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Abstract

’I;he anomalous heat transport arising ffofn the ion temperafure gradieﬁt driven
‘méde or m;-mode turbulence is extended‘to the range of the Weak‘densi-ty gradi-
| enltilimit (= Lﬁ/LT — oo), which is apprqp‘_r_iate fér H-mode dischargés. It is
~ shown that tilé anomalous ion heat cénduc’tivity X; With L, . — oo scales as X; = _
: g(pa/LT)(cﬂ/eB) exp( Bo) with o = (T./T;)(L1/Ls), B~ 4 and g ~ L This X; scal- |

ing is the natural extension for hlgh n; of the scahng of X; for K = (T/T. )(1 + 771) sS4
:obtalned [Hamaguchl and Horton Phys. Fluids B 2 1833 (1990)] from analytical and -

numer1ca1 studies.’



L Introduction

Anomalously large transport caused by plasma turbulence has recently been a subject of
much interest With regard to the conﬁnement properties of various types of ma,gnetic fusion -
devices. One of the most important problems concerning this subject is to identify the
physical mechamsm responsible for the anomalous transport and to predict the conﬁnement
properties of present and future devices. Recent experimental studies'~ 5 in tokamaks have
provided supporting evidence that the ion temperature gradient driven mode or the.n.,- mode
is an important constituent of the turbulence contributing to the anomalousb energy loss.
Even in the case of the improved energy conﬁnement observed in the so- called H-mode
discharges,®’ the i 1on temperature gradlent driven mode could still play an 1mportant role
for the observed anomalous heat transport. |

The ion temperature gradient driven mode (without the presence of the bad magnetic
fleld curvature) is a drift wave microinstability coupled with the ion acoustic waves that
is destabilized by the local ion temperature gradient. ‘W.hen the effect of magnetic shear
is stronger than the effect of magnetic field curvature, t'h'rs sla,b type of ion. temperature
gradient driven instability is predicted to be excited and to henhance energy trarnjsport.s_’9

This drift-ion acoustic mode is known to be well approximated by a simple fluid model&9 -

based on the two fluid equa,tlons W1th the polarization drift veloaty and adlabatlc electrons

Recently thls ﬂuld rnodel of the n; mode is re1nvest1galted9 analytlcally and numerlcally‘

in detail and the scaling of the anomalous ion heat conductivity X; is obtained as

X‘g(fi)(eBW mde(-as), ()

where n; = L,/Lz is the ratio of the density gradient scatle length to the ion temperature

_ gradient scale 1ength, Nie is its critical value, s = L,/ L, is the shear parameter, g ~ 1 and

& = 5. The condition under which Eq. (1) is derived is that 7; is near 7, A(m,c <n =< 3).

It should be noted in Eq. (1) that stronger magnetic shear reduces the anomalous ion heat
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éon&ugtivity. The same type of shear reduction was observed in early numerica,i simulatidns
by Horton, Estes, and Biskamp.? |

In H-niod_e diScharges,‘it is experimentally observed that the (electrbn) density profile
is flat in .a sighiﬁcemtly large domain of the bulk plasmas. In such cases;' the density gra-

dient scale length L, is much larger than a typical macroscopic scale length and 7; — co.

- Therefore, it is necessary to modify the X; scaling given by Eq. (1) in order to calculate

the -a,noma,lo»us heat transport in H-mode plasmas. In particular, we need to determine the

- dependence of o of Eq (1) on ;. The goal of the present work is to derive the scaling of

the local anomalous heat conductivity X; in the flat density proﬁlé régime appropriate in
explé,ining the confinement propertieé in H-mode plasmas. |
The .conclusion of the present work is summarized in the following X; scaliﬁg in the W_eak.-
density gradieﬁt limit: | . | . :
=g () (5) ee(-6) )
With:a, ﬁumerica_lly obtained pérarﬁeter B ~ 4 and a new shear i)arameter o= (T./T;)(Lr/L,).

