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ABSTRACT

Periodic solutions of a 4-dimensional (4-D) mapping model of accelerator dy-
namics are obtained and their stability is studied. It is found that near such unstable
periodic orbits of low period, there exist chaotic regions of strong instability in the
4—dimensional space Tn, Tn+1, Yn, Yn+1, through which orbits escape very quickly
_ to infinity. On the other hand, near 2-dimensional orbits in the zy, zn+1 plane (i.e.,
in the vicinity of “flat” beams with y, = 0) stability conditions are obtained for
which the y, oscillations do not grow appreciably even if z;,2¢ are chosen within
the chaotic layer of an associated unstable 2-D orbit. In the latter case, evidence of
weak instabilities, or Arnol’d diffusion is found and diffusion coefficients are calcu-
lated (~ 107!') and compared with the ones obtained (~ 1071%), when z1,z, are
chosen within a region of oscillatory (quasiperiodic) motion.
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I. Introduction

The stability of particle beams in high energy accelerators is a problem of great
practical concern to which the methods and techniques of Nonlinear Dynamics are
expected to make a significant contribution® ¢,

Two are the major types of nonlinear phenomena that can cause serious blow—
up effects and significantly decrease the beams’ luminosity, over short (strong in-
stabilities) or long times (weak instabilities): The beam—beam interaction and sex-
tupole (or higher multipole) nonlinearities due to residual currents in the super—
conducting magnets.

The effects of the beam—beam interaction have been discussed by J. Tennyson
and many other authors, in this and other volumes 1~*. Particle transport through
resonances, flip—flop, and other related phenomena have been analyzed, yielding
appropriate tune and tune—shift values at which the beam—beam interaction should
not pose a major threat to the safe operation of intersecting storage rings® —*S.

Particularly in the case of colliding p — p beams, (where radiation damping
and quantum fluctuation effects may be considered negligible), even weak instabil-
ities produced by Arnol’d diffusion”, are not expected to significantly affect beam
lifetimes®. Strong instabilities on the other hand (i.e., rapid escape of orbit, to in-
finity via large chaotic regions), simply do not occur in the beam-beam problem,
since the beam-beam force drops to zero (as r~2) away from the origin and particle
orbits remain bounded apparently for all time®2.

In this paper, we shall treat the effect of sextupole nonlinearities on hadron
beams passing through a FODO cell, composed of a dipole and two quadrupoles,
focusing the particles’ motion in the horizontal (—z) and vertical (—y) direction®.
Unlike the beam-beam interaction, the (quadratric) nonlinear forces here increase
“monotonically” in magnitude away from the origin and may cause strong (as well
as weak) instabilities limiting significantly the beams’ dynamical aperture.

Treating the sextupole nonlinearity as concentrated at one point in the cell,
the dynamics of p(p) particles passing through the cell, can be described by the
Hamiltonian

1 z8
= 5(0% + Py + 2" + v°) + (5 — 2y )oan(?), (1)

where ¢z, gy are the betatron frequencies (or “tunes”) in the 2 and y directions, €
is the strength of the nonlinearity and é2.(¢) the 2r—periodic §-function

oo

52,r(t)=2—17r S coskt . 2

k=—o00

In this work, we shall actually work with the 4-dimensional (4-D) mapping to
which Hamilton’s equations derived from Eq. 1 rigorously reduce®:

Tnt1 = 2Tpn COSWg — Tn—1 — (€ sinwz/qz)(x% — yi) (3a)

Ynt+1 = 2yn COSWy — Yn—1 + (25 Sinwy/q;y)xnyn (3b)
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describing the z,, yn displacements of the particle after its nth passage through the
cell (wg = 2mqy, wy = 2mqy).

In section 2, we construct some fundamental m-periodic orbits of Eqs. 3 (m =
3,4,5,...) in 4 dimensions, and find that when they are unstable (with respect to
small perturbations) they have large chaotic regions about them through which
particles can escape to infinity after a very small number of iterations.

