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Abstract

A new rapidly growing electron temperature gradient instability is found for a
plasma in contact with a conducting wall. The linear instability analysis is presented
and speculations are given for its nonlinear consequences. This instability illustrates

" that conducting walls can produce effects that are detﬁmenta.l to plasma confinement.
This mode is of importance in open-ended systems such as mirror machines and relevant
to the edge of tokamaks where field lines are open and are connected to limiters or
divertors and astrophysical plasﬁlas like the ones of the flux tubesin a solar‘ atmosphere,

with the footpoints on the photospheric level.
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I. Introduction

In plasmas on open field lines, e.g., in mirror machines and in the edge regions of toroidal
devices, the plasma density along a magnetic field line is usually finite (though possibly
small) up to the material walls that terminate the plasma. It is generally believed that
in such situations high electrical conductivity of the walls improves plasma stability; e.g.,
the stability of the flute-interchange mode. However, as has recently been pointed out,!
there exists a situation where the high conductivity of the end walls has an adverse effect
compared to insulating walls: the conducting end plates in the so-called “gas-dynamic trap”?
(GDT) give rise to a considerable reduction of the stabilizing contribution from the regions
of favorable magnetic field curvature adjacent to the wall. The fact that the conducting walls
do not completely stabilize the flute interchange mode was known for some time>* but in
the models studied previously the high conductivity of the walls did not affect the sign of the
overall stabilizing or destabilizing contribution of the field line curvature, only the response
rate of the mode was changed. In contrast, in the problem considered in Ref. 1, a switch
from insulating to conducting end plates could bring the system from a robustly stable to a
strongly unstable state.

In the present work we give another example of the destabilizing effect of conducting end
plates. We show that the electron temperature gradient transverse to the magnetic field in
a plasma bopnded by conducting end plates gives rise to a rapid instability whose growth
rate can be considerably larger than that of a flute instability. A remarkable feature of this
new instability is that unlike the usual curvature driven flute instability, it can develop even
in the systems with straight field lines.

The paper is organized as follows. In Sec. II we describe a model used in the stability
analysis. In Sec. III the basic equations for temperature-gradient instability are derived.

Section IV contains the analysis of the dispersion equation. Section V discusses the anoma-



lous transport caused by this instability. In Sec. VI finite Larmor radius (FLR) effects are
considered. Section VII contains discussion of results. The equations describing the insta-
bility for end plates of arbitrary resistivity are presented in Appendix A while Appendix B

contains a detailed derivation of the equation describing the FLR effects.

II. The Model

In order to easily visualize the main features of the instability we consider a simplest possible
model: the plasma in a homogeneous magnetic field (directed along the z axis) is confined
at the ends by two conducting plates (Fig. 1), and the ion temperature T; and density n are
spatially uniform. As we only consider large-scale motion, we assume the quasineutrélity of
electrons and ions in lthe bulk of the plasma; hence we do not need to use subscripi:s “e?
and “” to distinguish between electron and ion density. The electron temperature Te which
is taken to vary transverse to the magneti;: field lines (in z direction), is the‘onlj;f?j;p;t.;ﬁia,lly
varying equilibrium parameter. We assume fhe properties of the end plates are such as to
reflect most of the ions impinging upon them, and absorb only a small fraction e(< 1) of
the incoming ion flux. The model of feﬂecting walls simulates to some extent the effect of
magnetic mirrors. To maintain the stationary state of the plasma, sources of particles and
energy are present in the plasma volume. The condition ¢ « 1 guarantees that the plasma
equilibrium parameters are nearly uniform along the field lines and that the sources are small
to O(e).

The plasma lifetime 7 in each flux tube is given by the ratio of the number of particles
to the source strength, and is

T =

vrl | 1)

‘ 81?1‘;
where vr; = 1/21;/m; is the ion thermal velocity. When € < 1, 7 is much greater than the

ion transit time L/vr;.



It will be shown below that the instability growth rate Im w can be much shorter than
the ion bounce frequency vr;/L; i.e.

