DOE/ET/53088-43 IFSR #43

IMPURITY "FLOW REVERSAL IN TOKAMAKS

WITHOUT MOMENTUM INPUT

F. L. Hinton

October 1981




IMPURITY FLOW REVERSAL IN TOKAMAKS WITHOUT MOMENTUM INPUT

F. L. Hinton
Institute for Fusion Studies
The University of Texas at Austin

Austin, Texas 78712

ABSTRACT

A new method for impurity flow reversal is suggested, which does
not depend upon momentum input. The method uses neutral-beam injection
or radio-frequency fields to drive the Pfirsch-Schluter ion current

required for toroidal equilibrium,., The necessary alteration of the

momentum transfer between the hydrogen ions and impurity ions can cause
the former to diffuse into the plasma and the impurities to diffuse

out.
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I. INTRODUCTION

Impurity control is a problem of major importance for tokamak
fusion reactors1. To date, several active impurity control methods
have been proposed, including momentum input from neutral beams or

2-8 8-12’

radio~-frequency waves , particle and heat sources and plasma

rotationl3,

A new method for impurity flow reversal is suggested here, which
does not rely specifically on the deposition of particles, momentum or
energy. It utilizes neutral beams or radio-frequency fields to drive
the "Pfirsh-Schluter current”, i.e. the flows of particles and heat,
parallel to the magnetic field, which are required in a toroidal
equilibrium state. The method is very similar to current-drive methods

14 or radio-frequency fields15, which do not impart

using neutral beams
momentum to the plasma. It is shown here that driving a current

carried by the ions (rather the electrons) can be used to reverse the

flux of impurities into the center of the plasma.

Momentum input can be avoided with neutral beams by using both
co-injected and counter-injected beams with different energies and
currents1u. If radio-frequency fields are wused, ion cyclotron
resonance absorption of long wavelength waves occurs with negligible
momentum input15. The effect of the beams or fields is to alter the

collisional momentum transfer between plasma ions and impurity ions,

without changing the total momentum. This collisional momentum
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transfer between ion species is responsible, in the neoclassical

theory16’17, for the diffusion of impurities into a plasma.

The alteration of the momentum transfer, by the method proposed
here, occurs because the plasma ion velocity distribution is skewed, as
a result of the neutral beams or radio-frequency fields. In the case
of neutral beams, the more energetic beam of ions, produced from the
neutral beam injected in one direction, thermalizes more slowly than
the oppositely directed ion beam. In the case of radio-frequency
fields, ion cyclotron resonance increases the perpendicular energies of
particles 'moving in only one direction. In both cases, the 1ion

velocity distribution becomes skewed,

The skewed nature of the distribution function is similar to that
which occurs in the presence of a temperature gradient parallel to the
magnetic field, and affects the momentum transfer in a way which is

easily understood.Tons with parallel velocities having one sign tend

to be more energetic, and hence have lower rates of collisional
scattering from impurity ions, than those going in the opposite
direction., A resulting net momentum transfer between the ion species
occurs in the absence of a relative flow between them., Such a particle
flow is thereby established to maintain a steady state with no net
momentum transfer, and this is the driven flow; it can be the flow
required for toroidal equilibrium, The elimination of the momentum
transfer implies that the inward neoclassical diffusion of impurities

is also eliminated, Driving more current than is required for a steady
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state reverses the sign of the momentum transfer and reverses the

neoclassical impurity influx.