The shear scaling of Eq. (2) is obtained from parametrizaﬁon of n'u__meri(‘:é,l data. More elab-

.oréte fitting functions of shear f(o) could be used but the chc.)ice.Of. the simple exponential
' decreasé appears sufficient. ‘This is the natural limit of Eq. (1) in the ca;s.e Whérg M — 00
Whéﬁeupéﬁ ,a(m)_——’» B (Te / T,) / 77, AV.Ve note that shear stabilization due to parallel compress- |
_ ibility leads to the existence of critical shear ot i.ﬁ the weak density gradient limit. | |
In the next section the fluid model of the p; mode is reviewed briefly with the use of -

- normalization appropriate for the weak dénsity gradient limit. In Sec III the linear properties

of the n; mode in the limit of L, — oo and thecritical magnetic shear oy a,re_discvussed.‘ The
scaling of the anomalous ion heat cdndu'ctivity X; obtained from three-dimensional nonlinear

numerical simulations is presented in Sec. IV. Section V contains the conclusions.



I1. Dynarrrical Equations

The nonlinear evolution equa,tiorrs9 of the electrostatic ion temperature gradient driven mode
are obtained from the two-fluid equationelo under the assumptions of charge neutrality (n; =
Te - n), constant electron temperature ‘Te,A Z€ero resistivity and zero electron inertia. The
sheared slab 'conﬁguration‘ of the magrretic field B = B(Z + (¢ — o) §/Ls) is assumed here,
Whieh represents a neighborhoo& of a rational surface given by z = Zo. Here L denotes the
shear scale length, X, ¥ and Z denote the unit vectors of the usual orthogonal coordmate
‘system (z,y,2 ) We spht each phys1ca1 quantlty into two parts such as n = no(:c) + 7 7i; the
unperturbed quantity denoted by subscript 0, which is assumed to be a function of only z, and
r;he p_erturbed. quantity denqted by subscript 1. It is easy to show from the parallel electron
momentum balance equation that electrons eatisfy a Boltzmanrr distribution 77, [no = e®/Te.
The approprlate space—t1me Varlables of the ion temperature grad1ent dr1ven mode are

T — 2o Y z 7o ' tcs

I = 2 . Z=
" Ps ,y,Ps, TLT, TLT,

T =
where p, = ¢,/we = ¢(m; T:)Y?/eB, ¢, = ‘(Te/mi)l/z is the sound speed; we 18 the ion
cyclotron frequency, m,- is the ion mass, and T =T,/T;. Assumrng that the mean velocity and

vpotential are zero, we obtain the ,nonlinear evolution equations of the fluctuating quantities -

o6 : '
2
-V =D+ K VD) o a~ =i+ {6, Vie} - Vis (3)
ov A | N
= Vi@ +p) —{bv}+u V||v+/~u Vrv - (4)
& o 4 : . , 4_
| aztl =Ky - T Vi - {69} +X Vip+ X, Vip. (5) -
Here the nond1men31ona1 parameters are glven by
_ Ly _ Lt
D= 7' I Kr = I + 1
Lt
P = = e —
v/t , o=r7 I



and the dépendént variables are defined by -

‘ eé TLT‘ . ’5|| ' TLT
¢= _T_ - y V=TT,
e Ps . Cs Ps
B
Pio Ps ’

where v and p; denote the parallel velocity and the ion pressure, respectively. All the mean
quantities used above are evaluated at T = zo. The Poisson bracket and the perpendicﬁlar

and parallel gradients are given by

s v fx g Of 99 _0f 0 ,
g .. 0 .
\1 .5§¥+5§y,

0. _0
V”=£+a¢5§"

o In cieriving Egs. (3)—(5), we only retain the E x B cbn;\fec’pive nonlinearity for simplicity.
| The domain on which Eqgs: (3)-(5) are solved is given by the cubic fb'ox |Z| < Ly, >0 <y 5
] Ly and 0 £z < L, L;'aﬁd L, being éonsta.hts of order unity. The size of the bbx_ in the z
E direction Ly is taken to be large enougﬁ, s0 that when there is magnetié. shear (o # 0), sin‘glé '
heiicity modes localized at 2 =0 deca,y sufficiently asv |Z] —> Lg; The boundary conditions -
‘of Egs. (3)—(5) are that all the dependeﬁt Variébles vanish at |Z| = L, and are periodic in
the ¥ aﬁd zZ directions.»> | | . |
The set of eqﬁations (3)-(5) is equivalent to the set of eq_ﬁations. used in the earlier work
(Egs. (5)—(7) in‘-ReAf. 9)._-H'oweVer, in the present work, where 7; >> 1, it is necessary to }ise e:L |
dif’fereht rllormalizatiovn. For L, > L we need to take 7Lz to be a typical macroscopic length |
séa.le, inste_aa'of L,. Then the timé scale must b‘e taken as 7Lr/cs. The constants “J—,ll and
Xy, in Egs. (3)-(5) are appropriately chosen di‘ésipation rates. The perpendicular diffusion