1 ®

We will consider only that domain of plasma and instability parameters where condition (2)

indeed holds. This allows us to neglect the source term in the analysis. We also assume that

the equilibrium electron temperature does not vary appreciably along a field line; a condition

1/2 1/2
that will be established if Ae/L < [(%) %ﬁ] where ). is the electron mean free path,

¢ the plasma potential, and m, and m; the electron and ion masses.
Along with condition (2), we assume that the electron transit time L /v, is much shorter

than |w|™?,
|w|L

VTe

<1. (3)

The condition (3) means that electrons have a Boltzmann distribution along a field line.

As already noted, the plasma in a stationary state is nearly homogeneous along the field
lines and therefore over the bulk of the plasma there is negligible equilibrium electric field
parallel to the magnetic. Under such conditions, the balance of the electron and ion flow to
the wall is provided by the formation of a Debye sheath which reflects the majority of the
electrons.

We take the potential of the end plates to be zero; then the plasma potential ¢(z) is
positive. To determine ¢, one sets to zero the total current density due to electrons and ions

impinging on each end wall. The ion current does not depend on ¢ and is equal to

EEN UT;

R (4)

Jlli

Wit

where n is the plasma density. The electron current density is

en v,

e = E O) (5)

Jlle
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-y direction with the velocity

where G(p) is a dimensionless function whose details are determined by the electron distxri-
bution function in the energy range close to ep. If in this range the electron distribution
functién only weakly deviates from Maxwellian (as is the case of sufficiently short mean free
pa;th Ae or even long mean free path if w > v, where v is the electron collision frequency),

then
G = exp(—ep/Te) . (6)

In what follows we shall consider a situation that is typical for the gas-dyflamic trap where
A is relatively small, so that G is determined by expression (6). Then the condition j“; = Jju

gives the following expression for the equilibrium plasma potential:

o(z) =AT¥ | | (M

with

A:@n(l Temf)., 4_ C®)

eV T;me

Typically, A is 5 — 7. A broader discussion of the Debye sheath properties required for the
stability analysis can be found in Refs. 5-10.

The presence of the equilibrium electric field E = —dyp/dz causes the plasma to drift in

_cdp ‘ ‘

III. Basic Equations for Linear Instability

We consider a low-§ plasma and neglect the perturbations of the magnetic field. The per-

turbations of the electric field are then curl-free and can be described by an electrostatic

‘potential §p. The motion of the plasma will be treated as two-dimensional in the z-y plane,

with very weak dependence of the perturbations on z (caused by the coupling of the system

to the end walls). More generally, this flute-like response can be justified if L < v4/w, where

5



L is the axial length, v, the Alfvén speed and w the mode frequency (typically we will treat
w greater than the diamagnetic frequen.cy).

To obtain a self-consistent equation for ép, we first consider the motion of the bulk of
the plasma and express the perturbations of electron and ion current density at the wall in
terms of 8¢ by means of the continuity equation. Then we match these perturbations with
the perturbed boundary conditions given by (4) and (5).

For perturbations of the form exp(—iwt + tky) the transverse ion motion is described by
the equation

—iQm; vy = 55"“ x B — eV, §p (10)
where Q = w — kvg. For a low frequency instability with Q <« wp; = eB/m;c we have:

VibexB . Q V5 bp
B2 +zch,’ B ’

(11)

ov,; >~ —c

The terms of order wgz? and higher are neglected. As the electron inertia is much smaller

than the ion, we retain only the leading term in the expression for §v.:

Vibp xB
6V_Le jad —C-LT' . (12)

For the localized perturbations with characteristic scale much smaller than the scale-

length a = [d¢nT./dz|™" of the equilibrium state; i.e., with

0 -1
E |.a_| > (13)
we obtain from (11) that
. Q V26
V'(SV_]_,—ZCW—Bi B (14:)

while from Eq. (12) we find V - §v,, = 0. The ion and electron continuity equations are of

the following form:

—1Qdebn + icen om B 5 = 0 (15)
iQedn + % =0. (16)



By summing these two equations, we obtain that

0 /.. . . Q V2 b
5 (6]”8 + 5j”,') = —icen ;E; 5

A (17)

"Note that we have omitted the pressure terms in Egs. (10)-and (12). This is because the‘
essentially 2D motions that we are considering are almost incompressible in a low-8 plasma
and therefore the density perturbations (in theAcase of an initially homogeneous plasma) are
small. Under such conditions the additional pressure terms in Egs. (10) and (12) do not
contribute to V -'§v,.

