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Abstract
Action principles for the Vlasov equation are presented. Four previously known
action principles, which differ by the choice of dynamical variables, are described
and the interelationship between them is discussed. A new action principle called
the leaf action, which manifestly preserves the Casimir invariants and possess a
single function as the dynamical variable, is presented. The relationship to the
noncanonical Hamitonian formalism is also explored.

The main purpose of this communication is to present a new action principle for the
Vlasov équatiog. We call this new action the leaf action because the theory is described in
terms of a variajoie whose dynamics manifestly preserves certain invariants of the system, the
so-called Casimir invariants that are associated with conservation of phase-space volume.
The name leaf action arises because the constraint surfaces determined by these invariants
are called symplectic leaves. In addition to preserving all the Casimir invariants, the leaf
action has the novel and desirable feature of being variational with a single function as its
dynamical variable.

Another purpose of this communication is to display four other action principles for the
Vlasov equation. These action principles for the most part are not new, but we include them
here for completeness. In the past they were given independently, but here the interelation
between these action principles is discussed, along with fheir rélationship to the noncanonical
Hamiltonian formalism. Wg aim to provide a single easily accessible source for this material.

All of the action principles given here are for the Vlasov-Poisson equation. We choose’
to treat this system rather than the Maxwell-Vlasov equations, since it embodies the particle
dynamics, where the major difficulty lies when attempting to make a collisionless kinetic the-

ory variational; the electromagnetic field part has the standard form. This description where



the electric field is eliminated via Poisson’s equation i‘esults in a slight change in the particle
part of action principle (e.g. the factér of % in the last terms of Egs. (10), (12), (17), (18),
and (26) below), a change which to our knowledge is new. In any event the generalization
from the results presented here to the Vlasov-Maxwell theory is straightforward.

1t is well known by now that the Vlasov equation is a Hamiltonian system with so-called
noncanonical or Lie-Poisson bracket structure. Traditionally the Vlasov equation is written
as a partial differential equation for the smooth Vlasov distribution function f(z,t) (we use

z = (q, p) to denote the phase-space coordinates, and suppress the species index):

of

'6_t+[faH]=0a (1)

where H(z,t) = p®/2m + e$(q,t) is the particle Hamiltonian, and
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is the canonical particle Poisson bracket. Now if we consider observables F[f] which are
functionals on the space of distribution function f, Morrison [1,2] discovered that the Vlasov

equation (1) is equivalent to the Hamiltonian equation

dF
Ez{faH} ’ (3)

where H is the Hamiltonian whose functional derivative is H: §H/6f = H, and {-, -} is a
Lie-Poisson bracket, defined by
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For a derivation of this Lie-Poisson bracket from the canonical Hamiltonian formalism for
particle motion see [2,3].
An important property of the Lie-Poisson bracket (4) is its infinite degeneracy. Consider

observables of the form

clf = / F20(f), (5)
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where C(f) is an arbitrary smooth function, one can easily show that C commutes with all

functionals of f. Thus regardless of the actual Hamiltonian H, C is conserved:
dc , '
E={C,H}: &Pz fIC'(f),H] =0. (6)

The Casimir invariants C represent the degenerate directions of the Lie-Poisson bracket.
Their level sets foliate the space of distribution into symplectic leaves, on which the dynamics
is constrained. The physical meaning of these Casimir invariants was discussed by Gardner
~ [4], Morrison [5], and Morrison and Pfirsch [6]. Simply put, it is as follows. Suppose we
partition the particle phase space z into small cells of equal volume, and to each cell attach
a certain value of f Then specifying all Casimirs (thus a symplectic leaf) is equivalent to
specifying the number of cells that have a given value of f, the latter is obviously conserved
by Liouville’s tﬁ;orem.

