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Abstract

A kink-tearing eigenmode equation is derived for a slab layer geometry in the limit
me/m; & ﬂ", & L2 /L% (me/m; = mass ratio, §; = ion beta value, L, = gradient scale
length, Ls = shear length) and when the electron collision frequency is comparable to
the eigenfrequency. It is essential for consistency to retair.l arbitrary ion Larmor radius
effects, which are described with the use of the Padé approximation. The asymptotic
solution of the inhomogeneous eigenvalue problem is obtained using simple approxima-
tions to the eigenfunction. A dispersion relation duplicates previously derived results
when a Lorentzian conductivity model is used for electrons, while a new dispersion
relation is obtained if electrons are described by kinetic dynamics. The dispersion
relation is analytically and numerically investigated. The numerical results are com-
pared to a more éomplicated and presumably more “rigorous” asymptotic expression.
It is shown that this asymptotic expression requires ciuite small value for (m./m;)B;
for accuracy. A fitting formula is found that is more accurate than the asymptotic
formula for moderate values of (me/m;)B;. The dissipationless dispersion relation is
discussed and it is shown that local shear at the ¢ = 1 surface can have a stronger

effect than the value of EWC (the MHD energy) on the system’s stability properties.



When stability is predicted, electron dissipation due to collisions or electron Landau
damping destabilizes a low frequency negative energy mode that is present. Electron
temperature gradients are shown to reduce Landau damping and thus decreases the

destabilizing drive on the negative energy mode.



1. Introduction

There have been many studies of the m = 1 internal kink mode and its relation with sawtooth
activity observed in tokamaks.!=* This mode is also believed to play an important role in
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experiments with auxiliary heating in tokamaks, e.g., the fishbone instabilities®® and the

suppression of sawteeth.” 1!

Theories, including hot particles created by auxiliary heating, have been formed to
explain both the stabilizing aspect (sawtooth suppressioh) and the destabilizing aspect
(fishbone).’?718 In these theories the main emphasis is placed on the consideration of the
dynamics of hot particles, while for the layef dynamics simpliﬁed theories are uéed that

are based on ideal or resistive MHD (magnetohydrodynamics) theory. It has beén found

in these theoretical investigations that there is a broad parameter region where the m = 1

mode with hot particles oscillates near the ion diamagnetié drift freQuency w¥. In fact, it
has been pointed out‘19 that in the high temperature regime the ion Larmor radius, p;, can
be greater than the Alfvén layer width z4r,, where 2% is deﬁned as 7% = w(w — w¥)/wd
with wa = (va/Rq)(rs/q)(dg/dr), in which vy is the Alfvén speed, R is the ma;jo:r fadius, 7‘5.
is the radius of the rational surfacé, and ¢ is the safety factor (¢ = 1 for the m = 1 mode).
Thus, if the mode frequency, w, approaches to w¥, the ioﬁ Larmor radius can Be greater than

the Alfvén layer width. As a result, the mode tends to localize over distance p; ra’.t.her than

z4rs. The response of the system can then be signiﬁc’antly alﬁergd, and in particular, the

dissipatibn due to the Alfvén resonance is greatly reduced. This situation forces a different
approach to describing the layer dynamics ‘in order to take into account the important finite
Larmor radius effects and the electron dynamics in the kink layer of the mode. It is this
asI:)ect of the theory which Wﬂi be emphasized in this paper. In a later work we will apioly
the layer ‘equa,t-ions developed here to describe the effect of hot particles on the kink mode.

The m =1 kink-tearing mode with FLR effects in absence of the hot particlesr has been



studied by several authors.?°~?® Generally, the problem of including both ion and electron
kinetic effects is difficult to treat. However, if electron Landau damping is approximated by
a Lorentzian conductivity model [cf Egs. (A1)-(A2)], and the Bessel functions in ion FLR
effects is Ihathematically modeled by the Padé approximation [cf Eq. (11)], a homogeneous
second order differential equation can be derived in the Fourier transformed space (k).The
MHD driving term does not appear in the equation and enters as a boundary condition in
the small k region.22~2® The dispersion relation following this approach has been obtained
by Chen and Hahm,?®?! and Pegoraro, Porcelli and Schep.?2=?* Recently, Pegoraro et al
extend this approach to include the finite ion temperature gradient.?® On the other hand,
the kink-tearing problem with both ion and electron kinetic effects can also be solved in other
approximation.® Coppi et al.,2*" and Cowley et al.?® solved the coupled integral equations
by using the constant-¥ approximation, which however is not plausible for the m =1 mode.
Zhang, Berk, and Mahajan derived variational forms for the coupled integral equation, which
was solved in the large conductivity limit.!® Since the validity of solution by variational
approach is crucially dependent on the choice of trial function, it is important to choose the
correct trial function which can alter considerably in different parameter regimes.

In this paper we consider in detail the parameter regime m./m; < B; < LZ/L2, where
L, and L, are the density and magnetic shear scale lengths on the resonant surface. In
this regime simple eigenfunctions are justified and electron dynamics that are described by
kinetic theory effects of the layer can be treated. Ion FLR effects are also described using
the Padé approximation, which has been shown to be a good one in Ref. 25 as long as ion
temperature gradient can be ignored. Use of the Padé approximation enables us to derive an
inhomogeneous eigenmode equation, which is formally similar to that giveﬁ by Mahajan et al.
in the small Larmor radius limit.2° This derivafion is shown in Sec. IT and in Appendix A.

When a Lorentzian model is used for the electron conductivity, the dispersion relation is

found to be identical to that obtained earlier by other authors.?42% This derivation is shown



in Sec. III.

