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Abstract

This is part IT of a study of resonant perturbations, such as resistive tearing and ballooning
modes, in a torus. These are described by marginal ideal mhd equations in the regions
between resonant surfaces; matching across these surfaces provides the dispersion relation.
In part I we described how all the necessary information from the ideal mhd calculations
could be represented by a so-called E-matrix. We also described the calculation of this E-
matrix for tearing modes (even parity in perturbed magnetic field) in a large aspect ratio
torus. There the toroidal modes comprise coupled cylinder tearing modes and the E-matrix
is a generalisation of the familiar A’ quantity in a cylinder.

.In the present paper we discuss resistive ballooning, or twisting-modes, which have odd-parity

in perturbed magnetic field. We show that, unlike the tearing modes, these odd-parity modes
are intrinsically toroidal and are not directly related to the odd-parity modes in a cylinder.
This is evident from the analysis of the high-n limit in ballooning-space, where a transition
from a stable A’ to an unstable A’ occurs for the twisting mode when the ballooning effect
exceeds the interchange effect, which can occur even at large aspect ratio (as in a tokamak).
Analysis of the high-n limit in coordinate space, rather than ballooning space, clarifies this
singular behaviour and indicates how one may define a twisting-mode A’. It also yields a
prescription for treating low-n twisting modes and a method for calculating an E-matrix for
resistive ballooning modes in a large aspect ratio tokamak. The elements of this matrix are
given in terms of cylindrical tearing mode solutions.



1 Introduction

In part I of this work(!) we investigated toroidally coupled tearing modes. These are examples
of ‘resonant’ perturbations described by the marginal ideal mhd equations outside critical
layers at ng = m, where there are discontinuities A, in the small component. These discon-
tinuities are matched to corresponding A,,(w) calculated from the layer equations (which
contain additional physical processes such as resistivity). In a cylinder, where harmonics of
different m are uncoupled, the ideal mhd equations determine each A,,, but in a torus they
determine only a single relation between all the A,, ~ called the “Fmatrix” in L

The tearing modes are distinguished by the fact that they have even-parity (ie symmetric
in perturbed normal magnetic field ) in the critical layer. In a large aspect ratio torus
different even-parity harmonics are weakly coupled and the toroidal mode is closely related
to the cylinder tearing-mode.

In the present paper we consider toroidal twisting modes, ie modes with odd-parity in
the layers. We will show that these exist only by virtue of toroidal coupling and are not
related to the cylinder twisting mode. ,

The intrinsic toroidal nature of the twisting modes is already apparent in their behaviour
in the high-n limit. This is usually described using the “ballooning-transformation” (2%
when a quantity Ap, determined from the asymptotic || — co behaviour of the ideal mhd
solution in transform space, replaces A. In a large aspect-ratio tokamak, with zero average
éurvature, Ap for the tearing mode approaches A for a cylinder as pressure, and therefore
toroidal coupling, tends to zero. However, although the twisting and tearing modes have the

same (negative) A in a cylinder (the solution for one parity is obtained from the other by

* inverting the function on one side of the resonant surface — leaving A unchanged), Ap for

the twisting parity toroidal mode remains positive as pressure tends to zero!

In section (2) we show how the cylinder limit of high-n toroidal twisting modes is resolved
by the introduction of non-zero average curvature, and in section (3) we show how these
modes can be calculated in coordinate space. This leads to the main result of the present

paper — the calculation of low-n toroidal twisting modes in section (4).

2 High-n modes in Ballooning space

Perturbations with high toroidal mode number n and many resonant surfaces nq = m, are

best described using the “ballooning-transformation”.(2=4) This exploits the fact that, at

large n, harmonics centered on different rational surfaces are equivalent to one another.

Formally the transformation is written



L]

$(r,0) = 3 dm(r)e™m = T e [ ey, r)dn (1)

where 7,6 are polar coordinates in the poloidal plane and

b(n,7) = e~ 1), (2)

Then at large n F' varies slowly with r and to a first approximation F' ~ F(n). Clearly
F(n) can be regarded as the fourier-transform, with respect to nq(r), of ¥, (r) which, in
accordance with the equivalence of different harmonics, ~ ¥ (m —ng(r)). The singularity
at (m —ng(r)) = 0 is r=flected in the asymptotic behaviour of F(n) through Ap, the ratio
of the small to the large component at large [7|. This must be matched to the solution of a
more complete plasma model,which vanishes as || — oo.