On the other hand, in section 3, we show that weak instabilities can also occur
near unstable 2-D orbits of Eq. 3a (£, = &ntm,¥n = 0). In particular, we find
at some specific tune values that placing our initial z1, 2o within a chaotic layer of
one such orbit, (small) y, oscillations exhibit a slow amplitude growth that may be
characterized as Arnol’d diffusion 7. Diffusion coefficients for such a growth were
calculated and found to be 8-9 orders of magnitude larger than the corresponding
ones, obtained when 21, 2o are located near a stable 2-D orbit.

Finally, in section 4, we offer some concluding remarks and point out that the
instabilities discussed in this paper need to be further studied in the presence of
an additional factor, which is expected to enhance them and thus increase their
damaging effect on the beams’ life-time: This factor is the so—called synchrotron
oscillations’™* occuring in the longitudinal direction (i.e., along the beam) due to
the particles being accelerated in that direction by the rf cavities.

These oscillations are actually seen to produce a slow modulation in the hori-
zontal and vertical oscillation frequencies of Eq. 1, which can be modelled by

Go,y = q1,2(1 + Acost), [A] << 1, Q<<1. (4)

Thus, their overall effect may be studied by the theoretical methods of modula-
tion diffusjon, developed in recent years by Chirikov and co-workers'®. This ap-
proach is currently under investigation and results are expected to appear in future

publications!?.

2. 4-Dimensional Periodic Orbits and Stability

The transfer map for a particle’s horizontal (—z) and vertical (—y) position
and momentum variables, as it passes through a single FODO cell, may be written

in the form® .

x z
! 1, 2 __,,2

be | = | e ERUE ) ©
Y Y

Py py — klazy

where k is the strength and {; the length of the cell’s dipole

M=URU™, U= (% I?y) ,R= <R((L)uz) R((u))y))
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1 o
U,, = By 9;  R(a) = cosa —sina (5a)
’ Y,y Bz 2 sin o cos &

Bz ,(8) are the betatron functions (s is the coordinate along the particle’s ideal
Y g p

_1
circular) path around the ring, v;,y = 85 ,(5)/2fs,5, and
Wy = 27qy , wy = 2Tqy , (6)

gz, gy being the betatron frequencies or “tunes” of the z- and y-oscillations respec-
tively, caused by the (linear) quadruple fields. Clearly, we have assumed in Eq. 5
that the sextupole nonlinearity is concentrated at the midpoint of the cell and serves
to alter the momentum (but not the position) of the particle, by an instantaneous
“kick”. ,
Substituting Eq. 5a in Eq. 5 and eliminating the momentum variables p, and
py, we arrive after a little algebra, at the second order difference equations

1 . :
Tpt1 = 2Tn COSWy — Tp—1 — 579 lafs smwx(mi - yi),
Ynt1 = 2Yn COSWy — Yn—1 + k laBy siNwyTnyn , (7)

n=0,1,2,..., yielding the new xn+1, yn+1 displacements after the nth passage of
the particle through the cell (and its nth rotation around the ring).

Even though the betatron functions f;, 8y are periodic functions of the distance
s along the ring, they do not significantly vary about their mean values, so we may
take

Br,y = L/(27qe,y) = Reffqm—,; (8)

where L is the length of the circumference and Ry the effective radius of the ring.

Defining now
Cpy =COSWgy , Sgy=SiDwgy, (9)

and
A=2klgBys,)" , B=20k3Bufysssy)? , (10)

we can scale our x,,y, variables to
zn=AX, , yn=DBY, (11)

and rewrite our mapping equations in the simplified form

Xn+1 = QCxXn - Xn—l — pX,,z.L -+ Y—T% 3 (12(1)
Vo1 = 20,y — Yoy 42X, Y, (12)

with
p = Bs8s/BySy - (12¢)
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Note that Eqs. 12 constitute a 4-dimensional mapping
Xn+1 = T(Xn) ) Xn = (Xn,Xn—lyj-fn, an—-l) ) (13)

with only two parameters ¢z, ¢y.
The variational equations of this mapping about an orbit X, are found by
substituting X, = X,, + AX,, in Eq. 13 and linearizing