Because of the symmetry of the system with respect to z = 0 plane, both &5, and 5j”i—
vanish at z = 0. On the other hand, as the right-hand side of Eq. (17) is independent of z,

the integration of (17) along # gives (accounting for two end walls)

icen L

83)le + 8J)i i= %nB
=3 7 .

Vi - (18)

Now we use the boundary conditions (4) and (5), with G’((p)‘deﬁned by Eq. (6). This yields

; ) | genvr; | /1 5Te’ ebp '
83ye + gy = - {(“ -+ A> - (19)
x g 2/ |[\2 T. T.
with A given by Egs. (7) and (8).
To find 6T, we use the equation
—iQ 8T, +6vy, - VI, =0. ' (20)

This equation neglects the direct axial energy loss and assumption that is justified if

1/Qr <« 1. Using Egs. (12) and (20), we find for §7.:

5T, _ kcép dT,

" QOB dxz (21)

‘We have neglected the adiabatic contribution to 57, (which is of order of T, én/n), as

it is. much smaller than the perturbation determined from (21). As the equilibrium ion
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temperature is independent of z, its perturbation is negligible. Of course, we have neglected
in (21) the thermal flux to the walls and the volume heat sources which both are of order
gvri/|w|L as compared with the retained term.

Finally, combining Egs. (18), (19), and (21) we obtain the equation describing a flute-like

(where 6¢p is independent of z in the bulk of the plasma) perturbation:

ka,

2
Q? (kZ-d—)a +“"B1m‘aa 2 (A+1/2) S =0 (22)

dz? T,

with @ = (dnT./dz)~" and 7 is given by Eq. (1).
For localized perturbations, one can assume that 6y is proportional to €%, where g is
an z component of a wavenumber. The most unstable perturbations correspond to ¢ < k.

Then Eq. (22) reduces to the following dispersion relation:

) |
Q2+Qz+zr——o (23)

where

2 a2
wg;m;a

. sz
T Te ? F (A + 1/2)

w=kFka; v=
In dimensionless form Eq. (23) can be written as

Q4+i—+

|

=0 (24)

3| e

where Q = Q/(T'*/v)}/® and 5 = w(T'/v)?/3.

IV. Analysis of the Dispersion Relation

The first term in the dispersion relation describes the inertia of the flute: it arises from
the inertial drift of the ions (the last term in Eq. (11)). The second term, linear in Q,
corresponds to the finite impedance of the Debye sheath; it is similar to the one considered

by Kunkel and Guillory.* When the electron temperature is homogeneous, and the last term



in the dispersi(;n relation vanishes, the balance of the first two terms causes an exponentially
decaying mode. The instability described in this paper is caused by the last term in the
dispersion relation which is proportional to dT./dz.

A somewhat similar instability of the gas-discharge piasma was considered by B.B.
Kadomtsev® who discussed a model from which our results can in principle be extracted.
However, the discussion in Ref. 5 was concentrated on the instabilities caused by a large axial
variation of the unperturbed plasma parameters (that is typical for the gas discharges) while
in the solenoids of mirror devices with relatively good axial confinement (whose properties
are the main object of our paper), the axial density variations are negligible. In contrast to

Ref. 5 we stress in this paper the large effect due to the electron temperature gradient.