Strauss (%) introduced a model for a large aspect ratio, low shear (s = rq’/q < 1)-tokamak
for which he calculated Ag. The low shear permits an averaging of the ideal mhd equations

over a connection length, so that the electrostatic potential for a marginal ideal mode is

given by
d a2 4 A
E(¥+z)d—z-+m+5]¢—0 (3)

where z = s7,\? = o?/s and @ = —2Rp'q*/ B%. The term § = ae(1l —¢?)/q%s? represents the
effect of average curvature (interchange energy). .

Strauss considered § = 0. Then the twisting and tearing parity solutions are

¢™" = cos(Atan"'z) — cos(-/\—r-) [1 + M] (4a)
2| >0 2 ||

¢™F =sin(Atan"'z) — sin (/\—W> [1 - M} sgn(z) ' (4b)
|z] = o0 2 |2|

[N.B. ¢ has the opposite parity to the magnetic field perturbation %] so that
A AT -
™W _ A AT
Ay —Stan<2) (5a)
ATZE = —é\-cot (A—;) . . , (5b)

As A = 0, ATF — —2/xs, corresponding to A’ = —2ngq/r for high-n modes in a cylinder(®,

and the expression (4b) is equivalent to the form

55(0) =, |+ FAF] sonte) ()
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near a resonant surface r, in coordinate space (with ¢ = (r — rn)ng'(rn)). This also

corresponds to tearing modes in a cylinder. _
On the other hand, ALY is always positive and — 7A?/2s as A — 0. Furthermore the

expression (4a) is equivalent to the form

™V (z) — 2n6(z) —2ALY log |z| + constant ' (7)

|=[—0

in coordinate space, which bears no resemblance to the form of the cylinder twisting mode

Ye - [mea] ‘ Q

||
To understand the cylinder limits we re-introduce the interchange term 6. The solution of

eqn.(3) can then be expressed in associated Legendre functions and leads to the asymptotic

forms for large |7|
$7 ~ Inl* + ARV Inl- (%)
875 ~ [l + AF P sgn(m) (9b)
with

1 1 1
- - = 85
V4 2:‘:(4 5) N

and
_ rL(1+v—=2) T
ATV = TTFAT ST S {tanms — tanlZ(2 + )1} (10a)
_ (1 4+v—2A) s » '
N = T ok e (e ek 5]} oo

(where v = vy.).

The expressions (9) correspond to
¢ () ~ e[ + AT |z ' (11a)
7 (z) ~ [|zl*~ + ATE|z]*] sgn(z) (11b)

in coordinate space, with (©)

™ _ v\ T(1=v)  w -
A —cot<2) VF(l-{-I/)AB v (12a)
I'l-v)
ATE _ ¢ (7”’) TE
an { T V)AB (12b)
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When ) and § are both small (note that v ~ —§)

2
ATW ~ —% [1 - 2—2] (13a)
and
- 212
ATEng [1+25(1 v+ n (g) —“12] (13b)

with ¥ = 0.5771..., the Euler constant. Thus we see that ATF always approaches the
cylinder limit (here= —1/s) when § and )\ are small, but A" does so only if A2 < &%
otherwise it remains positive - corresponding to instability for simple layer models. (N.B.
The fact that A" is negative when A? < §2 implies, on the extended Strauss model, a

potential for tight-aspect-ratio stabilisation of resistive ballooning modes in a tokamak if
s <le(1-1/¢%) [*2)

3 Calculation of ALY in Configuration Space

In a toroidal system with § # 0 the matching condition for high-n modes may be applied
either in coordinate space, using A from the form (Jz[~**% + Alz|~%) as |z| — 0, or in
ballooning-transform space using Apg from the form ([n|‘5 + Ap |n|‘1+5) as |n| — oo.

For the tearing parity mode a smooth limit exists in coordinate space and in ballooning
space as 6 — 0. However for the twisting parity mode the limit § — 0 is singular in
coordinate space. This singular behaviour arises because, in addition to the discontinuous
components ||~ and |z|™, there is a continuous component (due to toroidal coupling)
which becomes indistinguishable from the ‘small’ component |z|™% as § — 0. However the
presence of a continuous component at z = 0 does not affect the asymptotic, |7| — oo,
behaviour in ballooning-space; this reflects only singularities at z = 0. Consequently ALY
is unaffected by the continuous component. |

In the remainder of this section we show that, despite the singular behaviour of A when

- 6 = 0, the matching may still be carried out in coordinate space. This will open the way for

a similiar calculation of low-n twisting modes, (for which the ballooning-transformation is
not applicable) in the next section. .

