away from the axis, whereas
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for 28/3 > 2/5, the density increases and temperature decreases away from the axis. For
B < 2/5 the temperature increases towards the surface and this is very much reminiscent of
cool core and hot sheath type of loops observed by Foukal (1978) and Krieger et al. (1976)
and modelled through variational principle in MHD by Krishan (1983, 1985). The other
parameter §, which characterizes the spatial variations is related to the skin depth. We shall
see in a later section that the measure of §,, which determines the steepness and extent of
the current density profile is commensurate with the requirements laid down by the joule

heating of a loop plasma.

Case I11

Here, we allow gradients in density and drift speed. It is found that the presence of tempera-

" ture anisotropy permits a displaced Maxwellian solution of the system where the distribution

functions are given by

___nog(r) Vi+ V7 ( — ugiGei(r ))
fe,z - 1['3/2‘/:‘.‘/;’; €Xp | — ‘/32’, - » ( ;,’)2 (28)
and the field equations are
1 0¢
b= X5 (29)
10 2 , v
Tgrh) = -gg-yrﬁ (30)
and :
ldg _ ugz)2 A
52}"_2'( = @1)
where '
N= V2 Vi _T.-T. AT V2
T e 2u(2)ze - meugzc - Te 2“32:

is a measure of the temperature anisotropy. Here, we have taken ¢, = ¢; = ¢ with ¢(r = 0) =

1, and g(r = 0) = 1. Solving Eq. (31) for g in terms of ¢ and substituting it and for b from



Eq. (29) into Eq. (30), one gets

L2(-%) = Boew|(%2) (2 -0) )

and
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Equation (32) has been solved numerically and here we will reproduce some of the figures
given in Mahajan (1989), since the spatial behavior of the density, the magnetic field, and

the current density is essentially a function of the dimensionless parameter A.

3. Coronal Loops

Coronal loop, a bipolar structure is characterized by an electron density ng ~ 101°—10"2cm™?;

a temperature varying from a few tens of thousands to a couple of million degrees Kelvin,
a length of 10° — 10°cm and a radius of 108 — 10%cm with an axial magnetic fields of a
few Gauss. The current flows essentially along the axis of the cylindrical plasma column
and produces an azimuthal component By of the magnetic field. Observations in EUV have
shown that loops of different temperatures are coaxial and this has led to the identification
of cool core and hot sheath type of loops, Foukal (1978), Krishan (1983, 1985). The x-ray
observations further reinforce the inhomogeneous nature of the underlying heating mecha-
nisms. Resonance absorption of surface MHD waves as well as the joule dissipation of high
density current sheets in addition to the ubiquitous mini magnetic reconnections are some
of the favored candidates for heating of the solar corona in general and coronal loops in par-
ticular, Hollweg (1981). Here, we find that the exact solution of a Vlasov-Maxwell system
naturally admits the peaked spatial profiles of current density and magnetic field and we
believe it is this equilibrium configuration when disturbed gives rise to sporadic phenomena

of flaring, acceleration, and heating. It has been shown by Rosner et al. (1978) and Hollweg



sy

(1981) that for the joule dissipation to provide enough heating to balance the radiation losses
for the typical conditions of electron density, magnetic field, and temperature, the current

sheath must have a thickness of a few hundred to a thousand cms and anomalous instead

of the collisional resistivity must be operative. The latter gives us a clue to the relative

electron-ion drift velocity that must exist to excite ion-acoustic turbulence which may be
responsible for anomalous resistivity. The typical parameters in this scenario are chosen to

be, Hollweg (1981)
electron density in the sheath n = 10°cm™3,
electron temperature in the sheath 7, = 2.5 ‘x 107K,
electron therm#l speed _V; = 2.7x logcm/ sec,

electron drift velocity u, > sound speed = 4.5 x 107cm/sec,

the magnetic field By produced by the current density J, is 10 Géuss, and the thickness (AR)
of the current sheet turns out to be ~ 103cm. We recall from the previous section that be
emerges to be the characteristic length scale in the solutions of Vlasov-Maxwell system. Let

us estimate it

1.04 x 103cm for T. > T;

= 0.97 x 10%3cm for T, = 97T:.

Thus we find that current profile of small widths are outcomes of the exact solutions of the
Vlasov-Maxwell system. Here, we present a few examples of spatial variations of plasma
parameters. The variation of density ¢ and magnetic field b profile factors for Case I where -

only the density is space dependent, is given by Egs. (13) and (14) and is shown in Figs. 1



and 2. A sharp fall in density away from the axis is obtained. This is reminiscent of the
condensations often observed at the axis of a loop. The current density accordingly is found
to be maximum on the axis. The spatial profiles for Case II allowing temperature variation
are given by Egs. (23), (24), and (25) and are shown in Figs. 3, 4, and 5 for three values
of the parameter 8. In this case the temperature increase [Eq. (25)] away from the axis is
found for B < 2/5. Case III gives very interesting profiles where the current density (gu)
appears in the form of multisheaths (Fig. 6) for large value of the anisotropy parameter;
the corresponding density profile (Fig. 7) is almost flat. These profiles are reproduced from
Mahajan (1989). Since all functions as well as the variables are expressed in dimensionless

forms, we only need to provide appropriate normalization. For coronal loops, the anisotropy

parameter

AT, V?

A= —
T. 2u%
AT,
= . : 3"'_i.

1.8 x 10 T

Thus for A = 5 one finds
AT’? = 2.7 x 1073,

which is reasonably small.

4. | Conclusion

A Vlasov-Maxwell description of coronal loop plasma admits a variety of equilibrium spatial
profiles of mass density, current density, the temperature and the magnetic field depending
upon the type of inhomogeneities allowed. The profiles vary from being flat to spiky and
do resemble the ones derived from EUV and x-ray coronal observations. Especially the
multisheath current profiles derived here complement the magnetohydrodynamic study of

current sheet formation.
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Figure Captions
1. Variation of density profile function g vs. z = r/ée for Case I [Eq. (13)].
2. Variation of magnetic field profile function (bée) vs. z for Case I [Eq. (14)].

3. a) Variation of temperature profile function 3?2 vs. z for § = 0.5 [Eq. (25)].
b,c) Variation of (bée) and g vs. = for 8 = 0.5 [Egs. (24) and (23)].

4. Variation of 92, (bée) and g vs. z for § = 0.8.
5. Variation of 4?2, (bfe) and g vs. z for = 0.2.

6. Variation of current profile function (gu.) vs. z showing formation of multisheaths for

large value of anisotropy parameter A [from Mahajan (1989)].

7. Variation of density profile function g vs. z for several values of the anisotropy param-

eter A [from Mahajan (1989)].
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