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~ Energy conservat1on for the drift-wave system is shown to be separated into the Wave—
energy power balance equation and an amblent thermal—energy transport equation con-
Atammg the anomalous transport ﬂuxes produced by the fluctuations. The wave: energy
‘equatlon relates the wave energy density and wave energy flux to the anomalous transport

flux and the cl1ss1pat1on of the fluctuations. The thermal balance equatlon determines the

: evolu’c1on of the temperature proﬁles from the divergence of the anomalous heat ﬂux the

collisional heating and coohng _mechamsms and the toroidal pumping effect.



1. INTRODUCTION |

In this work, we describe the balance between the various fluctuation energy densities
and the fluxes for Sysfems containing drift wave turbulence. In conjunction with the
ﬂuctuation—energy ba,ia,nce, we consider the evolution of the background thermal energy
or mean pressure profiles. The turbulently generated energy fluxes act to release the free

: energy stored in the background thermal energy.

The two energy densities of the fluctuation energies and tb_e thermal energy may differ
by orders of magnitude, but are freely ekchanged with each other through the transfer
terms .calculated here. For exami)le, the compressional work done on the systern, that is
a source increasing the thermal energy, is cornbined with the work done'by the pressure :
gradient, that is a source term for the change of the fluctuation kinetic energy, to give"a
conservative energy flux. Also, in one interesting situation,? We will show in Sec. II that
the so-called toroidal-pumping term in the thermal—energy evolution and the source term,
" that results from the ﬁmte—Larmor-radlus thermal flux, in the total fluctuation energy
. are of the oppos1te signs. The names used for the various energy fluxes and the transfer

mechanisms analyzed in this work are summarized in Table 1 for convenience. .

Thelim.portance of the evolution of ‘the total ﬁuctuation energy is that all the .transfer :
terms reduce to the conservative form ‘(giveln by the divergence of 5 flux) and one can
identify. that there are tWo-types of sources: one type is due to the interaction betWeen '
.the gradients of the mean fields and the fluctuations and the second type is the classical
dlsSIpatlon Recently, Krommes and coworkers have taken advantage of this generic form
of the power balance in their calculations of upper bounds for the turbulent transport
in bounded systems. ’I‘hey have used the global constraint that in the steady state, the

“production” of fluctuation energy due to the interaction between the mean gradients and
the fluctuations is balanced by the dissipation in the system. The resulting bounds are
surprisingly good and the final state reasonably describes the physical properties of the
system. In the present problem, one can, in principle, construct the similar variational

principle from the equations developed in the present work.
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Sometimes, the mean pressure eqﬁation is thbughtA of as describing the evolution of
the total energy bécause the fluctuation field energy and the kinetic energy are assumed to
be far smallef than the internal thermal energy. Then, one is led to a paradox of whether |
he should call %pV or %pV as the convective energ‘y flux perlunit volume: The paradox
 arises beéause there exists the total eﬁergy conservation law

b ; ) .

where we define the fotal energy flux per unit volume
 F=Si+EV+ipV+q,

E; and Fy are fche densities of the field energy and the kinetic énerg‘y'respect‘ivél‘y, St ié
the field energy flux per unit volume, and q is the additional heat Aux per unit volume
counting for the condﬁction and other effects.’ For.simp]icity, we ﬁeglect the.viscosity and
other source‘ terms. As is known, %pV is the sp'e‘ciﬁc enthalpy flux, sum of _"t‘h_e convective
‘thermal energy'ﬂux and the energy flux due to the mechanical work perfonhed on the
system, including both the mean and the ﬂuctuatmg parts If one assumes that Ef, Ex < p,
" he obtains from Eq. (1 1) ' ' '

3, P
at2p+V (2pV+9) ~0, 12

which is directly éontradiétory to the thermal—energy ,equatiori '
8 5 | S |
6t2p+v (2pV+q)=—pVV o - (18)

where %pV is the. convective: therma,l-ehergy flux per unit volume and (—pV- VV) is the
source term due to the compress1ona1 work. For the two equatlons (1.2) and (1 3) to be

equal to each other, one must have V. Vp =0, Wh1ch in general 1s not satisfied.