The dispersion relation without hot particles is analyzed and numerically solved in
Sec. IV. When T./T; <« 1 there are four distinct modes; one mode is in the electron di-
rection, while the other three modes are in the ion direction. This is in contrast with the
small Larmor radius theory, where there exist only two distinct modes in the ion direction.'®
One of the three modes in the ion direction is a drift type mode with w ~ w¥. The mode
in the electron direction is also a drift type with w ~ w} (wX is the electron diamagnetic
frequency). Both the drift modes are stable modes, and may be related to those discussed
by Coppi et al.,2627 and Cowley et al.?® The other two modes (in the ion direction) appear
to be a pair of conjugate modes, which connect to the MHD branch. For finite T,/T; the
mode structure is more complex. Marginal stability diagrams are determined. Marginal
modes where 0 < w/w¥ < 1 are found with the instabilify region corresponding to.the pos-
itive (i.e. the supposedly stable) MHD energy. Electron collisions appear to eliminate any
completely stable region. |

The numerical results show that kinetic electron dynamics yield quantitative rather than
a qualitative differences from the results obtained from a Lorentzian conductivity model for
electrons. An electron temperature gradient is found to weaken the destabilization mecha-

nism of the negative energy waves. We will not discuss the effects of hot particles on the

FLR kink mode in this paper; discussion of these results will appear in a later work.

II. Derivation of the Inhomogeneous Eigenmode
Equation in Padé Approximation

The basic equations describing the layer dynamics of the FLR kink-tearing eigenmode in a

26,28

slab model are obtained from the vorticity equation and Ohm’s law, and are given by

d d? d d
xAdx/dex_x)d’ (/)_xd:z:f E( df ) ’ (1)



d*p _ o(z)

dz? 2

E(z) , (2)

where integrals throughout this section vary from —oco to oo, the parallel electric field is

E(z) = ¢(z) — z{(2),

Gz —2') = %eik(”'zl)ék (3)
with

Gy = 5 11 = To(b)] + —“Z [Ty(by) — To(by)] @

k—bk o\Vk w_w;’ 1\Vk o\Yk 3

b = 152k?, T,(b) = e®I,(b), I, is the nth order of modified Bessel function, w}, and
w}. is the ion diamagnetic frequency due to density and temperature gradient respectively,
p: = pi/rs with r; the radial position of the ¢ = 1 rational surface and p; = wicv;/eB is
the ion Larmor radius (we define the thermal ion velocity v; by \/Q—W throughout this

paper). Further, for a collisionless kinetic electron model we have

o(z) = —oo l(z) ()
in which
oy = (_7‘_s>2 w(w —w¥)
—\ps wj ,
and
wk 1
(o) = = [1+ 6200 ~ =2, [+ (2 2(0) = 5 2(C) (6

with w¥ and w¥. the electron diamagnetic frequency due to density and temperature gradient
respectively, Z is the plasma dispersion function, {. = z./|z|, ze = w/kjve, bk = 1/Ls,
z = (r —rs)/rs, L is the shear length, v, the electron thermal velocity (ve = \/m ),
and p? = T, m;c*/e?B* and w, is the Alfvén frequency (wy = kl’lvA, with the Alfvén speed
defined by v4 = B?/47 m;n).



el

In the slab model the boundary condition at large z for the kink mode is obtained using
the assumption that the parallel electric ﬁeld E vanishes outside the ¢ = 1 layer region,*

which gives for large |z]

@)t ol -] NG

W(a) = ob(-o0) 0(~2) = =] » (s)
where 6(z) is the Heaviside step function and A’ is given by the standard definition of the
kink-tearing problem. For the m = 1 mode* A’ =/ 5W, where 6W is the normalized bulk
plasma perturbed energy found from an energy pfinciple. For example, in absence of hot

particles, using the Bussac formula,,l it is found in the large aspect ratio limit

e (-2 (F) Lo

where ¢(0) is the safety factor of tokamak at » = 0, R the major radius of the tokaﬂn._"e'u"l.{',

L 87\ frola . [dP R
Bp = <—B%>/o dyy(gg) - (10)

‘where a is the minor radius of the tokamak plasma, B the poloidal field at ¢ = 1 surface, P is

the isotropic plasma pressure. §W can also vbe modified due to the presence of hot particles
in the plasma, so that §W = 6W, + 6Wy. The exi)ression for §Wi (the kinetic céntribution
to the perturbed energy) has been calculated in several works.12:16:18:30

Now we introduce the Padé approximation for the description of arbitrary ion Larmor
radius effect. A simple form can be obtained when w} = 0, wherein Gr = [1 —To(b)]/ bk in
Eq. (4) is repla,'ce& by | o

~, 1

which is an interpolation form that matches the'la;rge and small by limit. Making use of

Eq. (11), we obtain the explicit expression for G(z — z') in the Padé approximation

 Ge—a) = \/%.A exp <_£ ]w—-x'|) S (12)

pPi pi
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which satisfies the equation

P& A 2 ' ’ '
—21—21? (z—2') -Gz —2')= -6(z — ') . (13)
We note that the first integral of Eq. (1), with the boundary condition Egs. (6) and (7),

yields the expression

xi/dw'é(x —zYX(2') = z? % (g—) + z2X(z) + —g—;/dx X(z) (14)

with X (z) = dé/dz. In Eq. (14) the constant of integration was found by noting that from

Eq. (7) we must have dig;o) — £(—o00)/A'z? for large |z| . This limit is recovered in Eq. (14)
if we note that for large |z| the left-hand side and the first term on the right-hand side is
O(1/2?) for large z, while the last two terms on the right-hand side of Eq. (14) are constant
that reproduce the relation for d¢/dz at large |z|.