In Section II, the transport problem is formulated in terms of the
drift kinetic equation with source terms corresponding to neutral-beam
injection or radio-frequency fields. 1In the high collisionality limit,
the modification of the distribution function due to these sources
comes in through the steady-state particle and energy conservation
equations. It is shown that the sum of the gradient-driven and
source-driven flows must satisfy the toroidal equilibrium condition,
The condition for impurity flow reversal is derived in Section III, in
terms of the parallel particle flow and heat flow driven by the
sources. These flows are assumed to be carried by the suprathermal
ions, and are calculated in Section IV. The use of neutral beams and
radio-frequency fields is treated separately in Sections V and VI,

respectively.
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II. NEOCLASSICAL DISTRIBUTION FUNCTIONS

The drift kinetic equation for the plasma ions, to first order in

the usual poloidal gyroradius expansion parameter17, is

afio

ot

b . 17 . - (2')

where the independent velocity variables are p{magnetic moment) and
e(particle kinetic energy). The parallel velocity is
vy = [2(s—uB)]1/2, and the unit vector tangent to the field 1line
direction is b = B/B. The axisymmetric magnetic field is B = I(PIVey +
V¢ x VY, where ¢ is the toroidal angle, ¢ is the poloidal flux lable
for a magnetic surféce, and I = RBT where R is the major radius and BT

is the toroidal field. The guiding center drift velocity component

perpendicular to a magnetic surface can be written as

m.c o
—— IB = VB™2(uB + v&).
2e

Vpi ¢ VY =
The linearized collision operators, containing the effects of
like-species as well as unlike-species ion collisional scattering, are
denoted by C§§). The effects of collisions with electrons, as well as
the induced toroidal electric field, are neglected. The electrostatic
field is omitted for simplicity, although it is easily included and

does not modify the results.

O O S S SR

PR

R ol

-



~5-~
The source term S on the right-hand side of Eq. (1) represents
either the creation of energetic ions by neutral-beam injection, or the

quasilinear velocity diffusion caused by radio-frequency fields:

S = S16(E—1)6(u—u1) + 526(g+1)6(u-u2)

(2)

Here all velocities have been normalized to the ion thermal velocity
Vi(= 2T/mi)., The particle source rates for the two neutral beams are
proportional to S1 and S2; uq and u, are their velocities.'.The first
beam has been assumed to be moving parallel to the magnetic field, (& =
1, where £ is the cosine of the pitch angle) with a positive component
in the direction of the plasma current (co-injected), while the second
beam has been assumed to be counter-injected parallel to the field
lines (£ = =1). The perpendicular velocity scattering rate Vg 1s a

measure of the strength of the radio-frequency fields, which have a

frequency of & times the ion cyclotron frequency, and are resonantly
absorbed by ions with parallel velocity Uy The strength of the
radio-frequency fields has been assumed to be sufficiently small that
Vg 1s much smaller than the collisional 90°-scattering rate. An
expression for VRE» in terms of the electric field strength of the
waves, as well as other parameters, can be obtained by comparison with
the general quasilinear diffusion equation18; it is not needed here,

however.,
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The drift kinetic equations for the various impurity ion species
are similar to Eq. (1), except that the source term S is absent:

3 5

J L)

T = - (
+ V"b ° ij1 + VDj . ijo = E Cjk fk1 .

The zeroth-order distribution functions ij for all of the ion species
are Maxwellians with the same temperature, with density and temperature

constant on a magnetic surface:

fio = nj(w)n'3/2 v33 exp(—vz/v%) ,

where

\'4

[EFRIV)

= 2T(¢)/mj .

In the cool edge region of the plasma, where the mean free paths
are short, all ion sgspecies may be assumed to Dbe in the

collision-dominated regime, (vqu/vj) >> 1, where v is the collision

frequency and vy the thermal velocity for species J, and gR is the

connection length. The standard expansion procedure17 for the

collision-dominated regime leads to ion distribution functions given by

_ (=1 (0) (1
f = fj + fj + fj + e

J1

where the superscript indicates the order in the small parameter
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(vj/vqu). One finds that f§'1) has the form of the perturbation of a

Maxwellian due to pressure and temperature perturbations,

Sp. 2 .
(-1) . J ve 5y 6T
J Vj

The temperature perturbations of all ion species are equal, in the
strong temperature equilibration limit19. To next order in the high
collisionality expansion, one finds that 3

gradient-driven term and a source-driven term:

f(O) is the sum of a.