Note that in the case of an insulating wall our instability disa,ppears.' Indeed, in this case

the boundary condition for the current (18) flowing out from the plasma volume should be

8jjle + 8| , =0, (25)

K|

instead of the boundary condition (19) . By comparing (18) and (25) we immediately find
that in the case of insulating wall the solution of the dispersion relation is just = 0. A
more general case of a resistive ¢nd wall is described in Appendix A,

To take into account the usual curvature driven flute instability one has to add a —T%
term to Eq. (23), where I'y is the growth rate of the flute interchange instability; in paraxial
systems it is of the order of vr;/L, i.e., of the order of the inverse ion transit time. It will
be shown below that the growth rate of our instability can be much larger than I'; so that
for such cases the interchange term is small. |

Now we proceed to a formal analysis of the dispersion relation (25). Using the property
" Rew(—k) = =Re w(k), Im w(.—k) = Im w(k), we shall consider only the positive values of

ka. The explicit expression for the unstable root of Eq. (23) at ka > 0 can be written in the



following form:

Re Q= — (%4)1/3 5 \/1%2 (1 + 167°)72 — 1]1/2 (26)
)"
Im Q= \/’;_772 {[(1 +167°%)1/2 + 1]1/ g \/5} (27)

Dependence of Im Q and Re Q) on 7 is illustrated by the solid curve in Fig. 2. At large k,
kR a~t(v?/4T2)13,

= gk ! (28)
a
at small k, k S a~1(v2/4T2)1/3
T4
Im Q ~ = (ka)4 . (29)
The maximum growth rate is attained at
| 1/3
b=k = 1807 (U_Z) / (30)
= ko 1. =
and is equal to
T4 1/3
(Im 2)max = 0.38 (7) , (31)
At the same k,
P4 1/3
Re =052 — (32)
v

and is of the order of (Im Q)max.
The condition (Im Q)max > 'y ~ vry/L yields the following constraint on the plasma

parameters:

1 2 Te L2 VT T
(A+§> ":z—,;-d?> I (33)

If we apply this condition to a gas-dynamic trap plasma'! (L/a ~ 50, T./T; ~ 1, A ~ 5,

7 ~ 30 L/vr;) we see that it is satisfied by a very large margin. The £ value corresponding

10



to the maximum growth rate

ko~ 2507 (T /T 0/ Ao 2, (34)

f‘or the same numerical example is still much smaller than p;! = QBi [vr; (viz. k p; ~ 0.13),

so that the fluid approximation used in our analysis is well satisfied. This k-value also

corresponds to only a moderate poloidal number m ~ ka in GDT. Using T; = 100eV,

B = 10'3 gauss, a = 50 cxﬁ. We find for a hydrogen plasma m ~ 2 —3. For more quantitative
predictions a non-eikonal mode analysis is needed.

An interesting feature of thé instability under consideration is that, like fhe interchange

mode, its maximum growth rate

1 ap VT AL>2/3( L )1-/3 (Te)l/f” :
(0 Q) = 030 (a (z5) (& 69

does not depend on the magnetic field. If 7 is not too large, the growth rate of Eq. (35)
considerably exceeds the interchange growth rate, which scales as vz;/ L. |

Let us now consider the limitations on the plasma parameters that follow from our as-
sumption that the magnetic fleld perturbations are negligible. The source that produces
these perturbations is just the plasma current §j. Maxwell equations show that the pertur-
bations of the magnetic field at k£ > ¢ is directed along z axis and can be estimated by the

formula
2_71'

6B, ~ -5 -

Using Eqs. (12) and (17) one can easily show that
6B, ~ 2w Lmn Qév,;/ B .

The presence of § B, causes the deviation of the magnetic field from z direction by the value
of L6B;/B. This deviation is significant when it is of the order of the displacement of the.

flute v, /Q. From this consideration we obtain the criterion for neglecting the magnetic field

11



perturbations:

(QL)* < B*/2r nm,; . (36)

Choosing the Q corresponding to the maximum growth (see Eq. (32)) rate gives the following

constraint on the B(= 8wn T;/B?) value:

o) ()" 3" &

For the numerical example considered above (L/a ~ 50, T./T; ~ 1, A ~ 5, 7 ~ 30 L/vr;)
this inequality gives 8 < 7 x 1072. In the experiments'’ on GDT this condition was satisfied
as B <2x1072