Now applying the operator (p?/2)(d?/dz?) on Eq. (14), and using Eq. (13), we obtain

~ 72
pid 2 _ 2)x(e) — 24 (E)
5 757 X(z) + (2% —2*)X(z) A’,/dar:X(:t) e — (2
~ 7
pRd a4 (E) _
+2da:2zdx T =0 (1)
Substituting Eq. (2), written in the form
d’E oz 1 d
T~ G BE) = - et (16)

we obtain

22—2% 2dz = B). ‘ (1n
Integrating over z then yields
1 1 E(z) A
— [dzX(z) = . / 2 — 2741 .
A’/ z X(z) A,+£ dz @ = i) [,oza(x) QmA] (18)
T4



Equation (18) is then substituted into Eq. (17) to obtain X(z) in terms of E(z). If this

expression is substituted into Eq. (16) we obtain, after defining

52
U(z) = {1 —-—p’”(f)] E(z), (19)
QZA '
an eigenmode equation for ¥(z)
d 1 d 2 o(z)
e R A eyl [ oG] @)
iz |1 — == :
2:644. \
+ 12. Ao Z/d 2 —0. - (20)
Al + — - :EA) - xA
l'A

Defining Q(z) = ¥(z)/z, we find that Eq. (20) is almost the same form of the equation
derived by Mahajan et al.,* except an extra factor p?o(z)/2z% in the third térm on the left-
hand side of Eq. (20), which formally arises from the inclusion of the arbitrary ion. Larmor
radius terms. It is interesting that the structural form of Eq. (20) does not change with
ion FLR effects included even when the mode width is comparable to an ion Larmor radius.
The kink—téaring eigenmode equation remains second order, and formally only the effective

electron conductivity is modified. Explicitly, we express for w¥. =0

p2 T; w¥
Po) TR 02 e

N\

Since 1 + (eZ(Ce) is order unity except in the innermost region (z < z.), we conclude that
for the mode w ~ wf with |w/w} — 1| <« 1, the FLR effects can be important only due
to finite 7., the ratio of electron tem?erature to density gradient. However, for the mode
w ~ w¥ the FLR is important, in particular, for |1 —w/w®| < 1 the conductivity term is
greatly modified by the FLR except in a very small region = ~ 0.

A variational form for the trial function ¥(z) can be easily constructed from Eq. (20) by

multiplying by ¥ and integrating over all space, to obtain

1 A m)
_/dwcﬁ-—wﬁ (%) +2/d 2 z%)?
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2$A

/d { Az(l)} [/dm _@J:o. (22)

Note that Eq. (20) is the Euler equation of Eq. (22).

ITI. Dispersion Relation

A dispersion relation can be obtained from the quadratic form with a good approximate
test function. To understand the mathematical structure of the inhomogeneous eigenvalue
problem we prefer to transform Eq. (20) into a formally real form by defining the following
variables: ¥y = 1%/ 4, Yo = To/Ta, p° = 00pr/22%, and A = iA’z4. Equation (20) is then

rewritten as

i __l__ i + 2 Uog(y/ye)
dyy*+1dy (1P L+ Pe(y/ve)
! 8 o, V) _
+A——7r.(y2+1)2./o dy(y2+1)2_0, (23)

where g(y/y.) = II(—iy/y.) (II(z) is defined by Eq. (6).) Since in general i(y./y)Z (iy./y)
is a real function for real y/ye., g(y/y.) is also real for real y/y.. The quadratic form Eq. (22)

o [(dU/dy)? 202
; _/0 dy[ :t/2+‘zi (12 +1)2} [/ Y ]
° 0 (y/ e)‘Iﬂ( ) ’
/o % yz?ly-ké‘zg(y/ye)]

where o can be viewed as the “eigenvalue” of Eq. (24) for given A, p, and y..

is rewritten as

For a Lorentzian conductivity model, in which g(y/ye) = (y/¥e)?/[2 + (y/ye)?], the dis-
persion relation corresponding to Eq. (24) can be found in the literature as the solution of
a homogeneous eigenvalue problem in the k-space if 05 y2/(1 + %) < 1.2 We also note that
in the appendix collisions are introduced and y. = z./z 4 is redefined to depend on collision

frequency (see Eq. (A-2)). We have developed several other approaches for solving Eq. (24)

10



when oy < 1. Though o is more restrictive than Ref. (25) our method allows g(y/v.) to
be arbitrary. Hence our method generalizes in some respects solutions that have previously
been found. We have further compared the accuracy of the approximate solution in the
literature with nurherical results. We find an important case where a different form for the
asymptotic solution gives more accurate results than v‘}hat has been previously obtained. |

The dispersion relation given in the literature for the Lorentzian conductivity model®® in

terms of our notations is

| I(y) '-_<&y:‘2>” I%(—v)

T3] I'?(5/4 +v/2) 4 r2(5/4 —v/2)

8 *(v) 5yt T=v)
T2(-1/4+v/2) ( 4 ) T(-1/4-v/2)

(25)

where & = —oo/(14+7%), v = \/m, and y¥? = 2y?/(1+ p?) (note that care must also be
taken for the branch of the sq;lare rbot). ‘IIV1 addition there is a quo:ted restriction FyX2.« 1..
This dispersion relation also breaks down if v vya,pproa,ches a nega,tiv;é intéger. Howéﬁéf, as
we shall see, if Rev > 1 the condition Fy*? <« 1 does not api)éar ’go festrict 'the>va,lidity of