It is desirable to restrict the Vlasov equation to a symplectic leaf on which all points are
dynamically accessible (subject only to the energy constraint). This may be of particular
importance in the study of plasma turbulence, where statistical mechanical description is
widely used. Crawford and Hislop (7] considered such a restriction for the one-dimensional
electrostatic case. They first introduced a leaf coordinate, W(q, p,t), to represent all states

close to an equilibrium f,(p):
f(a,p) = e, (M

(the subset W = W(f,) is excluded for obvious reasons). Then they derived from the Vlasov
equation (1), by an iterative scheme, the equation for W: ¥ = Xy (W), where Xy is a
formal infinite series.

In the present work we consider the restriction of the Vlasov équation to a symplectic
leaf in the general case, by utilizing the power of an action principle. We first give the four
old action principles for the Vlasov equation known to us. Of these four action principles,

the first two are in terms of Lagrangian variables which are the particle coordinates, the
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third is in terms of Eulerian variables which are functions on particle phase space, and fhe
fourth uses a mixed representation. The leaf action principle, which we ﬁnaliy present, also
uses a mixed representation.

The first is the Low Lagrangian [8-11]. The dynamical variables are the particle position
a(zy,t) only, where z, = (Q,P) labels the particles. Poisson’s equation is treated as a -
constraint because it does not contain any time derivative. The electrostatic potential #(q,t)

is then solved by the Green'’s function method (the sum over species is implied):

dat) = [ &5 Klalao Dlalzs,Dho(s) (82)
- [ 2 K@@ (3b)
where K (qlq’) = K(q|q) is the Green’s function for Poisson’s equation:
. VK (ald) = ~dre8(a — ) 0

fo(Zg) is a given Vlasov distribution in the labeling space, and f(z,t) = fy(2,). The Low

Lagrangian then reads

Al = [ dt [ 2o foao) [ (an,t) - 56aznst),1)] (10)

where fy(2,) is a smooth Vlasov distribution in the labeling space, and ¢ is to be viewed as
a shorthand for the expression of Eq. (8a). Note that (10) is simply the continuum version

of Hamilton’s principle. Variation yields the equations of motion
mg = —eV, , (11)

which can be shown to be equivalent to the Vlasov equation by standard manipulations.

The second action is a close cousin of the Low Lagrangian. It is known as the phase-
space action, and is obtained by a Legendre transform (q, q) — (q,p), where p = mq. The
action then becomes

2 e

Al = [ at [ @ fan) [p-a- 2o - Sotan)] (12)
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Variations are made with respect to q and p independently, resulting in Hamilton’s equations

q=

3o

y  b=-eVg, (13)

which are of course equivalent to (11). This action possesses a clear geometrical meaning
(the integrand is a one-form in phase space) which makes it amenable to the powerful Lie
transform technique [12]. It was used by Littlejohn [13] to greatly simplify the guiding-center
theory, and has been successfully applied to the oscillating-center theory by Grebogi et al
[14].

There is also a variant of the two actions just discussed that is worth mentioning. One
can invert the coordinates z(zy,t) and re-express the action in terms of the labeling fields
24(2,t). This form has proven useful in formulating variational fluid theories (see e.g. [15].

The third ;}:tion is called the Clebsch action, by analogy with its counterpart in fluid
theories [16,2]. Define the potentials o(z,t) and B(z,t) according to

feiaBy =g oo~ o 3 (14)

Jda p Oa Oa

E“Fg'—aq—evﬁé'% 0, | : (15)
9 . P 9 9 _
_8t+m-aq—eV¢-ap-—0, (16)

then f as constructed in (14) solves the Vlasov equation (1). Be reminded that in (15)
and (16) o and f are coupled through ¢, as given by (8b). Equations (15) and (16) are

derivable from the action principle defined by
Ale, 8] = /dt/dsz oz—a-é - i{a B} — E/al6z' {a, B}YK (a]q){c/, B} (17)
! at 2m ? 2 ? ’ M

where o' = a(2',t), and the same for #’. This action has a notable feature: the number of

particles in a region of phase space, given by [d®z f(z,t), is determined by the value of a
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and B on the boundary of that region. This suggests its potential applications to problems -
that, involve particle injection, which is not possible with other actions.