In coordinate space the singular part of the twisting parity mode is given by,

/::o + /7-: dn i (M—& + Agwlﬂ[_l+6) (14)

. where 19 > 1. For 6 # 0 this takes the form (]a:l'”"s + Alccl"s) but for § = 0 it becomes

27 §(z) — QAEW [log |z| + log mo) (15)



as in eqn.(7). This indicates that calculation of toroidal twisting modes in coordinate space
should be based not on coupling of the usual cylinder modes, but on coupling of é-function

modes. Then we can recognise ALY in the behaviour near a critical surface as

(16)

ATW _ _TX Coeft .of log |z|
B - Coeff.of §(z)

To illustrate this, we consider the well-known “s —a” model” of high-n modes in a large

aspect ratio tokamak. In ballooning space this is given by

1+ (sp — asing) ] dé + a[cosn + sinn(sn — asing)] ¢ =0 (17)

d
dn [ dn

Drake and Antonsen® obtained an asymptotic solution of eqn.(17) by expansion in e, as
8(m) ~ 1+ AT /) | (1)

with

ATV = EOl—( +2) [ (s -: 2) exp (—:—2-)] | (19)

(Note that § = 0 in the s — model and eqn.(19) agrees with the small ¢ limit of the Strauss
model as s — 0.). _
The s — a model in ballooning space can be considered as the fourier-transform of an

equation for ¢, (z) = ¢(z — m) in coordinate space, namely

e (wo(e)) - S4(2)
a 1 d v
~& {stet+ Daptba+ 1) — 8z — D]+ sl + 1)+ 6a - 1]
1

+ s2lg(a+1) = 6z = 1)] - 5ld(z + 1) + 8(z - D]

o

5 (@ D) ~ 58 +2) + 8z~ )] ~ 2l +D) — 4z -2} =0 (20)
[This equation can also be derived from the general toroidal equations discussed in the next
section.]

In the light of the preceding discussion we now seek a solution of eqn.(20) in the form
¢ = ¢ + ag® + o?¢@ 4 ... where ¢©@ = §(z) and ¢, ¢(? arise from toroidal coupling.
In first order we find that ¥)(z) = 2¢()(z) has discontinuities at the ‘sideband’ positions
zx1=0,

P = Zexp (1——;@> [1 (sjz) (32)] sgn(z) forfe| > 1 (21)

and
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¢(1) - g (S + 2) exp (:—1-) sinh (;) for |z| < 1. (22)
$ 3

In second order %(?(z) is given, near z = 0, by

r L0y = RO : (23)
dz?
where
- (1) dip)
A W _ W7 _ &
R 557 {[(1 +8)Y s—- ]1 [(1 +s)p'" + 5 T ]_1} (24)
and the logarithmic contribution to ¢ is RMzlog |z|. Then, from eqn.(16), evaluating R
we have
2
w _ T _(s+2) ( —_2) : 9
Ag —482(s+2)[1 T oxp | (25) |

in accord with the calculation in ballooning space.

Note that the essential features of the high-n calculation in coordinate space are that
toroidal coupling induces discontinuous ‘sidebands’ of a §-function perturbation on a resonant
surface and that these sidebands in turn induce a logarithmic singularity at the original
resonant surface. These features will also appear in the calculation of low-n modes to be

described in the next section.

4 Low-n Resistive Ballooning Modes

We now turn to the main topic of this work, the description of low-n ballooning (twisting
parity) modes in a large aspect ratio tokamak (§ = 0). As in part I, the marginal ideal mhd

equations are

dwm LmYm LmiIXm:!:I + MMil¢mi1
= ms m m 26
"ar (m—nq)+e§[ m*1—ng (26)
d Xm mem . Nmile:l:I + Pm:hl";bm:hl
— —_— = m m m 2
r(m nq)dr(m—-nq) (m—nq)+€zi:[ m=E1l-—ng (27)

where ¢, = (m — nq)¢n and the coefficients L,M,N,P have been given in part 1. The