Eq. (25). i 5] > 1 (and Re& > 0), Eq. (25) becomes =~

Ay~ B3+ 0 (VF)

with As = 7(1 + 1/45), where we have used the large asymptotic expansion of the gamma
function to second order. Thus under a Wide variety of :co'nditioris y¥* can be ignored in the

dispersion rélation i3 is a rno‘derate or lefmrg.(; value, and Re& > 0. |
" The important case where y* must be accounted for occurs when v — 1 /2 (or equivaléﬁtly
& < 1). Then the term 1/T%(—1/4 + v/2) approacﬁéé zero and »t.he'yf: correction in the
denominator of Eq. ‘(25) needs to be kept. If the y¥ term in the numerator is considered
negligible, Eq. (25) can be written as- o |
r(v)

-’ FZ(_f/zziy-z v/[2) - (5?1:2>U yrz(_llz/(zx_i)y/Z)} I G + g) |

(2‘6)

A= L 532

1



One might expect that if 7 is moderate to large, that the dispersion relation is insensitive
to y¥. However, for smaller &, » — 1/2 and then the y¥ term can compete with the first
term in the denominator as it vanishes as v — 1/2. As the dependence is not expected to
be important for large &, we set v = 1/2 in the term containing the y* dependence. This
retains y¥ term to its correct form when v = 1/2, and keeps the term small for larger &.

One then obtains a model dispersion relation of the form
oAl I'%(v)
5
2 2 v
L2(v)l <4 +1//2> ~ oy*? r2(3/2)
T(—1/4 107D\ 4

As we shall observe later the relation A = A, can be more accurate than the expression

A=A, = (27)

A = A; as y¥ increases. Note, however, that the expression for A; is inaccurate if v — 0,
and then the y¥* term in the numerator of Eq. (25) must be retained.

Now continuing with the small & case, we can expand Eq. (26) and find with v =

\V1/44+6~1/24+ G, and 1/T(z) »z asz — 0,

1 1
A= A4 = = ~ = * ~ %2 . (28)
Ve _yt (a‘yé”) Ve _u [Ha—en (_y_)]
2 . 4 2 o 4
By rewriting Eq. (28) we find
=2 kL, ok .
VG = X + = (l +&n(cy, “) + O(a)) . (29)

Equation (29) is the appropriate asymptotic limit we wish to generate in the limit of small
y¥ and & when the electron kinetics are described by more cgmplicated functions than that
in the Lorentzian conductivity model.

To compare the accuracy of the various approximations for A, we evaluate A numerically
and compare the result given by A; [Eq. (25)], Az [Eq. (27)], and As (obtained from Eq. (28)
neglecting the O(64n &) term)

As (30)

RS

|
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To obtain A numerically we solve the equation

d 1 dv, 20 v 1
dy y2+1dy  (y2+1)2 y2+y¥  (y2+1)2

and use

CU(y) -
—7r—8/ dy 0+ 17 ’ (32)

=0, and ¥(y) —
y=0

Ay exp(—vGy) — (y? + y*?*)/y*& for y > Max {1/\/5, 1}, and where A is a constant. In

practice, Eq. (32) can be solved as a sum of a homogeneous and inhomogeneous equation;

Equation (31) needs to be solved with the boundary condition d¥/dy

ie. ¥ = Us(y)+ AVUx(y) with the boundary conditions at large y being U;(y) — —(y* +
y*?) |y for the inhomogeneous equation and the equation Uy (y) = yexp(—/Fy) for the

homogeneous equation. The constant A is then found to be
A==Tily=0)/Tyly=0), D

where the values at y = 0 are obtained by direct integration of the two diffe.rential equa;tions.
Then with ¥(y) = U;(y) + AUg(y) determined, the expression for.A is obtained from
Eq. (32). A comparison of various values of A~! obtained from: numerical evaluations A1,
A', and A;? are given in Fig. 1.

One observes that for moderate values of y*, A is more accurate than Ay, as the accuracy
of 4; is only good for very small y* (as & increases, the smaller y* needs to be for accuracy)
while A, is accurate for y* < 1. Of course As is inaccurate when & is not small. We actually
find in results to be presented elsewhere, that the use of A; to describe kink mode for
reasonable physical parameters leads to a distortion of the mode spectrum, whereas A, and
As given accurate representations of the spectrum. However, the applicability of Eq. (27),
when the parameters are complex, needs further verification, particularly as A, is a fitting
formula rather than an asymptotic formula.

Now, we study the solutions in the small & limit for a general electron conductivity model.

13



It is interesting to note that ¥ = a+y (with o = —2/A) is an exact solution of Eq. (23)
for oo = 0. However, this solution does not satisfy the boundary condition either at y = 0,
or at y — oo. Therefo.re, the inclusion of the finite contribution of oy, even if it is small, is
essential for the existence of a mode. Taking into account the small o contribution, we can

obtain the asymptotic solution of Eq. (23) in small y-limit from the following equation

2

d?y_\f T i%fi/yen Yo i
where

coE—Aé_B_W/Ooody(y—;p_(l_y—i—)E. (35)
The first integration of Eq. (26) yields

= o e e (%)

which satisfies the boundary condition at y = 0. Now writing |
U=o+07 (37)

we find

4t o [” g(y/ye)
3y 0% = o0 [y S (38)

for y > y. (but y < 1). We then have §U proportional to y as in the limit oo = 0, with «

determined to be

1

oo 9(y/ye)
ao/o W [+ 229(y/y.)]