V. Enhanced Transport Caused by a Temperature
Gradient Instability

The development of the instability to a nonlinear stage gives rise to an enhanced transverse
thermal transport. As we assume T} and n to be constant transverse to the magnetic field
line, the transport only causes electron heat flux. For a strong instability with Im 2 ~ Re (2,

the anomalous thermal diffusivity Xanem can be estimated as (cf. Ref. 10)

1
Xeaom ~ <F Im Q)mx . (38)
The relationships (30) and (31) show that the maximum of Im Q/k? is attained at k ~ ko ~
1.8a1(v%/T'?)'/3 so0 that for Xanem We have

X o 1% (E)S/ ° (é £>4/3 (ﬁ)z , (39)

T \T; £ a a

Assuming as previously L/a ~ 50, T./T; ~ 1, A ~ 5, ¢ ~ 1/30 and taking p;/a ~ 1/30 we

obtain

Cl,2

Xanom ~ 16 — .
T

12



This means that anomalous heat transport would make significant changes in the T, profile
within ~ 1/16 of the axial confinement time 7. This implies that the plasma can not bear
. large gradients of T, and thus experimentally T, should be constant over the major part of
the plasma cross-section. The problem of the narrow boundary layers that are then formed
at the radial plasma edge (the edge is usually determined by material limiters) is beyond that
scope of this paper. We just note that observations made in the Novosibirsk gas-dynamic

trap experiment!® show that 7, is almost constant transverse to the magnetic field.

VI. Finite Larmor Radius Effects

FLR effects are present only if equilibrium spatial gradients are present in the density and
~ ion temperature. The following notation for the various scale lengths are introduced: -

a;l = %énn , aE} =\d_ienﬂ ) a;} = %En(niTi) . | _(40)

The treatment of finite Larmor radius effects is standard and details are presented in
Appendix A. The principal result is an extra characteristic finite Larmor radius term in the

dispersion relation, which now takes the form

. .
QZ+<L’;—w*W)+iF—=0 (41)
w w
or in dimensionless variables
92+Q(iz—r;5>+—=0 (42)

where"

T ari
' -1
s L@ [A+l (1—i>]
e GP; 2 ari
o <L
_ eBaay;
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and all other quantities are defined after Eqs. (23) and (24) (note that I'? has been slightly
generalized).

This dispersion relation shows that the driving force of the instability under consideration
remains the gradient of the electron temperature (combined with the high conductivity of
the end walls). The density gradient alone does not contribute to the driving force while the
presence of the ion temperature gradient gives rise to the standard FLR contribution plus
only a small correction to I'%.

To evaluate the importance of FLR we estimate the size of the w* term at the maximum
growth that was evaluated without this term. Hence with w = 1.8(¥?/T?)*/? we find that

the FLR term is of importance if

v 1712
W2~
w3 v

: (43)

Assuming that a/az; =~ 1 and that the scale lengths of T.,T; and n are comparable, Eq. (43)

is equivalent to the condition

ap. Te
12 .17—==
a T;

A. (44)
Thus for a7; ~ a, the maximum growth rates may be somewhat affected by FLR effects.

The dashed curve in Fig. 2 gives the real and imaginary frequencies with FLR present
(for completeness damped solutions are plotted as well) when ar; = ap, = a, and T; = T, and
A =5 (ie. § = 0.2). We see that the maximum growth rate is practically unaffected by FLR
effects. For larger k, the maximum growth is considerably reduced, and when w > (v/w*)'/3
and (-;—) 0 the growth rate, which is always present if a,; a > 0, is given by

a2

w2w* '

Q= (45)

In Fig. 3 we plot the real and imaginary frequencies for different values of §. Note that
the system is stable for § < —1; for § = —1 the roots of the dispersion relation are {§ = —7

(the marginal mode) and } = —i/n? (the damped mode).
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VII. Discussion

We have considered a simple model for a plasma in a straight magnetic field where the current
flow to the wall is important and determined by Egs. (4) and (5). We have shown that an

electrostatic instability arises from the effect of the cross-field electron temperature gradient

on the outflow current. Despite its simplicity, the model and the resulting instability should