~ The explanatmn for the para.dox is that 1t is not right to neglect Ef and E in Eq. ( 1. 1)
~ just because they are small; although they may be small, the time-rate of change of Fx

and Fy may not be smaller than that of p. For example, ‘if the electrons respond to



the electrostatic field adiabatically, after taking the ave'rége over the magnetic surface or

the y — 2z plane, we find that qualitatively
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»‘where |...]is understood as the root-mean-square '&?alue'of the argliment the tildes denote

the ﬂuctuatmns, and the 7’s a.nd L are the typical scales of the time and the space In

other Words,
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Thus, indeed, one sees that |OE; /atl ~ |Op/ 8t| One reaches a similar conclusion for the’

-kmetlc—energy part of the fluctuation energy.

The reader shotld note tha{: élthough we prefer to call -3-(1317) as the convective ther-

" mal flux due to the microscale convections, some authors* would call it the anomalous

conductive heat ﬂux The reason for designéting the terms as conductive is that as in the

quasilinear regime the flux can be shown to have the form 2 (MV) —Xa V(p), where x, is

a functlonof V(p), if one coarse-grams the 1nhomogeneous dlrectlon into many cells with

the size lérger than a correlation length of the turbulence but smaller than a macroscopic

length. Yet, this argument would break down if the correlation length is-of the ordér of,

or larger than the macroscopic length. However, this is not generally _beliéved to be the

case for the drift wave problem.’



As for the fluctuation energy balance for the electromagnetic' fluctuations and the

electrons we show in Sec. II that =

—a%'éf— =2 (%QE + Qm) %1;) + %(ﬁvﬁ) - (vdissipa"oion terms). | ; (1‘.4)

Definitions of all the terms are left to be explained in Sec. II and it is sufficient here to say

| “that thefirst overlined term on the right-hand side of Eq. (1.4) describes the producﬁion of

the ﬂnetuation energy & due to the heat flow across the nonuniform mean pressure and the

second overlined term represents the production because the magnetic field is not uniform.

In the steady state, these two terms balance the absorption of the ﬂuctuaion energy due

to the dissipation. As we will show in Sec. II, the second overlined term on the nght hand

side of Eq. (1.4) is of the opposite sign to the source term due to the E X B compression in

_the thermal energy equation if T Te and the i ions are assumed to follow the electrostatlc

field adiabatically; again, this shows the energy exchange between the thermal energy ‘and

the ﬂuctuatlon energies.

In this work, we use the tWO component fluid equatlons der1ved by Braginskii because
it is believed that other than some kinetic effects 11ke Landau damping, they model the

drift-wave problems fairly well. As.fundamental assumpt;ons_,- it is assumed that in the

. case when the jon dynamics are important,. the electrons are adiabatic with a finite phase

 differénce between the electrostatic potential ¢ and the density n and the electron temper- -

atnre- is constanfand in the case when the electron dynamics are considered the roles of

‘the electrons and the ions are reversed in the dynamical equations. Also, in the case of the

electromegnetic fluctuations it is assumed that the magnetic fluctuations are perpendicular

to the mean field, thereby, eliminating the fast compressional Alfvén waves. As usual, the

| condition of the qua'si_neutyrality is enforced.

2. ENERGY BALANCE

' In this sectlon we derive the evolution equatlon of the thermal energy den51ty and the

' balance equatlon for the ﬂuctuatlon energy dens1ty In the present Work we will work in
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the slab geometry. The generalization.to 'a,rbit'ra,r}‘r geometry is stra.ightforward Before we
move on, we need to clar1fy the averages we take in this work. First, we take the average |
over the rﬁagne‘mc surface. ‘We denote the surface average of f with an angular bracket (f).

The fluctuations from the su;"face averages are represented with the tildes f = fF={f).
Another average we take is the average over the direction perpendicular to the magnetic

.surfa.ee, which is denoted by the bar. Thus, m means the volume average of f.