For the Lorentzian conductivity model in Appendix A (Egs. (Al), (A2)) we find that

(39)

o= —

92 *
a=2Y (40)

To

with
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22
3= e 41
Ve =145 (41)
More generally, it is then convenient to define 7 as
1 _21+p%) /°° 9(y/ve)
—=——] d 42
4 m o VYL Peu/ve) )
‘Then Eq. (39) is written as
ok
o= (43)

.
We note that for small, but finite op, the test function ¥ = a + y nearly satisfies the
differential equation over a large domain (y < 1//F except y ~ 9¥) with o = —£. Then

we can write a dispersion relation as

atz=00F) e

with « given by Eq. (43). The right-hand side of Eq. (44), @(\/7 ), is unimportant fo small
but finite &. The contribution from O(v/F ) to the dispersion relation can be important only
if o becomes so small that it is at the same order as O(+/7 ). To include this case we use a

more general test function

U, =« —i—é/ exp [_—,\/gy] ‘ o (45)
with o given by Eq. (43), to calculate the quadratic form Eq. (24) to the linear order in /.
The form y exp(—+/& y) is chosen as it is a solution to the homogeneous equation of Eq. (23)
for y > y.. The various integrals in the quadratic form are found to be

o [(dU/dy)? 20 |« (i ; ) |
/0 dy[ R o o Ea i R 318 (46)

/()mdyﬁfé(uga)—gx/ﬂc’)(&?n&) @)
® V g(y/ye)q’? _ o’m 1 abn ‘ ‘5. *
/o I v 1+ 229(y/ve)] 21+ )yl * 2(1 + P?)VF +2aln(U/ Vo) ()

15



In the calculation of the left-hand side of Eq. (49) we have used the asymptotic form
1

9(y/ve) 1+72
L+ 529(y/ye) y?
(14 p%)y? + 242

Y > Ye

Y L Ye

and ignored the term at the order yX*/4ny* <« 1. Substituting Eqs. (46)—(48) into the

quadratic form Eq. (24), we obtain a dispersion relation

. -
atl= V2 (49)
A l+§a

In Eq. (49) if « R O(1), the right-hand side of Eq. (49) is ignorable compared to c.
If @ ~ O(+/7), the a-dependence on the right-hand side of Eq. (49) can be ignored, as is
consistent with our derivation, in which only terms of linear order of /o are retained. We
note that if this a-dependence were not ignored, we geneate a fictitious root, 1 + wa/2 ~ 0,

which violates the condition of Eq. (44). Correct to /& order the dispersion relation becomes
ot 2 =3 (50)
— =0c.
A

Equation (50) is the same as that obtained from direct solution of the eigenmode equation

given in Appendix A [Eq. (Al4) with ¥ is replaced by z¥* defined by Eq. (A19)].

IV. Analysis of Dispersion Relation and Numerical
Results

For clarity we first analyze basic properties of the dispersion relation given by Eq. (50) in
the Lorentzian conductivity model (see the appendix where all quantities are defined). The
dispersion relation can be written as

1 d2 (&) ko(& + D)2

B2 (% - D)% + 7)1/ =0 (51)

D(&;6W ko, 7) = @(@ — 1) — 6W d(w) +

16
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with W = d

5

’:p , 0= w/wk, p = piwajwk = 2Ln/,6i1/2 L, f; is the ion beta, L, the
& ' my\ /2
density scale length, d(@) = [&(1 + 7)/ (@ + 7)]*/2, ko = (-T—n—> S¥|mBE, S =2Ly/Ls, 7=

)
T./T;, and ¥ = v,;/wf. The self-consistency condition for the accuracy of Eq. (51) requires
|2X2 /2% | = [2me(1 +0)/m; B:(1 -+ 7)| € 1, and |7 = [2(& — 1)@+ 7)/(1+7)7%| < 1. Note
that the natural parameters for our analysis, treating r ~ 1 and 7 ~ 1, 2 = L? ,Bz J4L? < 1

and 2m./m; B; < 1. This defines a f; interval for the validity of the analysis given by

2m,

& B < 4L]/L%. We note only the branches that are physically compatible with

(2

causality should be chosen in Eq. (5). In this case the branch cuts of the square root in

| Eq. (51) should be chosen so that the function [@(% — 1)]*/? is in the first or second quadrant
if Im& > 0. We choose the branch that is the analytical continuation of [5(& — 1)]/? when
Im& changes sign.
It is instructive to determine the total roots satisfying causality by examining the limiting
case of §W = 7 = 7 = 0. In this limit Eq. (51) becomes
BE - 1)+ ——2 ¢ (52)
. @-1) :

&

Assuming ko < 1, we can solve this equation perturbatively. Near & = 1 we have only
two roots satisfying causality. One is a zero growth rate root with @ = 1 — k?,/ %, the other
is a stable root with & = 1 + k2/° exp(—i7/3). We also have solutions of low ffequency
modes. In the ion direction there is a zero growth rate root, & = ké’/ 3; and a stable root
o = —ki® exp(i7/3) in the electron direction. - The two zero growth rate modes in the
small koqlim‘it turn out to be a pair of conjugate MHD-like modes for finite ko, @y =

(1++4/1— 4k§/ 3 )/2, which are the solutions of the bfollovving equation

&

@—1)= k1. - (53)

This dispersion relation explicitly describes the coupling between the positive energy wave

(& > 1/2) and the negative energy wave (& < 1/2) due to the coupling constant k§/ % arising
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from magnetic shear. Altogether, there are four modes satisfying causality: two of them are
MHD-like with zero growth in the small ko limit; the other two are of drift type, which, for

finite kg, become

o) = <1 + \/(1 + 4k3/3 exp(:f:z'w/3)) /2 ,
where &(*) and &) refers to the mode in the ion, and electron direction respectively. These
may be related to the stable modes analyzed in Ref. 26-28.
The reduced dispersion relation for the conjugate modes, Eq. (53), can be generalized to
include finite §W as
@-1)= k", (54)