fgo) = 18 . f(S), (1)
where

Ecgfi) 28 2y b . Vépi/py + ({%— g) b« VST/T] fi0 + (5
and

E cgﬁ)fff’) = S+ 3;‘100 : (6)

The time derivative term is included to allow for the heating due to

the beam injection or radio-frequency fields.

o i e o e e e e e et e
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The equations for the f§1) 's have as solubility conditions the

steady-state particle and energy conservation equations

2rv3(uf S, + ul, 8y , =i,

3 : (0), = _
S d V(V“b . ij + Vpy ijo) = (7)
0, j £1i
2
m.v ~
1J advL— - 21y (ryp e el w T e Ve =0 (8)
where
Un. T 2
Q = 2nv§ T(u? Sq + ug 82) P z!vRFexp(— ug) - . (9)

ﬂ1/2

The right-hand sides of Egs. (7) and (8) are the rates of particle and

energy deposition from the neutral beams or radio-frequency fields.

The particle flux and heat flux moments obtained from the solution

of Egs. (7) and (8) are

o0p
L= 3 (0) _ J
nsusy = I &v vy fj = -(cI/esz) 5 + KjB , (10)
2
msv
= 3 J 5 (0)
~ 5 oT
where

VS I

ey e e s e e i
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2ﬂV%(U$ Sq + ug 52), j=1i , :
B « K. = (12)
0, j #1i

and

Be VL = Q . (13)

These are the parallel particle and heat flows required for a toroidal
equilibrium, i.e. for a quasi-equilibrium state which changes only on

the transport time scale,

The solution of Eg. (5) for the ng)'s has been obtained using a
moment method!9~21
only one impurity mass is included here, although all charge states of
the given impurity element are included. Considerable simplification

is achieved also by assuming that the impurity mass is much larger than

the hydrogen ion mass: mI/mi >> 1.

, Which is outlined in the appendix. For simplicity,

By taking moments of Eq. (5), we find the momentum transfer rate,

or friction force FgG) , and the "heat friction" GgG) , due to the

gradients:
@) . ;3 () (@) . D .
F5'0 = [ &V myv, E Cik” fix =~ = b« Vépy , (1)
G(,G) = fd3v ms:v (_VE_ E.) z C('Q')f(G) = E-ng + V6T (15)
J = U V2 2 jk “k 2 *
j _
By expressing the fﬁG)'s in terms of moments, relations between FgGZ
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GgG) and these moments may be obtained. The results, for the hydrogen

ions, are
(G 172 MM 46 G
F®) = -2 ETE SENCI I -F 2 gy im0 (16)
6{6) o p1/2 11 — L tandy@f§) - arp) - 2 uhal e (17)

where the qu s are functions of o which are given in the appendix,

with

- 2
o = Z ny z5/n; . (18)
J
(The sum running over all charge states of the impurity species) and

y
1/2 ns;e LnA
-1 _ 16 (m e (19)
11 3 2 mg V3

(@)

il

and ng)

with v, = (2T/mi)1/2, and &nA the coulomb logarithm, Here uj il

i
are the parallel particle flow velocity and heat flow moments of the
gradient-driven part of the ion distribution function f(G) The total

moments, given by Eqs. (10) and (11) are related to these moments by

u$@) (s) (G) (3)
uy = ui§) +ugh?y gy = ')+ ady (20)
where u§%>and q%%)are the moments of the source-driven part of the ion

distribution function, fgsl The source-driven parts of the impurity

U R

RN s e S § | Rt el B
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flows Uy, Gy are neglected; the average appearing in Egs. (16) and

J
17) is
- - 2
UI" = g: rlj Zj Uj"/(nid.) . (21)
Equation (17) may be solved to give qgﬁ)in terms of GgG) [= g n;b

« VST, from Eq. (15))]. The analogous equation for the impurities,

Eq. (A7) in the appendix, may be solved to give qgﬁ), also in terms of

b + V8T, Then, after summing over all ion species, b ¢ V8T can be

solved for, in terms of (2 qgﬁ) + qgﬁ) ), and substituted into the
J

expression for qgﬁ) with the result

T
(G (G)y _ 5 o MO -
i = Qagy +aif) - 371 T a(] nyuyy - Np Ugy)s (22)
3 i1 J

where the sums are over the impurity charge states, the total impurity

density is NI = z nj, and the ;gk's are functions of a which are given
J

in the appendix. Terms which are small in (mi/mI)1/2(NI/“i) have been
neglected, The first terms in parenthesis in the right-hand side of

Eq. (22) may be related to the expressions given in Eq. (11).