To start with we approximate the 'perﬁendicular velocity V. for the short spatial
scale and low frequency fluctuations as the sum of the Ex B, the diamagnetic, and the

: polanzatmn drifts

V, = V_El) -+ %,
Vi = Vi + Vg,

. cExB
VE= B2 )

. ¢cBXVp

N T 17

- -t 9 yo. (1) w) _ L
v, Q_zb.x[(at,-}V .v)v + (vr_r ) — ]
vOLvPey, o ey

where II is the momentum stress tensor,® a.nd R ‘is' the transfer _ef the morﬁentﬁfn between

the ions and the electrons by collisions. Here, b is the unit vector along the magnetic
field B, Q is the gyrofrequency; m is the mass, and n is the bparti.‘cle density. For the
fluctuations with low frequency 0/ 675 < Q and the Wavelength longer than the gyrora-
dius, IV(I)‘ > | ‘ |

2.1 Particle Flux

Before studying the energy transport, let us consider briefly the particle transport.

The evolution of the mean particle density is described by the continuity'equafion:

d{n) - ‘ '
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where we define the particle flux I’ across the magnetic surface

I'=(nV),

since [Vp| < |VE| and (nVy) is dominantly parallel to the magnetic surface, I' reduces to
~ (iVe) + (nVi),

~ (7V5) + (n><‘7n-§> |
- FE'*‘Fm,. o _

where we assume that (E) = (V})) = 0 and [%| < |n|. Here, the fluxes I'z and Iy g.fe due
to the Ex B drifts-and the flow along the fluctuating magnetic-field lines, respectively.

The electro'static'.component of the i)a.rﬁicle flux I'y depends on the phase angle bé-
'tWeen the 7 and B} = =V o ﬂﬁctﬁatiqh and vanishes when 73 and @ are in phase or
have a 180° - phase shift. These tWo important special cases oécur fof the ion pressure
grﬁdient (7:) mode Whefe_the electrons are adiabatic and the electron pressure gradieﬁt
| (Me) mbdé Whe:é_ the ions are adiabatic.! ‘However, in genéral, there exists a phaéé'dif—
ferencé between & and 7, which gives rise to ﬁriite I'g aéross thé surface.® The ﬂux is
poéitiire or negative depending on whether the phdse of 7 leads or follows that of c’ﬁ While
the electrostatic fluctuations are relatively well understood, the transport _dile.to-the elec-
trofnagnet'ic fluctuations a,vreA still not thoroughly studied. Oﬁ the ‘on‘ei hand, .th.e role of
- the stéchastic magnetic fields (passive situation) with regard to the trdnsport' has been
studjéd ‘extensivelypl and is understood fairly well. On the other hand, the self-consistent
treatment of fhe fluctuating magnetic'ﬁeld ﬁ poses a very difficult ‘problem. Recently,
~ there have been controversies over the role of the magri‘etic fluctuations, -Whether they
yield a sizable or experimentally measured transport. While Terry et a..l.8 claim that the
magnetic fluctuations do not contribute ‘to the transport at any level, Krommes and Kim®
and Thoul et al.’ stress that the magnetic fluctuations do, in general, lead to the trans-

port. In brder_to answer the questions about the magnetic fluctuations one must know
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how the fluctuations evolve or, at least, the informations about the co.rrelations‘ between
the fluctuations. This can be done by solving a set of statisticelequations that may be
‘obtained by exploiting a cleeﬁre scheme, like the weak-turbulence theory or, the direct-
interaction approxifnatio‘n 1 Hovx;ever, this topic is beyond the scope of the pvresent study.
. Ina relatlvely simple case, the electron thermal transport is explicitly calculated in the

quasﬂmear limit from the self-con51stent field equat1on by Hong and Horton.!2

The magnetlc component of the particle flux 11151) for the electrons further reduces

When the i ion parallel flow is neg11g1b1e ’an" / ]”I <1

1/~B
I‘( €) __<J"B>

iby substituting ]] R~ (c/47r)z;-V><§ in the slab geometry, one shows that the particle flux

is driven by the gradient of the magnetic stress,

e~ (grep) (BB

Unless fbhe field § is connected to external electromagnetic fields, the boundary ternis are

dropped for the local modes and the volume average of the flux vanishes,

(e) _0

showingv that the local inward and oﬁtwaid fluxes of I'g(z) ca,ncel.each other Ffom
the point of view of the amb1polar1ty, the vanishing of the volume ‘average of e (:z;) is
expected because I'p is the same for both the ions and the electrons and the ion ﬂux due
to B vanishes 1"( i me = 0. [For more discussions about the ambipolarity, see Ref. 13] For

the finite ion parallel current the same argument shows that 1“,(;:),, = SR,,.