&

where k1/3 is the positive real root of the following cubic equation
k+6WkY" —k=0. (55)

Equation (55) yields the conditions when the contribution to the coupling constant & from
the MHD free energy (negative 51//176) is more important than that from magnetic shear. This

condition is estimated as 51717/ kg/ ® > 1, and in terms of physical quantities, as
— §W. > pi(mem [my Bi)1° . | (56)

This condition is typically not satisfied if §W, is estimated by the Bussac formula, Eq. (9),

for typical parameters in tokamak discharges, e.g. §W, ~ 1072 from the Bussac formula,
MeT
m; Bi

kink instability seems to be the parameter ko which is proportional to the local shear. Note

whereas p;( )1/ 3 2 1072, Consequently, the most important driving force inherent to the
that the condition for the unstable mode to be insensitive to §W, is a condition independent
of the local shear. One can also readily verify that the scaling given by Eq. (56) holds for
T~1and 72 1.

To analyze the stability limits of Eq. (51) we first assume 7 = 0. We then observe

that D(&) is real for real @ if 0 < @ < 1. Marginal stability arises in this interval if two
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roots coalesce, which is equivalent to the condition §D/0& = 0. For a given T one can
then determine the relation at marginal stability between the two parameters ko and §W
by simultaneously solving D(&) = 0D(@)/0& = 0. This condition shall be referred to as
the “reactive” marginal stability condition. For 7 « 1 and 7 > 1 the _relation is obtained

analytically. For 7 « 1, d(®) — 1 and then D(&) depends only on  =&(& —1). Then
oD 80 _ 4D o
D/0& = —
oD/%% = 35 ~
D(© =1/2) =0 we find that marginal stability occurs when

(20 —1). Thus, @ = 1/2 is a marginal point, and then from

W = -1 / 4+ 2k while stability requ.iresf

1/2 g3
B

The last term in Eq. (57) is an intrinsically destabilizing term. If the second term is large,

ST > —1/4+ 2 (m) (57)

MHD instability arises even when §W > 0. We also note even if the last term in Eq. (57)

" were not important, the stabilization condition is different from that in previous studies!?=18

that neglected the strong Larmor radius effects which would be valid if p < 1. For example,

the dispersion relation in Ref. 13-18 has as the dispersion relation, assuming §W < 0,
e
a(a—1)+6w2ﬁ=o
with the stability condition —617? < +/27 p. This condition is more optimistic than it should
be when 7 > 1 as can‘be seen by comparing with Eq.“(57), ‘even with the last term neglected.

If 7 # 0, the determination of margmal stablhty is more difficult. The simultaneous -
9D(®)
0w

where a plot of §W vs. kg is given for various parameters of 7. In Flg. 2b the margrnal

solutlon of D(®) = 0 and =01s readlly performed numerically and shows in Flg 2a,
frequency is given as a function of ko.

The plots in Fig. la show two branches to the marginal stability curve ifr <1 I
1/8 < 7 < 1, these two branches are connected at a cusp point where three roots coalesce;

i.e. where §?D/8w? = 0. The upper branch terminates at a finite &y where & = 0 and
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§W = 0. For r < 1/8 the marginal stability boundary extends to arbitrarily §W as ko gets
arbitrarily large.

The lower branch can be interpreted as the marginal boundary for MHD instability.
Starting from & point on this branch, one goes in the unstable region by decreasing §W, for
a given kp. This root blends into the standard MHD growth rate. Increasing §W from the
lower stability boundary brings one into a stable region. However, for 7 < 1, increasing §W
further causes the intersection with the upper stability boundary, and the mode destabilizes
when 6§W lies above this boundary.

There is still the “dissipative” stability boundary to consider, which is obtained by si-
multaneously solving Re D(w) = Im D(w) = 0. Note that the second reactive stability
boundary merg;es with the dissipative stability boundary when §W = & = 0, which occurs

73/2

when kg = T = ko.. If 7 < 1, it can be shown that the instablity region occurs for
T

k < koo and §W > 0. At marginal stability the frequency of the mode satisfies the condition

_ (1 -a@pP@+r)? _
ko = - = F(w) . (58)

For 7 < 1, as ko decreases from ko., w decreases from & = 0~ to &® — —7 as ky — 0.

Asymptotically we find

3 -7 _r
w_){—§(k06—ko)l+7, Fo < ko

—r+ [ko(L+ 7)), ko < koo -

The dissipative instability region can be thought of as an w* mode that is destabilized by
positive MHD energy.

For 7 > 1, there is only one reactive stability boundary. It terminates at the dissipative
instability boundary at W = 0 and ko = ko, = 7%/2/(1 + 7). The dissipative boundary now
exists for W = 0 and

koo < ko < kmax = (1 +7)%/8
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and in the frequency range
(r—=1)
2

We = — <w<O0.

The instability region is now §W < 0. One also finds that the marginal stability curve has
another branch for —7 < w < wy; and k < kpay. In this branch éW, > 0 corresponds to the
instability region as in the case 7 < 1.

Altogether we see a relatively small stability region determined by Eq. (51). In Fig. 3
we indicate schematically by the hatched area the stable region for various 7' for SW near
zero and ko, < k < kmax, there are two different marginal modes, one of which is unstable
for §W > 0 and the other for §W < 0. For k > Emax there 1s instability at §W = 0 and the
unstable mode is the same for either sign of §W. |

We also note that when 6 is greater than the critical 5T for reactlve stablhty (the
critical 67 can be determined from the plot in Fig. la) that there are two real frequency
modes with & < 1, the positive energy mode where & is greater than the critical fréquency
at marginal stability (the frequency of the marginal mode is plotted in Fig. 1b), and the
negative energy mode at frequency less than the frequency at marginal stability. When
electron collisional effects are introduced, the negative energy wave becomes unstable. This
destabilization is illustrated in Fig. 4 for a particular set of physical parameters. Note, that
now a well-defined stability threshold disappears, as the negative energy wave, that was
destabilized, blends into MHD unstable mode as .S, the shear parameter increases. We also
note that the unstable negative wave goes to very low frequency for small S. In this case
stability effects due to ion drift resonances arise that have not been taken into account in
our theory.