ordering parameter € has been introduced to identify terms representing toroidal coupling.
Before discussing the solutions of eqns.(26) and (27) it is necessary to reconsider the

matching problem. We recall that when § # 0 the outer, ideal mhd, solution near a critical

surface r,, is

¢~ Arr{|r =l + Apglr — ™} (28)



where the subscripts L,R denote left and right of the critical surface. This can be written as

a symmetric part

(AR + AL)|r — | + (ARAR + ALAL) Ir — rm[™° (29)
and an antisymmetric part

{(AR — AL)|r = | + (ARAR — ALAL)|r — T l_s} sgn(r —rm). (30)
These have to be matched to the symmetric and antisymmetric inner layer solutions

A7+ A (@)ly]™) + B (Jy7 + As(@)ly]™%) sgn() (31)

where y = (r — r,,)/0, with o the layer width. The matching leads, as in part 1, to a

dispersion equation
AL(W)A_(W) — 30 % (AR + AL) (AL (W) + A_(w)) + ? AL AR = 0. (32)

In general, the eigenmodes need not have definite overall parity. However, since it is
implicit in the matching that o — 0, separation into eigenmodes with definite parity in the
layer occurs so long as Ay (w) and A_(w) do not vanish simultaneously. Then we find an

eigenmode of tearing parity (odd @) in the layer, for which

.

Ay(w) = 10" P (Ap+ Ar) and Ap & —Ap. (33)
and an eigenmode with twisting (even ¢) parity, for which

A_(w)

10" ¥(Ap+ Ar) and Ap ~ +A5. (34)

- When 6§ — 0, we will see that, as in the high-n limit, the twisting and tearing modes
are no longer distinguished merely by their parity; each then has a different functional

form. The antisymmetric part of the solution becomes

while the symmetric part becomes
¢s ~ {276(r —Tm) = Clnlr —rm|}. (36)
These have to be matched to the inner solutions which themselves become

T TECU
(2n8(y) - 285 (W)tnly])  and (anl A—BQ(—-—)) sgn(y) (37)

" Again assuming that ALP(w) and AZY¥ (w) do not vanish simultaneously, this leads to an

eigenmode of tearing parity in the layer, with

7



AZE(w) = 20D/ | (38)
and an eigenmode of twisting parity in the layer, with
ATV (w) = 0C/2. (39)

As the twisting parity modes are uniquely identified by the appearance of é-function and
logarithmic singularities at resonant surfaces we can calculate low-n twisting modes in a
large aspect ratio tokamak by finding the logarithmic response of %y, induced by toroidal

coupling, to a solution

#0 = 3 B 8(m — ng(r)) | (40)

of the lowest order (uncoupled) equations - just as we did for high-n modes in section (3).
The logarithmic response is second order in toroidal coupling. The first order response
1bmi1 contains contributions from f,, and S,+2 and to describe these it is convenient to
introduce functions Qp,f;ﬂ,zbﬁﬂ which satisfy the uncoupled equations, with %% = 0 at
r =0 and ¥® = 0 at 7 = a. These functions are continuous and have unit amplitude at
their resonant surfaces. Then between resonant surfaces z/)mil can be expressed in terms of

¥* and % and it has the following discontinuities at r, and rmis:

d,(pfr}:)i: 1 m
A s ], = e

d) n
l: dril = ,Bmiszff, ["»bm:tl] 2 = ﬂm:hZUmi:l (41)
Tm+2
where

= :h.l_’g;i__mfﬂ :I:(m:tl) —(1+s)

m+l — nql o m 2 o

Lm:i:IPmiZ (m j: 1)2
m+x2 __ m+1
Tm42 Tm+2

Om+l = m:hl(rm) = —( m ) m)

mx2 m:i:2 — (m + 1)

and, as defined earlier, s = r¢'/q and a = —2Rp'q*/ B2

()

If the resonant surfaces rp, and rp,—2 both lie within the plasma, v,,”, is given in terms

of pL_, for 0 < r < 73, by a combination of ¢Z_, and ¢E_ L for P < 7 < 1y, and in



terms of %2 _, for r,, < r < a. The discontinuities (41) determine the coefficients of L
and E_, in the three regions. If the resonance rn_; lies outside the plasma, fpn-2 =0 and
z/),(,i)_l is given in terms of ¢%_, for all 0 < r < r,. Similar remarks apply to ¢m+1