=
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III. CONDITION FOR IMPURITY FLOW REVERSAL

The ion flux across a magnetic surface is related to the friction

force by1
E.D = . s o U > - - . __1 - — >
I'l = <nl ul q} = (CI/e) <F1( < 2)) [ (23)

where the angular bracket denotes a maghetic-surface average. By

momentum conservation,

J

) Z; P? = -P? . (25)

The term "impurity flow reversal™ is to be interpreted here as
Z Zj P? > 0, The condition for this to occur is therefore the same as
%or inward ion diffusion: F% <0, Since the source (neutral-beam
injected ions or radio-frequency fields) imparts no net momentﬁm to the

plasma, the momentum moment of Eq. (6) is

FS) 1 dBvmyv, Ecgfﬁ) 58 =0 | (26)

The total friction force is therefore Fy = FgG), given by Eq., (16),
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By combining Egs. (23) and (16) the ion flux can be written as

1/2

2 m.
IV = +(cI/e)( 1 <l®o g nd - 2y
i i1 00 N B <B2>
i s (27)
G
- — -
5 Pi Al ( <B2>) :

Using Eqs. (20) and (22), the condition for impurity flow reversal

becomes
i (8) .
M a4
cul® - 2 01 by > >R, (28)
> why Pi <B2>
where
- 1 B
i T
Y 2%e)
N B R PTG ST N S0 Y G (29)
i o n; 5 330 TLUIIETE T a8
Moo M1 1 B |
i
2 Mot B
- _.______<(z 9y * qlu)( ——7§~)>

and ué?) s qi%)are the ion flows driven by neutral-beam injection or

radio-frequency fields.
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The expressions for u;

i Uyp o Uy, [defined by Eq. (21) in terms

of uj“

J
the sum on j in Eq. (11) includes both hydrogen and impurities.] These

1 and () ajy + qiy) are given by Eqs. (10) and (11). [Note that

expressions contain the terms Ki and L which are related to the
particle and energy deposition rates, by Eqs. (12) and (13). We assume
here that these deposition rates are up-down symmetrie; in terms of the
usual poloidal angle ¢, ¢ = O is the midplane, we assume that S1s 85
and  vpp are even functions of ¢. This is in contrast with the
particle or heat source methodsg'12 for impurity flow reversal, in
which the sources are assumed to have odd parts; for maximum
effectiveness, they would need to have particle or heat sinks as well
as sources. These contributions to R, [given by Eq. (29)] from the
terms K; and L in Egs. (10) and (11), are thus assumed here to be

absent. Then Eq. (29) becomes

ap 3
R = —(cI/e)(<;%> -y ] — ) zips
B~ <B2>-——n1-31p-nl—c» oY 3 v
ugq M Ny 3
1 . s
o Mg MOV 1% 9V 5
i
HO 1 oT
- 1 (2 j/zj) -——} .

i
|
i
i
&
;
i
§
I
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In the usual 1large aspect ratio concentric circular magnetic
surface model, the factor containing averages in Eq. (30) is

s oL« 20r/rp?/83

B  <B2>
where r is the minor radius. The factor which appears in Eq. (28) is

= [2(r/Rplcos + (r/RO)2(% - cos? $)1/Bg

W -

B
<B2>

where ¢ is the poloidal angle.