A more realistic electron dynamics model when 7 < 1 should take into account electron
Landau damping which gives rise to positive dissipation. This dissipation is not contained in

the Lorentz conductivity model. Hence even as ¥ — 0 there can be appreciable destabiliza-
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tion of the negative energy wave. In the collisionless limit we have also taken into account
the effect of 7.. In Fig. 5 numerical results for the real and imaginary frequencies are given
for a particular set of parameters. Note that in this figure appreciable growth rates are now
present below S < .15 (where the Lorentzian model with ¥ = 0 gives stability). Also note
that as 7, increases the growth rates decrease, as the positive energy dissipation due to finite
ne decreases.
For the above numerical results we find that one of the self-consistent conditions, (z¥/z%) <

1 is well satisfied for B; > .5%. However, the other self-consistent condition, & < 1, is only
barely satisfied. Typically, & ranges from .3 to .4. For a more accurate investigation one
should take into account the contribution from & ~ O(1). As we have noted in Sec. III, a
relatively complicated analytic dispersion relation has been determined in Ref. 20. However,

when & = 1, a simple description of the electron kinetic effects is not as easily attained.

V. Conclusion

We have shown how to analyze with simple functions the m = 1 kink mode in the parameter
regime %j & B; « L/L? and when v, /w ~ 1. In this case the layer width is comparable to
the ion Larmor radius. A relatively simple dispersion relation has been derived from which
concrete stability criteria have been obtained. The most striking aspect of the dispersion
relation is a strong sensitivity to local magnetic shear and local density gradients. These
quantities appear more important than the MHD energy in determining stability and growth

rates for the modes where w/w} > 0. It is conceivable that these local quantities at the ¢ = 1

surface are important in understanding experimentally puzzling sawteeth phenomena.
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Appendix A — Derivation of Dispersion Relation
from Direct Solution of Eigenmode Equation

The derivation is split into two steps. We first obtain the dispersion relation for the
Lorentzian conductivity model, and then we extend the derivation to the general conductivity
model given by Eqgs. (5) and (6)
For the Lorentzian conductivity model we take o(z) to be of the following form
2

q(x):ao.%?—p i ‘ - (A1)

P
where g is defined after Eq. (5) and collisionality can be described if 22 has the form
22 = w(w + iver) [ (K ve)® . (A2)

This conductivity model is obtained from a simple fluid description that includes electron-ion
drag and an isothermal electron pressure,.' This model gives qualitatively similar results as

more rigorous derivations in the large and small v,;/w limits.” We now. rewrite Eq. (2) in the

following way,

i 22 d U\ 7 o 9w
dz 2?2 — mfﬂ; (Z) + L (x:;z ' 1) (}) - (2% — m?‘l—)z Yo, (A3)
A xz -
where _ -
, , .
Vo= A JAK: ) (A0
A/ + K 0 (:E —_ $A)
T4 :
and |
1+,31?0'o=(1+1/7')(:5 T = g0 =2(a’)—1)(&3+7’)>
2% -1 T, Ploo . (T+7)p?
1422
-2 4L721 | ¥ = 212 _ 2me (@ + i) (& — 1)wf2
CLg . i+ pioo miBi(l+ 7wy
2z}



Provided (z¥/z4)? = < 1, we can first solve Eq. (A3) in the region, where z? < 2%

Z/B’L

(region I) and then in the region, where z2 >> z¥? (region II) separately.

For z? <« z% Eq. (A3) reduces to

2T (z) T 20
. D(z) = 220 A5
dz? + 7% — X2 v (=) T4 (A5)
The solution of Eq. (A5), satisfying the boundary condition at z = 0, d¥())/dz =0,is
=0
1 v 1 v 1 22 2 g% ¥
D(g) = —_—t =, —— ==, = - - U A6
ve) {CF< 173071 2’2’:(;::2) 215 o4 } ° (48)

where F(a, 3,7; z) is the hypergeometric function, » = 4/1/4 — 7, and c is a constant to be

determined.
For 22 > 2X? Eq. (A3) reduces to

2 (I1) = (1)
i z i(\P )_i(\lf )___ 2z , . (A7)

drz 2?2 —z% dz. \ = T3 T (z? —2%)?

The solution of Eq. (A7), satisfying the boundary condition at infinity, ¥ (z — oo) = 0,

is

e (- 8) o

(I;erde )(/d VL) + )} (A8)

where I,(z) and K, (z) are modified Bessel functions, z = /G z/z4, and ¢ is a:nother constant
to be determined.

To match U()(z) in the overlapping region (z¥ <« = <« z4), we ought to analytically
continue the hypergeometric function in Eq. (A4) into the large argument region (z2/z*?>>
1), and then make expansion. Also, we calculate U{/))(z) in the small z limit. Then both ¢

and ¢ can be determined by the matching. The expression for ¢ and ¢ are complicated if &
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=

is not much smaller than 1/4. However, if v/7 < 1, we have simple expressions for ¢ and &,

T 212
=,/—C= € . A
CEVIOT g, + 2ic* (49)

To obtain dispersion relation we need to substitute the inhomogeneous solution of Eq. (A6)

into Eq. (A4), and perform the integration. This is done in the small & limit, whereupon

UUID(z) in the limit \/Fz/z4 < 1 is approximated by

\Ifgg)(x)zxpo{\/—gwr(l—\/ga) ﬁ‘—(l—@&) %} (A10)
(for ‘\/?;m/mA <1).