2.2 Field and Kinetic Energy

N ow, we study the energy balances. Let us begm by calculating the rate of change of
'the electrostatic energy density % 2¢(%@). Upon multiplying the continuity equation with ¢&

and taking the average over the surface one obtains the equation for 1¢(7) as

= (al7) + V- (o(n57)) - o{n7-5)

~ [~ 18A
' Witih the neglect of the compressional modes A =0, we obtain the general result
5 (34(7@)) + V- (4 <ngaV>) = —q(nVi-E) - o(nVi By ) - —c-<nV|| at” > (2.3)
by using A= I;A]| and b-0A /0t ~ 6;1]/(%.'

- One can further reduce fhe.last term on the right-hand side of Eq. (2.3) in thim—_

- portant special cases: First, in the n; turbule'nce. problem, the.field ﬂuctuation is of the

»electrostatw nature and, thus, (nV” BA” / 8t) = 0. Second, in the 7, turbulence problem,

the ﬁuctuatmns are elec’cromagnetml’14 with jj & —enVj. Then, the last term in Eq. (2.3)

can be reexpressed as

c<”V” Bt > <J” at |

and by using ﬂl = (0/4#)5-VXVX(I;Z])

and, ﬁnally, after integration by parts, we obtain
o ((BY)) ' ' ~ o
E .

8t< + v [7r<( +Ve)xB)|, (2:4)



which correctly represents the change of the magnetic-field energy density from the Poynt-
ing flux vector where only the inductive or transversely polarized pdrt of the electric field

produces an electromagnetic flux.

In order to study the change of the parallel kinetic energy we consider the equation
of motion along the magnetic field lines. By taking a scalar product between the equation

~ of motion and b and by using the continuity equation we have

aat(mnVQ + V. (mnV”V) mnV. %)- - mnV. (V V)b

=By~ Vip-b(V-ID+ Ry, (2:5)

where the uhderlined terms are negligiBIe because after being cOmpared with the ﬁrst two
terms in the left hand side of Eq. (2.5) they are > found to be elther of higher order in the
ﬂuctuatlons or. they are smaller by a factor of the rat1o of the ﬁuctua.tmn scale length or
time to those of the mean magnetic field. Since we assume that there is no mean flow, we
derive the equation for the parallel k1net1c-energy densﬂ:y by mu1t1p1y1ng Eq. (2 5) with V| |

and taking the surface average to obtain:

G (m{o8)) + 9 ({7 V) + 70 + 170
= q<nVuEu> + PV + (IT : VVnH <R||V||>__-, | (2.6)

>2..3'_Thermal Baylan‘c,e Equation

For the heat tranéport we have

8 ' .
0t2p+v (ZpV—l-q)——pV-V—H:VV-i— Q, : (2.7)
Where.
b= nT’
'

due to the finite-Larmor-radius effect,
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g == VT —xLVLT + qu,

qu represents' the electron heat flux due to the nonzero relative velocity between the elec-
trons and the ions (qu = O for the ions), and Q is the heat source due to the collisions

between the ions and the electrons, auxiliary heating, and atomic physics_proceéses.

For later use, we examine the compressional source term (—pV- VE) After a little -

algebra, we find that -
- (p\ OB
—pV Vi = (p) = + el Vg, N (2.8)

Whére we define the guiding-center drift velocity Vg
‘ cT b
Vy=|— -
¥ ( q )VX (B )
= W]Ba.nés + K:'urv + VVB,

With

However, one can simplify Eq. (2.8) for the case

1 (944.”

E=-Ve- ot

and .