AXpy = I(X)AX, , (14)

where J (Xn) is the Jacobian matrix of T. Clearly, since |cz 4| < 1, cf. Eq. 9, the

origin X, = O is (linearly) stable for all ¢, gy- :
We now seek periodic orbits of Eq. 12 in the form of Fourier polynomials'?,

Xn — ;Akeiwkn , Y, = ZBkeiwkn : (15)
3 k

with frequency
w/2r=my/my , —T<w<lT, (16)

where k in Eq. 11 takes integer values such that

2

m
—r < kw<mw ,or —72<km1<

Substituting Eq. 15 in Eq. 12 we obtain algebraic equations for the coefficients
Ay, By:

A I P 1
(cos kw — cosw) A}, = Ag(cy — cosw) — 5 XZ:AIAk_l + 3 Z:BIB;C_Z,

(cos kw — cosw)By, = By(cy — cosw) + Z A By, (17)
z .

which may be solved recursively from the left had side for A}, Bj, for all k # 1. Of
course, Eqs. 17 can also be solved in their original form (A}, = Ay , B}, = By) by
an appropriate Newton algorithm.

Since we shall be interested in low period solutions, m; = 1, my = m in Eq.
16, and : ‘
w=2r/m , m=23,4,5... (18)

we will solve Eq. 17 by iterative schemes*®'?, which are generally rapidly conver-

gent. For example, for period m = 3 orbits we shall have to solve 4 equations for
Ag, |Ai|, Bo and |Bi] of the form:



345 = Ao(2¢: + 1) — p(Af + 2|41*) + B5 + 2|B:1[?,
3B(l) = Bo(QCy + 1) + Z[A()Bo + 2'A1| |Bl| COS(G — ¢)],
0 = |A1|(2¢5 + 1) — 2pAo|A1| + 207 ' Bo|B1| — poz|4a|* + 03| B: 2,

0 = |B1](2¢y + 1) + Ao|B1| + 01|A1|Bo + a3|A1 ] |Bi], (19)
where . .
A1 = [Allew 5 B1 = IBlle“/’ (20&)
and . , o
o1 =€ gy =3 gy = 2800 (200)

Now, there are several choices of ¢, 8 that correspond to real o1, o9 and oj
in Eq. 19 and some of them yield different period-3 orbits of the mapping. For
example, for

gr = 0425 |, gq,=0.344 (21)

i) 6=0,¢=7/2, yields the stable periodic orbits
at the centers of the “islands” in Figure 1.

(ii) §=¢=m/3, gives the unstable period—3
orbits between the “islands” in Fig. 1

The stability of these orbits is determined by the eigenvalues of the return
Jacobian matrix

T = [ 3(%) (22)

m = 3. As is well known, these eigenvalues must all lie on the unit circle for the
m-—periodic orbit to be stable!®.

There is a strong instability associated with these simple periodic orbits (or,
low order resomances) of Eq. 12. When particles enter into their chaotic regions
they are seen to escape very quickly to infinity. Thus the locations of these low
period unstable orbits provide useful estimates of distances from the origin (in the
Xn, Xpnt1, and Yy, Yo41 planes) where this strong instability occurs.

We have similarly constructed period 4 (w = m/2) solutions of the mapping
given by Egs. 12. One of them, for example, was found to be stable for

g- =0.235 , g, =0.230 (23)

at significantly large distances from the origin in both the X,, Xpy1 and Yy, Yoqq
planes (see Figure 2a). This orbit was also obtained with the choice § =0, ¢ = 7/2
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Stable Period 3
, ’ Orbits 1 and 2

2
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o + ) 1.0
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n+ | )
110 Escaped after
3666 iter.
1.0
]
]
Yn
(b)

Figure 1(a). Stable period 3 orbit of the 4-D map at the centers of the “islands”
marked by 1 (and its symmetric one, Y, — —Y},, marked by 2), for initial conditions
Xo = —.065, X1 =.057, Yy = .02, Y7 = —.31; (b) Changing to Yy = .04, X; = .06
leads to rapid escape through the chaotic regions of the unstable period 3 orbits
lying between the “islands”. In both cases, ¢, = .425, ¢, = .344.