* be applicable to many diverse systerris, including mirror machines, the edge of toroidal devices

and flux tubes connected to boundaries of the ionosphere in planetary magnetospheres and
the photosphere in stars. '

We have élso considered the effect of ion temperature gradients, density gradients, and
FLR on the instability. When there is an electron temperature gradient, the magnetic field
curvature is found to often be insignificant in affecting the dispersion relation (this is true
if Eq. (34) is satisfied, which is likely unless axial confinement is very good). Further, the
presence of the density and ion temperature gradients does not qualitatively chaqge the
overall picture of instability. Due to FLR effects the maximum growth rate is somewhat
reduced. The growth rate at large k is reduced significantly, but this part of the spectrum
is not expected to be crucial to the mode’s identiﬁcafion or nonlinear evolution.

In mirror machine fusion devices, like GDT or tandem mirrors, it is the long central
solenoid that is simulated by the model of a homogeneous magnetic field. For the application
of our model we consider the plugs or plasma expanders as a place. where the potential
structure is established, but otherwise does not affect the plasma dynamics. This is justified
if these structures are sufficiently short, which is the case (for a flute perturbation) if the
plasma inertia of the end region is small compared to the central region and ion transit time,
Ts, through this region is sﬁfﬁciently short, wr, < 1. When these conditions are fulfilled, the

role of end structure is the same as the Debye sheath in our model; only the total potential

drop between the wall and the plasma is important and it determines the current 67 through

15



the end structure as a function of the plasma potential ¢ in the central solenoid. For GDT,
for which a strongly collisional regime is typical, we can use our results virtually without
change. We need only replace the loss coefficient € by the inverse mirror ratio 1/R. We
have already noted that significant transverse electron temperature gradients have not been
observed in GDT when they were expected. The absence of such temperature gradients may
be due to the nonlinear plasma relaxation resulting from the linear instability described here.

In well-confined tandem mirror devices of low collisionality, Egs. (2) and (5) may need to
be modified. This would then lead to a significantly different response for §jj than the one
given by Eq. (19) (cf. Refs. 5, 14,15) and consequently one will obtain an altered dispersion
relation. In addition, due to the smaller plasma losses, one can expect more significant
contributions from FLR and curvature effects in the dispersion relation. The study of this
problem is beyond the scope of the present paper.

QOur results can also be applied to a plasma in a toroidal device on the open field lines
that cross the surface of a limiter. As the limiter is probably absorbing a good fraction of
the ions hitting it, we should consider ¢ to be of order of unity, and the ion confinement
time of order of the ion transit time. Our instability can still play an important role, as
its growth rate can strongly exceed the inverse transit time. The most obvious consequence
of the instability should be a considerable broadening of the transition region beyond the
limiter’s edge.

The response function 6j) can be changed if there is a strong secondary emission from
the limiter. If the secondary emission coefficient 7 exceeds unity, then the potential drop
in the Debye sheath decreases from a few T./e to a value that is closer to a fraction of
T./e. However, as the potential drop is still present (see, e.g., Ref. 10) the response function
remains similar to Eq. (19), but with A ~ 1, rather than A ~ 6. Instability is still likely
but as A is no longer large, other competing effects such as ion temperature gradient may

be important. The accurate description of this regime needs further investigations.
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Appendix A: Finite Resistivity of Walls

When the walls have a finite resistivity, the potential at the conducting plate will vary and
the electron end current depends on the difference of the conductor and plasma potential.

In terms of our Maxwellian model, the electron end current is

—E€en vre e(e — ‘P)] (A-1)

Jlle = W exp{ T

where (. is potential on the conductor and ¢ the plasma potential. The ion end current is

jli = eengvri/2+/m. In equilibrium we take ¢, = 0, and ¢ is the plasma floating potential,

and j|; + jjle = 0 the perturbed electron current is then

8jje = —eezn\o/;ﬂ li—z - ———e(&‘a;e 5e) 1 (A+1/2) %,7-1-} , (A-2)
while the perturbed ion current is
5 = o
N/
Summing the two currents then gives the end current
o= [(a+5) -] 3