V'VE-—-%Vg-w - @9

by using the i&entity v. [(1 /B)bxV f] (¢/ TV §- -Vg. Also, for an intermediate step

needed for later use, one can combine the thermal fluxes pV3 and qq to find that

-t (5)pevus]

g'PV'Vd-I-%.V'Qd 3
| g(vp+nVT)V o (2.10)
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After substituting V) & Vg + Vq +V; into Eq. (2.7), using Egs. (2.9) and (2.10), and

taking the surface average, one obtains the equation for the mean thermal-energy density

5300+ 9-[3 (75 + 6% + W) + ()] |
~ =7 Ve (BVE) ~ bV W)~ (pVV)) < (I VV) +(Q).  (2.11)

The terms associated with the polarization drift V;, are smaller than those with VE. in
Eq. '(2.11.). It will be shown later, however, that the polarization drift ﬂﬁx terms are nec-
essarsr for the perpendicﬁlar i{inetic energy to Vbe included in the total energy conservation.
~ [See Eq. (2.13).] The importance of Eq. (2.11) is that it rigérously sepefates out the small
but import_anﬁ energy densities associated with the fluctuations f:"ofn the total 'fhermal_ -

~ balance equation.

Bj? defining the total energy »density & and the‘to'tavl,energy flux F; per unit volume .

as

& = —1e(@) + fj) +1m(n) [(Vf),2> + (V)] +3()

, '.andA

F =Qg +’7Qm +<II-V(1)> +'(q’A) | - - i
- e(n)<s’5Vu (§>> ((E+v¢) ><B> +- m< )<V(1)2V(1)>

one can Work out the total energy conservatlon from Egs. (2 3), (2. 4) (2.6), and (2. 11) for

the electrons and the electromagnetlc fluctuations as

o€ | | o
8tt~|-VFt <R~V(1)>+(Q). | (212)

The electrostatic potential energy density —1e(7i@) is positive definite because 7@ = —(e(n)/T; )(p.
In the kinetic energy, the contr1but10n due to the dlamagnetlc drift is included because it

represents part of the fluid kinetic energy even.though each individual particle does not ‘

-12 -



‘have execute such a dr1ft motion. In Eq. (2.12) Qg is the thermal—energy flux per unit
volume due to EXB dr1ft , _
| Qe = %<5V E'>7

Qm is the flux due to the malgnetic fluctuations

o (2)w)

and v = 5/3. The fluxes QF and Qm are cross correlation functions between the ¢ and-

A“ fields and the particle ﬁel_ds p and V).

Il
jw

Qn -

In obtaihing Eq. (2.12) we have done as follows We have neglected the ﬂuxes due
to V we have neglected the divergence of the flux of the electrostatlc potentlal energy

_due to the EXB advection because

\& <nsoVE> ~ V- ((n)(5V5))
~ V- (cfn )5)<V(‘§52>/2B) |
0 . ‘ R

&

in Eq. (2.2), by assuming that the velocity V¢ has only the mean component V., = (V)

and is perpenchcular to the mean grad1ents we have employed the relat1on
oo L
(V- (V) ~ AV (5VP)
that cancels (—(ﬁV‘/}TE)) in Eq. (2.11); we have used the important relation

(éan+Vp)-V ‘
9 1 (W21 @), v
- (-mnV )+v ( Linnvt 14 )+V (Vo IT) = VO.R| (2.13)

that results from approximating the contmmty equat1on to On / ot —{- v. (nV(l)) ~ 0.

o It is important to notice that only 3/2, not 5/2, of (1'5‘71;) contributes to the energy
- flux F; because the driving term qnVy-E for the field energ_y in Eq. (2.3) and the source

13-



term Vg-Vp in Eq. (2.11) are balanced out and the electrostatic-field-energy flux q(n%&)
due to the diamagnetic drift caﬁcels out one of the (ﬁ%)’s

This point, now, brings us to the discussions of the energy flux in Ref. 4: thére,‘
for the electrostatic case, two different formulas [Eq. (12) and Eq. (12')] for the energy
flux that are found in the literature are discussed. Basically, they are QF = 3/ 2(%;’5}
#nd QR =5/ 2(17];;13) if we convert the geometry to slab and assume the isotropic pressure.
Theh, Ross raised the question of which of these two formulas is correct. Our point, here,
is that these two fluxes, QY and QF, aré not relevanﬁI in the sense that follows and, thus,
should not be compared to each other: in Ref. 4, QF is defined as the energy flux counting
for the kinetic energy (which is negligfble) and the therrﬁal energy. Notice, however, that
the flux for the electﬁc ﬁeld energy is not included in the deﬁnition of Q®. While Q¥ does
not include the electrostatic ﬁeld energy flux, as we explained in fhe previous paragraph,

it is clear that, actually, Q{"is the total energy flux including the electrostatic field energy.