Xns1
n+1
-1 1.0 -t
1.0 Orbit esceped
- after 45716 iter,
1.0
| I!.o
o T l
xn n
y 4
(a) .
(b)

Figure 2. Same as Fig. 1 for motion near 4-D orbits of period 4 at ¢z = .235, gy =
.23. (a) Xo = .6,-X1 = —.1, Yy = .01, Y1 = —.5 and no escape up to 10% iterations

is observed; (b) Same as (a) but with ¥p
iterations after the orbit entered the chaotic region.

.05: Escape occured a few hundred



in its main Fourier coefficients of Eq. 20a, and has By = B = 0. As in the case of
the period 3 orbit, when the initial conditions were such that particles eventually
entered the chaotic region between the “tori”, orbits were soon thereafter seen to
escape to infinity, as shown, e.g. in Fig. 2b.

It is interesting to note what the intersections (projections) of 4-D tori about
these periodic orbits look like in the X,, X 41 and/or Y, Y,41 planes: In Figures
3 and 4 we show some of these “tori” associated with the period 3 and 4 orbits
discussed above. As initial conditions are chosen further and further away from the
periodic orbits these 4-D tori projections (which look remarkably like 2-dimensional
tori!) grow in size and become more “jagged” and complicated in structure. It will
take, however, further study before reliable statements can be made about how (and
whether!) these tori actually “break-up” and “join” allowing orbits to rapidly run
away to infinity.

3. Arnol’d Diffusion Near an Unstable 2—D Periodic Orbit

Long term orbital stability is not observed only near the origin and stable
4-D periodic orbits of our Egs. 12. It can also be found near stable 2-D m-
periodic solutions of Eq. 12a, {Xn}, with An = An+m and 5 = 0. At the ¢,
values, however, where such solutlons exist, gy must be so chosen that small ¥,
perturbatlons about these solutions do not grow exponentially via the parametric

driving of X, in Eq. 12b.
Suppose {X,} is an m-periodic orbit of Eq. 12a, with ¥, = 0. It is known that
it will be (linearly) stable in 2-D as long as the following condition is satisfied **

|2+ det H,| < 2 (24)
where H; is the m X m matrix with:

(Hy)ii = 2¢, —2/)}2,' , 1t=1,2,...,m,
(Ha:)i,i+1 = (H:c)z'+1,i = (H:c)l,m = (Hz)m,l =-1, (24&)
and all other elements zero.

This criterion was derived!® from a Floquet type analysis of the linearized Eq.
12a (with Y, = 0) about the m-periodic orbit {X,}. But the second equation of
our 4-D mapping, Eq. 12b, is also linear in the Y, and may be viewed, for small
Y,, as parametrically driven by the 2-D m-periodic solution {An} of Eq 12a. We

can therefore apply the samé criterion as above to ensure that small Y, oscillations
about this 2-D periodic orbit remain bounded for very long times,

12+ det Hy| < 2, , (25)
where Hy is the same matrix as as H;, except for its diagonal elements:

(Hp)ii =2¢cy +2X; ,i=1,2,...,m. (25q)
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n+1

0.25
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Figure 3.

(a)

(b)

(c)

(d)

The stable period 3 orbit marked
by 1 in Fig. 1(a), at ¢, = .425,
gy = .344, in the X, Xny1 plane.

A rﬁagniﬁcation of the 4-D torus in
the box of (a), at the same initial
conditions as in Fig. 1(a).

Increasing only the Yp initial con-
dition to Yy = .03 we observe that
the tori grow in size and become
~more “irregular” in appearance.

At Yy = .0345, the orbit stays for a
long time on the tori, filling them
out in an even more irregular and
non-uniform way than (c) and even-
tually escapes after 28527 iterations
of the map. :

(b)




Xn+1
-— 1.0
D
1.0
|
P
%ﬁ Xn (b)
(_a)

Figure 4. Same as Fig. 3 for a 4D
stable periodic orbit of period 4, at

dz =

(a)

(b)

()

(d)

235, g, = .23.

Starting with initial conditions

Xo = .61, X3 =-.13, Yo = .05,
Y, = —.48 we have no escape for
10° iter. . .

Magnification of the torus in the B

box shown in (a).