In the region r,,.o < r < 1y we find, for example,

o0 () = — Pr [(m-l) ( di R —(m—1>(1+s)¢2_1)] vE_(r)

0
Tm-18m_1 m

T™m

ﬂm—2 (m - ].) (s / d I ‘ R
+7’m—1A21_1 [(m =2) % \7‘51#7[7’:—1 + (m - 1)(1 + s)z,b _1>:||,.m_2 m_l(’l‘) (43)
m 1 d
¢m+1 = ¢m+1 {rm_i,llBA?nH I:(m:; )% (Tg 5+1 +(m+1)(1+ S)meﬂ)}rm
Prmrz |(m+1)a ( d g |
t AT [(m 9% ( =i = (m+ 1)1+ )y +1>]Tm+2} (44)

where A | are the conventional tearing mode discontinuities in the absence of coupling

1 [dypE dz,bL
A = | — . 45
" ['¢’m ( dr d’l" r=rm ( )
(If a sideband m £ 1 is non-resonant it is convenient to normalise the two solutions to unity

at T, and then e A2 L, is replaced by r,W where W is the Wronskian of the solutions
?bfm and W;i:tr)
In second order we have for ¢,(,f)(r)
R(r)
(m —ng)

d d 2 _rmgo’ rmqo’ ¢(2)( ) =

where R(V(r) is given in terms of %'}, and o = (1/7)(r?/q)’ (see part I). The logarithmic
singularity in $?) at (m —ngq) = 0 is therefore given by

RO (r) . |
@Afp) = —m A ™ (0 _ . :
Y (r) T (r = rp)log|r — rm| (47)
so that, in eqn.(36),
27 R (1)
C= —ﬁmmsrm (48)

Writing A, for ALY, and expressing R(Y) explicitly in terms of ¢7(::)|:1’ this leads tp the
relation
A ' Tam 1)

BB = Z SmED) |"d ¢m:|:1 + (m £ 1)(s + 1)yplh - (49)

T=Tm



<

Recalling that 1/),(,&1 involve only f,, and Bni2, eqn.(49) leads to a three-term recurrence

relation _

Bm—-2Em-2 + Bm (Em - Am) + Brn+2Bmy2 =0 (50)
and hence to a tridiagonal “E-matrix” for toroidal twisting modes _

B —An|=0 (51)
where [Sm = {diagonalAm} and

Brmr = T g reir iy D) D)

Brnt = g AT DA rm D (s

Bnm =~ S rrry DRRCWDERC) (52)

where

Db = % r%d)ﬁ’ £ k(L + s)pF | ete. | (53)

Note that, despite the fact that the toroidal twisting modes are not directly related to
the cylinder modes, the elements of the F-matrix are given in terms of uncoupled cylinder
solutions 1” and %® and the cylinder tearing mode quantities AZ,.

It is interesting to see the relation of the E-matrix (52) for twisting modes of general n

to the high-n limit discussed in section (3). At large m

vh(r) ~ (=) and w20) ~ (=) (54)
Tm Tm
and
T'm (1 1 ) (55)
Tl T
Therefore
2
T
Em,m ~ Zs—z(s + 2) = Eo. . (56)
and
-7 a? -2
Enma ~ T%(S + 2)?exp (T) = E;. (57)

The harmonic number m no longer appears in the F-matrix and all resonant surfaces are now
equivalent. The coefficients 3, therefore differ only by a phase factor so that 8, ~ exp(iu).
Then from eqn.(50)

A = Ey + 2E; cos(2u). (58)

This is in agreement with the value given in section (3) if one sets u = 0, ie, B, = 1.

10
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5 Summary and Conclusions

In parts I and II of this work we have discussed resonant toroidal modes described by ideal
mhd equations outside critical layers at ng = m, where there are discontinuities A, in
the solution. These discontinuities are matched to corresponding A(w) calculated from the
critical layer equations, which contain non-ideal terms such as resistivity.

In a torus the ideal mhd equations do not specify the individual A,,, as they do for a
cylinder. Instead they specify a single relation between the A,, in the form of an “E-matrix”
such that |[E — A| = 0, where A = {diagonal A,,}.

Part I concerned toroidal tearing modes, in which the perturbed magnetic field has even
parity in the critical layers. We showed that in a large aspect ratio torus these modes are,
as one would expect, a natural extension of the cylinder tearing modes.