Thué it is not.. quité correct to deduce anomalous “conductive” energy flux ¢& =
| QR—S / 2I‘( ) as defined in Ref. 4 (m our definition, the anomalous heat ﬂux is the @ minus
 the classical dissipative flux) by using QF = QR to obtain g = -T(T)+3/2(n )(VEZT) |
Eq. (22) in Ref. 4. Rather, the remaining portion ¢* of the total energy flux includir;g the
" electrostatic field energy subtracting the portioﬁ of the flux associafed with the anomalous

particle flux I' should be read as ¢* = QF — 3/2I(T) = 3/2(77,)(1719-;T)

Yet another attempt has been made to find the formula for the anomalous heat flux g
in Ref 15: there, even though the author states that the same definition for the q is used,
' there exists a dlﬁ'erence, which is ¢ = ¢® = ¢® — 5/2(n)(V,T). See Eq. (A. 11) in Ref. 15. .

The difference arises because the I' in Ref. 15 represents the particle flux I' = I'® = nV
" while the I’ ‘u,sed in‘Ref. 4 is the mean particle flux I' = I'® = (nV'). One can show that if
one counts for the hea,t- flux qq due to the finite-Larmor-radius effect [which is not included

in Ref. 15], then, Eq. (A.13) is cancelled out leading to ¢® = 0 in the slab geometry.

— 14 —



In the energy flux F}, one can neglect the underlined fluxes asséciate_d with B because _
they are small compared with Qm. The remaining underlined fluxes are due to the polar-
ization drifts and si;ice those effects are assumed to be small, they can also be negligible.

Thus, as the principal contribution to the total-energy flux one finds -
F,~ Qp +7Qm + (q').

‘The effect of the fluctuations on the collisional flux of (q') is important as shown by
Kadomtsev and Pogutse'® and calculated by Hong and Horton.'? In Ref. 16, the authors
take the MHD equation to be V-¢' = 0 and calculate (q') self-consistently, whereas in
Ref. 12, dynamical equations for the , :4], and p fluctuations are used and the fluxes are

computed self-consistently in the quasilinear limit.

i In the total-energy density & the kinetic energy part due to the £ ><B drifts and the
. diamagnétic drifts may be smaller than the electrostatic energy in the case when T} ~ T,
and k J_p <1, which is the regimeywhere one can expand. V| as in Eq. (2.1).. I-Iere,lcl1 is
the scale length of the fluctuation and p is the gy;or;'a,dius.- Also, one can work out that

the ratio between the ﬂuctuating—magnefic—ﬁeld energy and Athe parallel kinetic energy is

WEAY
wp /)’

where ¢/wp is the cdllisiohless_ skin depth. Thus, for the Ne modes! with kT~ c/ﬁup;

that

| minyvR)/2
(B2)/8r

the magnetic field enei‘gy and the electron para.llel kinetic energy are comparable. For the
resistive MHD mode with kll > ¢/wsp, the magnetic energy density dominates the parallel
kinetic energy. - ' | ; | .

Another important point is that while the volume a.veragé of the magnetic particle.

B e

. flux 53,)1 vanishes, the volume average of the heat flux Qﬁ,‘f?z does not in the slab geometry.