.

The same torus after changing only:

one in.cond. to ¥; = —.52. Note . . A

the more "“jagged” appearance -of

the torus and the “spotty” distri- .

bution of points over it.

Y: = —.5215 and escape occurs at

iteration 58924, after the orbit has

wandered for a few hundred itera- -+ g

tions in the chaotic region between
the tori.
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Thus, all we need to do to ensure long term stability in this case is look for ¢z, gy
values such that the above two Ineqs. 24 and 25 are simultaneously satisfied.

Consider, for example, period 3 solutions of Eq. 12a (with Y;, = 0). Ineq. 24
gives in this case

1< (4c2 —8c, —3)(1+ /2 —2c, —1) <3

or

0.318 < ¢; £0.333 , ' (26)

in order that these solutions be stable with respect to small variations in X,,. On
the other hand, Ineq. 25 implies that small Y,, variations about these orbits will
remain bounded provided

2
T T 1 T z 1_
|4(cy+c : “) (cy+-—*LCPJ>_3cy-§-C—J“p—“|<1, 27)

a=(c —2¢, — 1)%. Ranges of ¢, values obtained from Ineq. 27 for different g,
satisfying Ineq. 26 are listed in Table 1 below.

Similar results are obtained for other m-periodic 2-D solutions of Eq. 12a:
For m = 5, we have determined from Ineq. 24 that stability with respect to Xn-
variations requires

0.21 < ¢’ < 0.229 (28)

while for ¥,,-boundedness, the corresponding intervals of ¢y values obtained from
Ineq. 25 are listed in Table 1 also.

Table 1
gz, gy Stability Intervals Near m—Periodic 2-D Orbits
m _ gz gy—Interval
0.320 (0, 0.12) and (0.387, 0.473)
0.322 (0.390, 0.468)
3 0.326 (0.396, 0.461)
0.330 (0.400, 0.456)
0.210 (0.12, 0.16) and (0.2, 0.363)
5 0.220 (0.195, 0.330)
0.225 (0.185, 0.312)
0.229 (0.180, 0.295)

Placing our X1, Xo initial conditions for the above ¢z, ¢y values near the stable
2-D orbits, we observed that orbits with Y7,Y; small enough (typically [Yo,1] ~
1072) remained bounded, i.e., X2 + Y2 < 1, for 10° iterations of Eqs. 12. We also
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observed that, for each ¢, the Yjax = max{|Yy| + |Y1|} for stability varies over the
correspondmg gy interval, attaining its largest values (Ymax ~ 0.1) near the center
of that interval.

And now we come to our evidence of weak instabilities, or Arnol’d diffusion
in this model: Choosing initial conditions for Xy, X; at the point A, within the
chaotic layer of the unstable 2-D period 5 orbit of Fig. 5a, we found that the Y,
oscillations—no matter how small their Y7, Yo—kept growing in amplitude (on the
average) producing in the Yy, Yn41 plane a set of point scatiered over a figure of
intersecting “rings”, as shown in Figs. 5b,c.

On the other hand, an orbit starting at a point B in Fig. 5a, within the period
5 islands, exhibited considerably weaker outward diffusion properties and produced
a set of intersections lying on a much more clearly defined “ring”—pattern in the
Y, , Y41 plane (see Fig. 5d).

In an attempt to quantify these observations we followed a method due to
Chirikov et al.”*® and divided our total number of iterations N = 10° into

1) N; = 100 subintervals of length AN; = 10,000, and
2) Ny =10 subintervals of length AN, = 100, 000.

Then for each of these cases we computed the diffusion coefficient

[Y(m) - YO
Nk(Nk - 1) Z ANk)(TfL - l) ’

Dy = k=1,2 (29)

Y(m) being the average of Y, over the mth subinterval, m, I = 1,2,...N;. (In
Eq. 29 we have used Y (m) instead of the more common average of the Hamiltonian
H(m)"!¢ because, in our system, diffusion phenomena are more pronounced in the
Y, direction).