In the present paper we have considered toroidal twisting modes, in which the perturbed
magnetic field has odd parity in the critical layer. We have shown that, when the interchange
term § is small, these modes are intrinsically toroidal. Even when the toroidal coupling is
weak they are not related to the cylinder twisting modes.

The different character of the toroidal tearing and twisting modes is already apparent
in the high-n limit — when modes of either parity can be described using the ballooning
transformation. Then a single quantity Ap, defined through the asymptotic form of the ideal
mhd solution in n-transform space, replaces the A,,. As the interchange term 6 — 0,Ap
remains finite for both twisting and tearing modes but the corresponding coordinate space
quantity A has a singular limit for twisting modes. Nevertheless we have shown that high-n
twisting modes can be calculated in coordinate space. Essentially, for the twisting mode
the usual |z|** forms near a critical surface are replaced by a é-function and a logarithmic
singularity. The ratio of the coefficients of these terms is related to the ballooning space
quantity Apg, not to the coordinate space quantity A.

The most important result of the present work is that this calculation of high-n twisting
modes in coordinate space, and the identification of Ag as the ratio of coefficients of singu-
lar terms, can be extended to deal with low-n twisting modes — for which the ballooning
transformation itself is not applicable. Thus in a large aspect ratio tokamak, low-n twisting-
ballooning modes are calculated, not by expanding about uncoupled cylinder twisting modes,
but by expanding about singular §-function modes on each critical surface. Then the toroidal
coupling induces, in second order, a logarithmic contribution at the same resonant surface

- so defining AZ" and hence the appropriate E-matrix. Furthermore the elements of the

- Ermatrix can be computed from the uncoupled cylinder equations — despite the fact that the

toroidal twisting modes lack any resemblance to cylinder modes. Finally, this £ matrix can

11



be used in conjunction with the ballooning space quantity ALY (w), containing the influence

of non-ideal effects such as resistivity, to form the dispersion equation for low n-modes.

Appendix A' notation

The symbol A, carrying suffix, superfix or argument, appears in many places throughout this
paper. Sometimes it refers to a quantity in configuration space, within a resonant layer or
external to it, and sometimes it refers to a quantity in ballooning space. While the meaning
of each usage should be self-evident from the context, this appendix gathers them together,
along with their definitions.

The stability index for slab (or cylinder) tearing modes, originally introduced by Furth,
Killeen and Rosenbluth(!?) as the discontinuity in logarithmic derivative, is denoted by A’.
For a particular poloidal harmonic in a cylinder this quantity is denoted by A? (asin Eq.45),
while A,, denotes the equivalent discontinuity at the resonant surface r,, for a toroidal
mode. [The definition of A’, A% and A,, as the discontinuity in logarithmic derivative is
only valid when 6 = 0. When § # 0 they are defined, as by Coppi, Greene and Johnson(®,
as the discontinuity in the “small” solution at the singularity. See part L]

The quantities corresponding to A,, obtained from solutions of the equations within
the critical layers are indicated by explicitly displaying the eigenvalue w as an argument.
Thus A (w) is the layer quantity to be matched to the external quantity A, at each critical
surface.

In ballooning space, solutions of the ideal equations have the general structure
¢(n) > In["* + Aplpl*~  for [n| — o0 ' (A1)

and are of odd parity for tearing modes and even parity for twisting modes, thus defining (as
in Eqs.9) the ballooning space quantities AZ® and ALY, The form corresponding to (A.1)
in configuration space is given in Egs.(11) which similarly define the configuration space
quantities ATF and AT". Because both  and z = (r — r,)nq are dimensionless variables,
the quantities Ag, ALZ, ATW ATE and ATV are all dimensionless. ’

In section 4, the quantities Ay, and Ag describe the ratio of the small to the large solution
on the left and on the right of the resonant surface. They have the dimension L*-~"+) since

the configuration space variable used in section 4 is (r — r,). Using Egs.(29) and (30)

ATE = (8y + AR)(ng)*-) ' (A2)
. and in the limit § — Othe original A’ of Furth, Killeen and Rosenbluth is
A'= (AL + Ag) (A3)

12
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Finally, Eq.(31) defines Ay (w) and A_(w) as the ratio of small solution to large solution
for the resonant layer equations, having tearing parity (A—(w)) and twisting parity (A4 (w))

respectively. These quantities are dimensionless.
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