The reason is that as far as the partiAcle flux is concerned, the electrons are just moving

‘along the oscillating magnetic fields and the volume average of the flux vanishes. As for

—-15=



the heat transport, 'however, the electrons seethe' temperature gradient across the flux

surface during their streaming along the oscillating field lines:

3(T.) [~ B
QY ~ - (2><JHB>

TG EETE e

or, in the quasilinear approximation that the correlation length of B is much shorter than

“the macroscopic scale, -

3¢ /x =~ 0(Te)
(&) ~_ (- A\l 74
Qm’x ~ ( 8reB <Bsz>> dz ’
thus, —(8¢/8wenB)(B, Ey) plays the role of the anomalous thermal conductivity x,. Math-
'er‘na,tic»ally, the form of _<§x1§y) = ((8;1] / 3&;) (6Z|/| / 3y)) is analogous to the Reynolds
stress tensor (vay) = —((8y/ 0z)(0v/0y)) for the two-dimensional neutral ﬂmd flow,
where d: is the steaming function In general Q(e) 760 However, in very special 'ceses,

for example, when A” is e1ther even or odd in z, Qm + would vanish.

For the ions and the electrostatic fluctuations, the total energy conservation Iaw is the

 same as Eq. (2.12) except that B = 0 in the iori equation.

Although Eq (2.12) expresses an 1mportant property of the energy conservatlon, it
does not prov1de information’ about how the correlat1ons between the fluctuations are bal-

anced through the production, the dissipation, and the transfer of the fluctuation energies.

For this purpose, one muist considef the variance @»2) /{p) of the pressure ﬂuctuation rather

than (p) itself in the -energy equation. Thus, after multiplying Eq (2 7) with 2p/3(p) and_

takmg the surface average, we have

| ﬁaﬁ% )+ V)

(ﬁV'Vp) = (P)

2 o ' » |
m(p(v.q +1IT:VV —Q)). (2.15)
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Now, we change Eq. (2.15) into the conservative form. In doing s0, We will neglect the

terms associated with d(p)/0t and V( ) because they are small. This can be Justlﬁed by o

: comparlng the magmtudes of the terms by using Eq (2. 11) Then, we obtain

# (5 )+ [ v+ 0+

5
3t \27 (p) 37(p)
2 V{p)

, - V, ~
59y Ve V) (V) T BVR)
(2) (b) (c) ()
. , 2 » 1
Y5 5y VP g (5 (1 VI - 0)
() @ (9

where we use the 1ntermed1ate relatlon by mu1t1p1y1ng Eq (2. 10) with p. p,

(Pq )]

. (2.16)

e (V) o)) (TE)

7(1;% (pVH), .

» V being a,ssumed to be perpend1cular to. the mean gradients, and the 1ntegrat10n by parts

is performed

" In Eq. (2.16) the term (a) represents the production of energy due to the interaction

of the mean pressure gradient and the E'x B heat ﬂuk, the terms (b) and (c) ate the source

terms responsible for the tra,nsfef between the fluctuation energies. Thus, they are canceled

~-out after we add up the ﬂuc’cua,tion energies [Eq. (2. 3) plus Eq. (2:6) and Eq. (2.16)]. The |

term (d) is due to the nonumform1ty of the magnetic field. If we consider the evolu’mon of

the total fluctuation energy, then, the term (e) combmed with the — (nE V) leads to the

change of —m(nV( )? ) and the term (g) will be negligible. [See Eq. (2.13).] If ¢' = —xVp,

then, the term (f) becomes to be proportional to — [Vp| representing the loss of the

ﬂuctuatlon energy due to the dlss1pa.t10n
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Therefore, we obtain the energy balance for the eIectrdmagn’etic fluctuations and the

‘evlectrons by ad..'ding‘Eqs. (2.3), (2.6), and (2.16) and by ﬁsing Egs. (2.4) and (2.13)

0&;
@1+VF1

(o0 5 fhovn

L (IT:VV) + ——<—2;>-(q V§)+< V<1>> (27

where the total fluctuation energy & and the total flictuation energy flux F} are defined

- as.

o B L oen L)
5{_——y(ngo)+ 3 5 (n)<V() >+§—>,.

p |
B i-fé<n§_<951/|l <§)>'+i<(E+V¢) >+%m )<V(1>2V(1>>
| +—(p Vi) + (V%) +372< >(pq)+<H-V(1)>.