For a true diffusion process it should not matter if the motion is averaged over
different numbers of subintervals, and hence one should expect:

Dy = D, (for Arnol’d diffusion) (30)

On the other hand, if initial conditions are chosen within “islands” of stable oscil-
latory motion: [¥'(m) — ¥ (n)] « (AN;y)~?, whence '

(ANl)

_3 R
( AN,)? =10 (for oscillations) (31)

Placing our initial Xy, X; at the point A, inside the separatrix of Fig. 5a, and start-
ing with Yy, Y7 selected among the values -.01, -.005, 0.0, 0.005, .01 we computed
after N = 10% iterations, on the average,

Dy =.72x10"1" | Dy=04x10""

or
D,/Dy =0.6 (for diffusion) (32)

12



(b)

Figure 5. Evidence of weak (Arnol’d) diffusion in the Y; (vertical) motion for

gs =021, g, = 0.24.

(a) Chaotic layer of the unstable period 5, 2-D orbit with Yo = ¥3 = 0, passing by
point A: Xy = —.0049, X; = —.5329.

(b) With (Xo,X1) at A and ¥ =0.0,Y; = 10~% a diffusive outward motion in the
Yy’s is observed (Magnification=8 x 10°).

(c) Same as (b) with Y5 = 107, under a magnification of 8 x 10%: Diffusive motion
is evident, unlike:

(d) where Xo = —.0019, X; = —.4569 are located at point B at the center of one
of the islands of (a).
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Starting, finally, with Xy, X; at a point B inside one of the islands of Fig. 5a
and averaging over a similar set of Yy, Y3 initial conditions as above gives

D;=.32x107® | Dy=.17x10""7,
and )
Dy/D; = 5.3 x 1072 (for oscillations) (33)

Thus, not only are the diffusion rates 7-8 orders of magnitude smaller in the
oscillatory regimes, the ratio Dy/D; is also a lot lower than in the diffusive case
(32), as expected. Eq. 33 is, of course, quite larger than predicted in (31) (and
one order of magnitude higher than found by Chirikov et al. in Ref. 16). We have
checked, however, our program in other oscillatory regimes, starting with Xo, X3
at points C, D in Fig. 5a and have found results

for point C: Dy =1071%7 | D, =1071%" — D,/D; =102
for point D: D; =1071%% D, =107'3" — D,/D; =38x10®

which are a lot closer to the expected value of Eq. 31 and clearly distinguish Eq.
32 as demonstrating the presence of a weak (Arnol’d) diffusion process.

4. Concluding Remarks

We have studied a 4-D mapping model of the dynamics of hadron beams pass-
ing repeatedly through a FODO cell containing sextupole nonlinearities (concen-
trated at one point), a dipole field and 2 focusing quadrupoles, in the storage ring
of a high energy accelerator.

We found that low period 4-D periodic orbits of the map, when stable, have 3-D
“tori” around them on which the orbits execute bounded oscillations for 10 map-
ping iterations and beyond. However, particles entering the large chaotic regions
about such wunstable low period orbits experience strong instabilitzes that quickly
(over a few hundred iterations) lead them to infinite distances away from the origin
of the map.

We have also discovered “tune” values (betatron frequencies) for which nearly
“Hat” beams (Jyn| << |zx|) execute bounded oscillations (at least up to 107 passages
through the cell) near stable 2-D periodic orbits of the z,—mapping (y, = 0).
However, when the initial z¢, 21 are placed inside the chaotic layer of one such
unstable 2-D orbit, a slow outward diffusion in the y, motion is observed, with
diffusion coefficient D < 107! for N = 10° mapping iterations.

Comparing with the results of other researchers we have verified that this weak
instability is indeed evidence of Arnol’d diffusion, which typically occurs at much
faster rates than one finds when z1,zo lie within oscillatory regimes (D < 10"19).

These computations must, of course, be carried out for longer times (N = 107
and beyond...) and compared with analytical diffusion estimates existing in the
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literature’!®. Moreover, synchrotron oscillations (causing a slow modulation in the
gz, qy betatron frequencies) also need to be included in our model and their effect
on beam lifetimes analyzed numerically as well as analytically!®. Such studies are
currently under way, and results will be reported in a forthcoming paper®!.
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