In the absence of - source-driven flows, 1.e. when ué?) = 0,

Q§%) = 0, the ion flux, Eq. (27), can be written as

" 21/2m.nia i
Pi = (eI/e) ('——T—-"——)lloo R ’ (31)

2

11

where R is given by Eq. (30). The condition for impurity flow reversal

due to source-driven flows is Eq. (28).

i
!
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IV, SUPRATHERMAL ION DISTRIBUTION

The effect of neutral-beam injection or radio-frequency fields on
the hydrogen ion distribution function is described by Eq. (6), where S
is given by Eq. (2). We assume that only suprathermal hydrogen ions
are strongly affected, so that u >> 1 (and we neglect any direct effect
on the impurities). We therefore include pitch-angle scattering on the
thermal ions and impurities, as well as drag on the thermal ions, but
neglect energy diffusion. We assume that the ion energies of interest
are less than the "ecritical energy", at which electron drag and ion
drag are equal, so that electron drag can also be neglected. This
latter assumption is not ecritical, but it simplifies the analysis
somewhat, We also assume that since the energy delivered to the fast
ions is transferred to the thermal ions, a steady state may be assumed
for the fast ion distribution funetidn, and the time derivative in

Eq. (6) can be dropped. Then Eq. (6) becomes

(S (s)
ar{S) . aff

(M+a) 9 2 i - '
vi[ 3 -52(1 £°) 5T + ;E-Tﬁ;] = =S(u,£) . (32)
where
MnnieqlnA
V= ———— (33)
mi Vi

and u = v/vi is the velocity normalized to the thermal value,

e ——

S
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vi = @r/mpt2 (34)

We define the function a,(u) by

3] (3)
aq(u) = §‘£1dE£ £3 (u,&) . (35)

in terms of which the ion flow and heat flow moments of f§S)are

« 3
ng Ugﬁ) - %;-Vg Lo du aq(u), (36)
qﬁﬁ) = %;-vg T J'Ou3du(u2 - g& aq (u) . (37

By multiplying Eq. (32) by & and integrating over £, an equation for

a1(u) is obtained:

(1+a) 1_day s
pny a + - _m:“‘:b“/_\‘). N \3‘8) |
3 42 du e} _ |
where
3 1

Using the boundary condition aq »> 0 for u > «, one finds the solution

to be

=]

aj(u) = ul*e gy yl-e by(w) /vy . (10)
u

e e —— e

t
F
.
|
t
i
L
i
i
:
!
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By substituting this expression into Egqs. (36) and (37), we find

(3) Y V? ” ud
and
il
; ® 6
(s) _ 4r Vil ué _ 5 u
ql T T \)i fodu b1 (u) [(7+0L) E (5+(¥.)] . (42)

The large powers of u, which appear in the integrands in these
equations, Jjustify extending the lower limit of integration below the

range u >> 1 needed to justify the form of Eq. (32).

By substituting the definition of S, Eq. (2),.into Eq. (39), we

find
b, (u) = §-[S §{u=uq) = S,8(u-us,)
1) = 5 15g0tu=uy) = Sp0tu-uy
(43)
Yvpen, u 2=1 2
RF™i 0 2 2 2 2 ~U
+ — (u® = uf) (u= = u§ -2)e ™ olu-uy)]
0 0 0 ’
n3/2v§ u@
where
0, u<u
O(u-uo) = o, (44)
1, u?> ug

The moments, Eqs. (4#1) and (42) may now be evaluated; for the terms
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proportional to VR, We evaluate the integrals asymptotically for

Ug >> 1., The results are

4 2
21V 38 vpph. -u
(s) . 1 6 6 RF'i 2 0
i

4 8 6 8 6
(s) _ 2nvi T{S c uj _ E. uq I sl us _ 5 U2 ]
il v, V) T2 Gro | T2 ) | 26

2 (16)
. 54! vgphy 42 e—ug Y0 _ (3/2)4,
3723 0 (T+a)  (5+a) ’
i

The source strengths of the two beams, S1 and 5,, are related through

the condition of no momentum input:

fd3vmiv"S = 0 a7

which gives
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V. IMPURITY FLOW REVERSAL USING NEUTRAL BEAM INJECTION

Since neutral beams have been developed for heating in present
tokamaks, their use for impurity control might prove to be convenient.
Tt is of interest to estimate the neutral-beam power required for

impurity flow reversal in a large tokamak.