We shall assume that the skin effect is negligible so that the current being fed by the plasma
penetrates the end plates to give rise to a wall current density that uniformly fills the
thickness of the plate whose width is b. The current in the endplate (this current is obtained
by integrating the current density in the wall over its thickness) is related to the potential
¢ through Ohm’s law

I=-0bV,5p.. (A-4)

The current continuity equation determines V -1 in terms of the plasma current entering
the plate
7 =V -I=—-0bViep,. (A-5)
z=

L
2
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Now substituting (A-5) into Eq. (A-2) yields

genvr; [ ey ( 1) 6T,
224 (A+2)
. 2./ T, 2) T,
S|, =~ /L 2 : (A-6)

L 14 ene vy

where k% = k* + ¢*. If we use Eq. (A-6), instead of Eq. (19) for &3, and substitute into
Eq. (18) we obtain a generalization to Eq. (22) (we also use Eq. (21) to obtain 6T, in terms
of i),

2 9 .
o (.2 ENVUT; € T wg;my T l) kwp; )
f (kJ'+2\/7_rTeab)+7" T Q+T <A+2 a =0. (A-T)

In the limit ¢ — oo the high conductivity result is recovered, while if ¢ — 0 only the

solutions where ) — 0, expected for the insulation boundary condition case, is present.
The wall resistance affects the conducting boundary conditions when

2
o< Z:T—nkL}_b . (A-8)
" To roug}_ﬂy estimate the effect of resistance, we choose ng = 10¥¥cm=3, T, = T; = 100eV,
b=0lcm, L = 10%cm, 7 = 10~%sec, k. p; = .13, B = 10®gauss and we find that the
, conducﬁng boundary condition is altered only if o < 10*3sec=!. The electrical conductivities
of méta,ls are typically o ~ 1017 sec™!. Hence, the resistance of conducting walls is fypically

too small to change the results given in the text. To prevent the instability described in

the text, true insulation boundary conditions must be established, either by segmenting end

plates, finding materials that remain insulators under plasma bombardment or by allowing

for surface chemistry effects that can cause the surface of a conductor to behave as an

insulator.

19



Appendik B: Effect of Finite Larmor Radius (FLR)

When the ion pressure varies transverse to the magnetic field lines FLR effects may be
important. The treatment of the FLR response is well established in the literature.'®!7 Here
we include details for the completeness of our discussion.

We now need to account for an equilibrium density gradient dn/dz and an equilibrium
ion temperature gradient dT;/dz. To account for the FLR effect, we add to Eq. (10), the

diamagnetic drifts and a vector f = —V - IT with the gyrotropic tensor'® II defined as
nT; Ovy  Ovg\ jone  mn 0vy 0\ jnn | ~n
- ,{_<ax+ay>(xx—y}’)+<aw—ay)(XY'*'yx)}

=-2T‘;5Fi_[bxvv+Vbxv]. (B-1)

The unperturbed drift velocity in the y direction is then found to be of the form

v; = vg + v + v
(B-2)
Ve = Vg — ng) - vg”')
* where vg is the electric drift velocity given by Eq. (9)
@_ ¢ e m_ Lie On B-
Vie TeB 0z ' " T eBn oz (B-3)

For convenience we consider a system without velocity shear so that for the equilibrium
IT, = 0 (it turns out that our final results apply to a system with shear, but our assumption
avoids some complicated algebraic details).

The perturbed equation of motion, written with the Lorentz force on the left-hand side,

acquires the form

—Viép; + (%n Vp;

< oviixB=
c n
) S
—eViép + — + i(w — kv;)6v ;i m; (B-4)
)
e ~Vépe + = Vp
" 6viexB= I +eVép . (B-5)
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Taking the cross product with B gives for év,.;

6
C V6p1 - 7:1 sz
5YJ_,‘ = 5 —v5¢ - on x B
. ovi; x B c .
+z—-—;(w——k ;) 7 BzéfxB (B-6)
6Vie= 5 | = Vb0 + — xB. (B-7)

The first term;on the right-hand side of Eq. (B.6) is much la,rgér than the second and third
terms (the inertial and gyroviscous terms). However, as we shall see, we have to retain
the subdominant terms since the dominant terms will automatically cancel in the charge
néutrality condition.