In the small 1/ limit the validity of Eq. (A10) extends to the region, where > z 4, and the
contribution to the dispersion relation in eva,luafing T, at large = (3> z4) is small because
of the convergence obtained from the denominator of the integrand of Eq. (A4).

Now, we show that the asymptotic form in region II, Eq. (A10), can also be eﬁéctiyely

extended to region I, and no significant changes in the dispersion relation occur if a more

accurate form of ¥()(z) were used. To show this we study the integral required by Eq. (AT)

v D(z
D) = /0 dz (:c—\f_—%); : (A11)

where UD(z) is given by Eq.. (A6), and z*? <« u? < z%. The direct integration yields

1 T 1 V_V 1 | 14 3 u?
D(U)ZE\I/(){\/%CUF(—Z-{-§, _2_5’ _2_; :L.=:2)
*

+ 0(&/@} 4> 1 \Ilo{\/;cu (1 Z’i ) + O(u 3/asA)} . (A12)

- At this stage we can introduce the effective U@ (z) as

v0(z) = wo{ g-a (1—;7;3:)+0<§)} , O (A13)



which yields the same D(u) given by Eq. (A13), and is the same as Eq. (Al2) correct to
linear order. Therefore, we can use Eq. (A10) as an extended form to be substituted into

Eq. (A4) and obtain the dispersion relation

2 2z *
= = 17 Al4
A'zy 70za +V7, (Al4)

essentially the same result as obtained in the text given by Eq. (50). It is noticeable that

the detailed structure of the mode at z ~ z¥ is not important to the dispersion relation,

although ¥(z) changes rapidly at z ~ z¥ as

T_ T z?
:L,Nwik = —\Ilo \/;Cé—m—ffen <1 - :1::‘2) . (A15)

The dispersion relation, Eq. (Al4), is also the same as the dispersion relation obtained by

d
T ¥(z)

other authors in the Fourier representation, for example, Eq. (18) of Ref. 25.

The above analysis indicates that the mode structure in a large domain (z < z4/+/7)
can be approximated by a constant term plus a linar term. This is instructive to extend the
Lorentzian conductivity model to the general conductivity model given by Egs. (Al) and
(A3). Since the general conductivity model is the same as the Lorentzian model in region II,
we only consider the modification in region I. Instead of Eq. (A5), the eigenmode equation

Eq. (20) in region I for the general conductivity model is

gD o(z) 20
- D(z) = 229
dz? p2o(z) U (z) = (A16)
22 |1 - B2
2z5
The first integration of Eq. (A16) yields
4 20, J o(z)
— €y
- o /0 iz — [ o ("'”)J w0 (z) (AL7)
22|l — ——=
2z%4

which satisfy the boundary condition at = 0. To the leading order ¥()(z) in the integral
of Eq. (A17) can be replaced by Upy/7/22 [Eq. (A13)], and the matching of T and (D
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in the overlapping region yields

ol ey ()

2
2z4

Therefore, the modification due to general conductivity model is merely a redefinition of & ¥,

le.,

(A19)

£ = 21 o(z)
dz 7
/ z2 z ( )
Q:I’.A
in the dispersion relation given by Eq. (A14). Obviously, Z¥ goes back to =¥ when o(z) is

given by the Lorentzian model, Eq. (A1), on the right-hand side of Eq. (A19). We emphasize

that the replacement of Eq. (A19) is strictly limited in the small & approximation. If 7 is

order unity, the mode behavior in the overlapping region (z¥ <« z <« z%) becomes:.:....

U(z) ~ ¢ 2+ Co z3t

Thus, the above argument for the effective z¥ in the kinetic electron conductivity is no longer

valid.
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Figure Captions

B0

Comparison of the numerically evaluated A~!, with the rigorous asymptotic form A7*
and a fitted form A;'. Figures (a) to (d) are for o = .25, .5,1.0, and 2.0, respectively.
The solid curve corresponds to the numerical evaluation A71, the dashed curve to Aj?

and the dotted curve to A7

Marginal stability curves for Eq. (51) for various values of 7 (r=.1,.25,.5,1.0,2.0,5.0).
In Figs. (a) and (b) the stability boundary curves for the normalized MHD energy
vs. the parameter ko are presented. The arrows indicate that the marginal curves
continue on §W = 0 to ko = 0. Figure (c) shows the marginal frequency as a function

of ko.

Schematic diagrams of the stablity regions found for Eq. (51). The hatched regions are

regions of stability.

The mode frequencies [Fig. 4(a)] and growth rates Fig. 4(b) of the dispersion relation,
Eq. (51) for 7,; = 0.01,0.1,0.25 (curves a, b, c) at W, = —1 x 1073, p; = 0.01,
B;i = 0.01, and 7 = 1.0. The solid and dashed curves in Figs. a and b should be

associated with each other.

The mode frequencies [Fig. 5(a)] and growth rates [Fig. 5(b)] of the MHD-like mode in
the dispersion relation of Eq. (50) [or Eq. (A14)] for the kinetic electron conductivity
given by Eq. (5) and Eq. (6) for n. = 0, 1.0, 3.0 (curves a, b, c) at §W, = —1 x 1073,
pi = 0.1, B = 0.01, and 7 = 1.0. The solid and dashed curves in Figs. (a) and (b)

should be associated with each other.
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