The dimensionless power input, Pd, can be defined in terms of Q,

given by Eq. (9):

Py = Q/(Zpivi) = (nv%/nivi) S1u?(u1 + u2) . (49) .

where Eq. (48) has been used to eliminate S, and we have set vpp = O.

Similarly, the dimensionless ion flow and heat flow are

3
S 141 .
ugu) /vy = (2“V§/“ifil;z§:;y (u? - u%) . (50)
(u? - u3) (u3 = u3)
(3) _ 3/ 3 1 2 5 ‘91 2
C[l" /(lel) = (2'rrv1/nl\)l) S1U1 [ ™) - -5 (5+a) ] .(51)

The combination of these flows which appears in the impurity flow

reversal condition, Eq. (28), is
J = u(S)/ (s

)
N IRALTRIN LA F) TR (52)

where
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v _:__ ' (53)

and the ui 's are defined in the appendix. For greatest efficiency, we
Jn. . GFE :

need to maximize the ratio J/Pd, which leads to the results

G+ 3D (g, 172
= a ' < Y
Uy L 51 (5+a)] , U uq . (54)
and
. L )
2'Yiu1
(J/Pd)max = -'(—,-7—;-&-)' . (55)

Using, as an example, o = 1, we find uq = 1.91, J/Pd = 1.12, For

e e e e e e

a = 5, on the other hand, uq = 1.90, J/Pd = 0,62, Hence, for larger
impurity concentrations, corresponding to larger values of a, the

efficiency decreases.

In order to estimate the left—hand.side of Eq. (28), we use the
usual large aspect ratio concentric circular magnetic surface model,
and take the ¢-dependence of J [defined by Eq. (52)] to be proportional
to (1 +cos ¢). Then the average in Eqg. (28) is proportional to
r/(ROBO), where r is the minor radius. The condition for impurity flow

reversal, Eq. (28) may then be written as
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[()/By] Jv; >R, (56)
Ro

and the energy deposition requirement becomes

Q > 2(Rg/r) (psvi/vy) BaR/(I/PY) (57)

The minimum required energy occurs for beam velocities given by

Eq. (54), when J/Py4 = (J/Pg) pax» 8iven by Eq. (55).

The right-hand side of Eq. (56), given by Eq. (30), can be

estimated as

R =) L qr/ar (58)
eBg RO

where q = (rBT)/(RB¢) is the tokamak safety factor, and Ar is the scale

length for the ion density and temperature gradients. Since the
current J must flow within a layer of thickness Ar, the total power

required is

where: AV = 4n2RorAr is the volume within that layer. Combining
Egs. (57)-(59), the power required for impurity flow reversal is found

to be independent of the thickness Ar, and given by

P = 8nqRyr(cT/eBy) (p;vy/vy) /(I/PY) (60)
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or, using Eq. (33) for vy,

P = 8n3qRor(c/By) nf e3ann/(a/py) . (61)

The required power is given in watts by

2
anh. DT49YMRY
= 1.24 7 , 62
P 1 x 101 ¢( 15) BT(J/Pd) (62)

where nqy is the ion density in units of 101uem’3, Yy and Ry are the
minor and major radii in meters, and BT is the toroidal magnetic field

in Teslas.