The fourth action in this brief review is called the Hamilton-Jacobi action. It was first
constructed by Pfirsch [17], and has been generalized and aﬁplied by Pfirsch and Morrison
[18,6,19] to derive unambiguous energy principles for kinetic guiding-center theories. It uses
as its dynamical variables a mixed-variable generating function S(q,P,t) for the particles,

and a density function ¢(q, P, t) representing the number of particles on an orbit. The action

reads
' 8S 1 [8S\* e 88
- _ 3q A3 o 2= = — diah
AipS)= - [ [@adm o |t o (F) +5000- B (5.7)| . 09
where ¢ is defined by (8b) with f(z,t) given by
88\ | 6°S
(,D(C{,P,t) = f (qa ’a—q) )m" 3 (19)

and Hy(Q,P) is an arbitrary function. Variation with respect to ¢ immediately yields
the Hamilton-Jacobi equation; variation with respect to S yields an equation that can be
manipulated into the Vlasov equation for f(z,t). Similar manipulations show that fy(z,) =

f(z,t) must be chosen so that

_0f, 0H, 0f, OH
{fo, Holqp) = a(s ' 8P0 h 013 . BQO B

0 (20)

is satisfled. The detailed calculations can be found in [19].
The leaf action, which is derived from the phase-space-action (12), bears a close re-
semblance to the Hamilton-Jacobi action (18). We start from the phase-space action in its

general form |
ool = [t [ Eaofifa)(e-a - Hap,0) (1)

Here we concentrate on the particle part of the action only, which is why the ¢ term of (21)

differs from the ¢ term of Eq. (12) by a factor of 1. The function f,(z,) is a smooth Vlasov
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distribution in the labeling space which specifies a symplectic leaf; it is considered to be

given. One can think of z, as the initial particle position in phase space:

q(z0,t=0)=Q,  p(z,t=0)=P, (22)

then fy(z,) would be the initial Vlasov distribution function. But one is by no means
constrained to such an interpretation, which is sometimes inconvenient.

Now let (q,p) be generated by a single mixed-variable generating function S(q,P,1):

8s S
p"“a_q'a Q_BP,

(23)
then the Vlasov diétribution f, defined by f(q,p,t) = fo(Q, P), always stays on the same
symplectic leaf determined by f,. Thus by using S we have in effect restricted the variations
to a given leaf. Here for explicitness we choose the F,-type generating function, buf one
can also use any other type and whole calculation, which follows, carries through. In fact it
is well known that a given type of generating function may develop singularities (caustics),
so in practice one may have to switch between the various types of generating functions.
Locally a generating function always exiéts, as shown e.g. by Afnol’d [20]. Equations (23)
suggests us to view the phase space as foliated by Lagrangian manifolds (a Lagrangian
submanifold is an n-dimensional subspace in the 2n-dimensional phase space defined by the
first of equation (23); in our problem n = 3), labeled by P, whereas Q serves as coordinates
on each manifold (in contrast to Eq. (22)).

We want S to generate the dynamics, not just a relabeling of particles; this is partially

fulfilled by requiring

.y @

in a non-trivial way. The more precise criterion will be given later on. From (23) we have

9 . _dS s

0‘:—- — — 2



where dS/dt means total time derivative of S holding z, fixed. Inserting -this equation
into (21) and changing the integration variables from (Q,P) to (q, P), we see that the d.S/dt

term drops out, an‘d the action becomes

. as 85 83
/dt/d P loge | (Ge?) [5 4 (o501)] - e

The van Vleck determinant w = |9%5/9q0P|, due to the mixed-variable representation, is

required to be finite. The Jacobian matrix of this transformation

*S

in fact constitutes the symplectic two-form in the mixed-variable space, because by (23) we

have

Therefore its inverse J¥, where J 1"(_uJ . = 6%, defines a Poisson bracket in this space:

. (Of Og df Og :
— Ju — e Y :
As a general property of cosymplectic forms the following holds true:
9a; (WJ?)=0= aP, (wd™) . (30)