By COmparing. F; with F, one can immedia,tely see that |Fi| < | Ftl. After integrating .
Eq. (2 17)' over the entire plasma‘ volume we notice that in the steady state theAdissipation

'loss of the fluctuation energy due to the vzscos1ty and the classical thermal conduct1v1ty is

balanced by the productmn of the energy ansmg from the anomalous energy flow across the
nonumform pressure and the particle ma.gnet1c-dr1ft mot1ons owing to the curved magnetm
field. Also, not‘1ce that since ne & —((n )e/T )go, one can further examine the underlmed

term in Eq. (2.17) as - L R -
TV =g VevE

and can conclude that it cancels the driving term (— (pV VE)) in the thermal—energy

equation (2.11) if T; = T. Once e,gain, it demonsfrates that.thev energy transfer between

the fluctuations and the thermal energy occurs.
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3. CONCLUSION

The transfer processes between the partiele kinetic energy, the electromagﬁetic field-
energy and the thermal energy, in general, is known to occur and is perceived to be im-
portant in the understanding of the evolution of the energies in a magnetized, nonuniform

plasma. In this work, we have studied the balances between the various fluctuation en-

'ergies and the thermal energy. In particular, the emphasis was put on the change of the

total fluctuation energy. Certainly, this work is not the first to address these issues for the

~ drift-wave problems. There are numerous works diseussing these matters. For example,

We refer the readers to the review in Ref. 6 and the comments in Ref. 4. However, in many

ca.ses, the 1mportance of the over all energy balance problem has not been stressed or

- the mtermedmte steps necessary for the authors to reach their conclus1ons have not been

stated. Thus here, we have taken the energy balance and the transfer rate as a smgle

subject and have examined the processes in detail and in some generality to explam the

mechanisms more thoroughly

As a model for the plasma dynarrlics we have used the two- component fluid eqﬁa— o
tions developed by Bragmskn and have assumed that the particles respond ‘to the fields
ad1abat1cally We have shown that

1. The evolutlon of the thermal energy is determined by the toroidal pumping, eonvection
due to the E'X B drift and the parallel ﬂow along the fluctuating magnetm field, and

collisional heating and cooling mechamsms [See Eq. (2.11).]

2. In the total energy conservation [Eq. (2. l2)], while the usual 5/2 of the flux (p}( (E / B) V n

due to the ﬂuctuatmg magnetlc field contributes to the total energy flux across the
magnetic surface, only 3/2 of the flux of (f)'VE) due to the E XB advection contributes.
This is because the electrostatic-field energy flux q(anc,o) due to the d1amagnet1c drift
across the magnetic surface cancels out one of the (f)V %)’s. Thus, in the electrostatic
limit, the energy flux consists of 2 (f)'VE) and other classical fluxes due to the dissipa-

tions.
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3. For the fluctuation energy balance [Eq. (2.17)], we identified the producfion terms
due to the heat convéction through the inhomogeneous plasma across the magnetic
surface, tra;héfer terms between the various fluctuations, and the dissipations. The
‘nonur_liformity of the magnetic field comes into play through the finite-Larmor-radius ‘
heat flux and serves either as a source or as a sink of the luctuation energy depending
on the location. In the steady state, globally, the production terms will balance the

dissipative loss leading to the finite saturation level of the fluctuations.

‘As we stated in the Introduction, the balance equation [Eq (2.17)] for the fluctua-
tion énergy can be used to predict upper boﬁnds for the flux. Howe.v-er, it only generates
one-point constraint. One may argue that upper bounds obtained only from one-point
constraints would not be good enough mainly because one-point constraints lack iﬁforma—

tibr; about the mode propagation, which is essential in the study of the plasma turbulence, .

_in general. In other words, the predictéd bounds may be too large to be useful. Thus,

one needs two-point constraints. Nonetherless, it Would,' still, be useful to compute up-
per bounds from one-point Constrainté in the case when the plasma is strongly turbulent,

where convection in eddies or vortices dominates thé propagation of the ﬂuctué.tion.

Finally, the magnetic fluctuations play a importaﬁt role in ’the‘ énomaloﬁs energy
tr‘ansporf of thé'- electrons. Thus, it is important to measure the magnetic ﬂuctuationé :
in addition to the electrostatic poteﬁtial, _especially in ’ohé short wavelength spectrum
és suggested from the study of the n. modes. Some attempté have been made in this
direction.!” However, the electromagnetic spectrum at the short wavelengths is yet to be

resolved.
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