As an example, with nqy = 0.5, nA =15, q-= B, vy = 1.2,
Ry = 5.0, Bp = 5.0, and uq, up given by Eq. (54), with o = 1, the

required power is

P = 13.3 x 10° watts .
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VI, IMPURITY FLOW REVERSAL USING RADIO FREQUENCY HEATING

Since the use of radio-frequency fields for heating is being
planned for large tokamaks, the use of such fields for impurity control
would seem to be an attractive alternative to neutral-beam methods. An

estimate of the required power will now be given.
The dimensionless power input is [using Eq. (9)1]

2
2 VRFy Y0

—_ (=) e 6
172 v . (63)

Py = @/(2p;vy) =

The ion flow and heat flow are given by Eqgs. (45) and (46), with
81 =385 = 0. The combination of these flows which appears in the

impurity flow reversal condition, Eq. (52), is

6 upe™d 5 5 (5+4a) 2

+0
gz 22 2y, = 2y, 2% , 64
72 Gray L 51T Vi (g O] (o

where Yy is given by Eq. (53). By maximizing J/Pd, we find

5 5
[3(1 *3 Yi)(7+a)]1/2_ oy 301+ 5 Yy) 5 659
R TN Gy » Y max T TGy 0
As an example, for a = 1, this gives uy = 1.48, (J/Pd)max = 1,01, while

for a = 5 we find u, 1.47, (/P pax = 0.56.

SR e T R T

o
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The same estimates for the terms in the impurity flow reversal
condition, Eq. (28), as were made in the last section, can be made here
also. Equation (62) applies in this case also. As an example, with
nqy = 0.5, 2nA = 15, q = 4, Yy = 1.2, Ry = 5.0, Bp = 5.0, and uy given

by Eq. (65), with o = 1, the required power is

P = 14.7 x 100 watts .
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APPENDIX

The method of solution of Eq. (5) and the results, for m;/my << 1,

are given here, The distribution functions are expressed in terms of

Sonine polynomials19
@ . 2 (3/2)
£ 1 Yu, L x) (A1)
J V J& =&
J =0

where the orthogonal polynomials are

L3720 =1, LB (x) =572 - x, 137200 = 35/8 - Tx/2 + XPr2

with x = v2/v% . The & = 0 and & = 1 coefficients are proportional to

the mean velocity and heat flux:

J

By multiplying Eq. (5) by (v"/vj) Lé3/2)(x) and integrating over all
velocity, one obtains three equations for each ion species., Using
Egs. (14) and (15), these equations are found to have the form
2 A L
m m =
k 2=0
In general, the matrix elements in these equations are complicated

functions of the ion masses.
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By assuming that there is only one impurity mass, which is much
larger than the hydrogen ion mass, these matrix elements simplify
considerably, All charge states of the given impurity ion type can

still be taken into account easily.

The third equation for each ion species [m = 2 in Eq. (A3)] is

solved for Ujo in terms of u;y and u;q, and the results are substituted

J J1
into the other equations. The hydrogen ion equations are then given by

Eqs, (16) and (17), where o, T,

i and Up, are defined by Egs. (18), (19)

and (21), and

1/2 52 1/2 11
uao ] (2 +-Hg a) u81 _ (2 +.Tg o) Caw
1/2 . 433 ’ 1/2 | 433 !
(2 +—1—8—0C!) (2 +-:]-—8-6Q)
and
172 . 23 2
O VT W T (35)
1 5 5 o172 , 133

+ — 0

180

th

The equations for the j charge state of the impurity are

1/2
2 m: Vs ~

2 i'i T -
Fj/(anj) = —Fl/(nia) - Tii [Uoo(ujo - uIO)
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1/2,
2 m;v. ~
2y _ i1 T - T -
GJ/(ngj) = '[‘li [Ll 11 uI1 + 0‘“01(uj0 - ulo)
# Uiy = Trq)] (A7)
LERRLEY I ’
where
Urg = Oy /v Tpq = ) n.z% u; /(] n.z%) (A8)
I0 I17V1 » YT S BV R T b
J J
and
T _ ,-1/2 _ 225
“T _ 3 ,-1/2 _ 6255
~ m; 1/2 2
"y =_12_-’1 = £ 39 5172 (B1T0)° (A11)
with
175 Mi 172 8385 _1/2
d = —= (— —_—
8 (mI) + 5318 2 . (A12)
and
m. 1/2
Wy =2 D 22 2 WP, (A13)

with

ey A e e e
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m; 1/2
175 iy +fl_5_21/2 o

= (A1H)
8 my 16
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