It is straightforward to carry out the variation. After some algebra we find

5A 8s )\ 8s 83
R LR el Cr-0 | AR

Sincew # 0, and the bracket { -, - }(a,p) 18 non-degenerate, a general solution ( “first integral”)

of (31) is

as as as
W-I—H( aq,t) = H, <5§,P>, (32)

where Hy(z,) is an arbitray function that commutes with fy(z,). This generalized form

of the Hamilton-Jacobi equation was introduced by Pfirsch and Morrison [19]. It has the
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following interpretation: if we regard S as generating the canonical transformation from
(a,p) to (Q,P), then Hy is the Hamiltonian in the-labeling space; that f, commutes with
H, tells us that it is a solution of the Vlasov equation in that space.

From (23) and using the chain rule we can easily obtain

oP 825 :
<E;>(q,p) - 90t ’ 9
8Q> 825 828 . (313)
= = + = (34)
( Ot ) qp OPOt OPOP \ 0t ).
and .
ofy . 8 ., [0S |
52 =15 (55P) (35)
8f, & , [0S ?S 0
3P = 3P0 (a?") ~ PP 3Q (36)

These relationships together with definition of f lead to

Do) 8 &), (B 5,
<8t @ 0Q 0t /) qp) OP 3t / (ap) fo OP’" )7 0t [ up (37)

Thus it becomes clear that (31) when re-expressed in (q, p)-space is precisely the Vlasov

equation (1). Eq. (37) also provides a more precise criterion than (24): we must require that
% does not commute with f;.

The leaf action (26) uses a single function S as variable. Comparing it with the Hamilto-

as

Jacobi action (18) leads us to seek a Hamiltonian description. Since (26) is linear in 22,

Legendre transformation cannot be used directly; instead we must use the Dirac constraint

and use it as a constraint. By introducing a Lagrange multiplier A(q, P, ) for this constraint

method. Define momentum conjugate to S by

%S

I=-15p

we then obtain a three-variable action

ansi= [a foatw [1(Zem) - (wron (Z0))] .
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Variations yield three equations of motion. The requirement of inner-consistency leads to

an equation for A:
{/\>fo}(q,P) =0. (40)

Thus the general solution for A is H,, same as that in (32). Putting this back into the

action (39) reduces it to a two-variable action:

85 a5 8S
_ 3 3 hiadl = _ hdadl
A[H,S]_/dt/d quH[at.—}-H(q, 8q,t> #, (aP,P>] L ()

‘Note that in (41) all reference to f; has disappeared. We can relax the constraint (38) and

treat it as an initial condition, for if it holds at one time, then it will hgld for all times.
With this argument we delegate the specification of a leaf to the initial condition, and the
action (41) apﬁlys to any such choice. The two actions (18) and (41) are identical if we
equate II with —¢. The geometrical setting for link between the spaces of S and (II, S) is
also discussed in [21]. |
We conclude this paper by establishing a relationship between the Hamilton-Jacobi
action (41), and the Clebsch action (17). Define a(q, p, t) By
() = (29). @

then similar to (37) we find

8a> { ( as ) 85}
— =<alq,=—,t},=— . (43)
( ot (a,p) , 0q ot (a,P)

Therefore we have, for any function 8(q, p, 1),

de &8 88 98 88
rapgy=- [Pare | a(ag) 6 (afe)} F.
/ ot 1P |55ap | \*\*3q"") P\ P a") [ ) B 4

Now suppose we choose B to satisfy .

aSs as %S
{Ol (qa O_q’t) )/3 (q7 5&7t> }(q,P) - _H/ ‘aqap‘ ’ (45)
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then (44) becomes the first term of the action (41). Inserting the function II as obtained
from (45) into (41), and expressing the integral in terms of (q,p), we obtain the Clebsch
action. The Hj term contributes a constant to the action so can be omitted. Observe also .

that IT = —¢ together with (45) and (19) give the relationship expressed in Eq. (14).
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