The continuity equations for ion and electrons are given by

_iw6n+V-(6an_i+n6vJ_,-)+l%=0

e &8z
—iwén + V- (bnvie +n5vJ_e)‘— %%ﬁ =0.
Now inserting Egs. (A.6) and (A.7) into these equations exactly yield after some algebra,

—iQ&nf§V6¢xB-Vn=

cn

. l 86j“,-

+V - E—B;EB X (im;(w —.kvi)5Yi + 5f/n)] T o2 (B-8)
o c 1 aﬁjue
—1Q6n — 5 VépxB -Vn= Pl (B-9)

with Q@ = w — ky vg.

The large terms are on the left-hand side of this equation. We note that Jjj; . is a small
term, e.g., 6jj; ~ €ebn vr;, so that the ioﬁ current term is a factor evr;/ L) smaller than the
left-hand side. We estimate the large terms by subtracting Eq. (B-8) from Eq. (B-9). If we

then integrate over z, assume §j(L/2) = —65(—L/2), we find

_ly. [—c-”—B x (im,-(w — kv;)6v; + %)] y (B-10)

871 + 6lle =3 5
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We have used that the perturbations are independent of z. Further, as Eq. (B-10) is now in
terms of only small quantities, one may calculate to lowest order év;, 6f, as well as 6T and

én (upon which 3 is dependent on). Thus from Eq. (B.8) we have

_ ckbpdn/dz
on = 0B . (B-11)

The temperature perturbation is determined from the linearized adiabatic gas law, which

gives
) 6T;e 2 6n VTi. 2Vn\
—i{w — kv;e) ( T. 3 n) +6Viie ( T. 3 n ) =0. (B-12)
If we use only the leading order terms in én and 6v;., we find after some algebra
¢ . o,
51}13 = —@ k&p a—w . (B-].3)
Combining Eqgs. (B-12) and (B-13) then give
Spie = ckép Opie (B-14)

- QB 0z

The perturbation of the current density at the wall is determined from the equation

analogous to Eq. (19)

. . —enovpe [ 6T, 1 (6T, 6T\ €6
Sje + 6| | =~ [A +z (— ——) =< ‘0] . (B-15)
z=7

2,/ T. 2 \1T. T Te
The leading order terms of Eq. (B-6) together with (B-1), (B-10), (B-11), (B-13), and (A-15)
constitute a closed set of equations that describes the evolution of the linear system.
To simplify the analysis further, we use the approximation k > ¢ = a_aa? > a7}, Equa-
tion (B-10) then reduces to

icen k*L
3l + 64116 =
=% 2wg: B

(Q —w*w)p (B-16)
where w* = (v,(T) + v,gn)) /a, w = ka. The left-hand side of Eq. (B-16) is now expressed in
terms of §¢p, using Egs. (B-13) and (B-15). This then gives rise to the following dispersion
relation

| .
@+ (2 —otw)ati-=0 (B-17)
w w
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2 2 WB; 1 '
y= YBTME e Wi [A+ (1 -a/aﬁ)] ,w=ka, api = (dfnTi/dz)™" .

T, T 2

Using the dimensionless variables of Eq. (24), Eq. (B-17) can be rewritten as

?

ﬁz+ﬁ(—i—— 5)+—=o
T n

S

: a

-1
with § = [A + % (1-— a/aT,-)] and ap; = d—d-én(ni T:).
z

ix]

api
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Figure Captions
1. Geometry of plasma. The hatched region represents the end plates.

2. Real and Imaginary Frequencies

Figure (a) is the normalized real frequency and (b) is the normalized imaginary fre-
quency. The § = 0 case corresponds to the zero FLR case of Sec. IV while the § = 0.2

curves are for finite FLR discussed in Section VI

3. Real and imaginary normalized frequencies for various value of §. Figure (a) is the real

frequency and Fig. (b) the imaginary frequency.
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