coeflicients 1, and Xj may be taken from the classical collisional transport theory.'® Using
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the classmal viscosity v, ~ nT; /wa 7; and the classical heat conduct1v1ty K L~ T: Jm; wk T,
the normalized perpendicular diffusion coefficients ) and Xy of Egs. (3)~( ) are given by
vy .TLT Lt |

Ml = - 2:
"My NCs P CsTi

and

X, = kL TLp N Lt -

2 = ,
nc, p? Cs T

Wher'e T; denoteé the ion collision time. For the high temperature tokamak plasmas of interest '

the appropriate choice of Ml and X“ is to model the strength of collisionless ion Landau effect

in the linear dlspersmn relation. We use p” = X); =1 as the approx1mate collisionless hnrut '

for the parallel d1831pat10n rate. We note that these dissipation rates u 1, and X || are also

normalized with the use of macroscopic scale length 7Lz, instead of L,, in contrast to the

By and X ” used in Ref. 9.

The Cross- ﬁeld anomalous ion heat conduct1v1ty X; is given by .

n=ER o (B) (5 /=

Here ( ) denotes a space-time average over ﬂuctua.tlons, Whlch will be defined more

precisely later. In the limit of the flat density gradient or Ln» — 00, we have
D—-0 and Kr—1
and the fluctuations become only functions of o and I'. Since the variation of I' = v T}/T,

is limited in most tokamak experiments (0;5 ST/ T. < 2) and the effect of I" is appreciablé

only' in the case of strong magnetic shear,” we do not develop the'dependencé of X; on T

here. 'Theref‘oré, within these limits the ‘anoma,l,o'u's ion heat conductivity Xi takes the form .

-2 (s,

- where f(0)isa nondimensional function. The goal of this work is to determine the functional

form of f(o).



- III. Linearv Analysis

- We now consider the linear properties of the system of Eqgs. (3)—(5), in the case of the zero

density gradient or, D = 0 and K7 = 1. Assuming that the  and ¢ dependence of the linear -

solutions of this system is given by expi(k§ — &), and writing ¢ = 5(5) expi(ky —&1), we

obtain the following eigenvalue problem from the linearized equations of Egs. (3)-(5):

dz? C0+1 Q—I—l AB — %727

where

A=0+ i,u”k o572

B=Q+ ’iX“k o7
and Q = @/k = w/(cT;/eB)(ky/LT).- Here the perpéndicular diffusion coefficients x) and
X, are set to be zero for simplicity, w = ¢, & /T Ly is the complex‘frequency of the mode
with phySical dimension and k = ky p, is the real wave number in the y direction. The Z

dependence of the solutions is ignored since_, in the case of finite shear, the 7 dependence of

the linear solutions only shifts the posifion of their mode rational surfaces in the z direction.

Tn. this section, we only consider an ideal sheared slab or L, = co. 'As discussed in Sec. II,

therefore, the boundary condition of Eq. (6) is such that |§(z)| — 0 as Ii | — oo

It is easy to shdw that, if g = X;y =T =0, then Eq. (6) gives the following eigenvalue Q

~and the eigenﬁinction b i(2):

1

2(1 + k?)

Q= 1 [( k2 — w(2f+ 1)) + \/(k2 + io( 2€+ 1))? —4ia(2€ +1)(1 +.k2)] ‘ (7) ,

- and . |
bor(z) = exp(—52 202 Hy(F/As) ()
where £ (¢>0)is fhe radial mode number associated with the th eigenValue'of the Weber

equation, AZ? = i0/0, and Hy(z) is the £th-order Hermiﬁia;nAfunction of the complex variable

T

d? ¢+< Y] +B+1 0%z >$-—0, | (6)



z. The maximum growth rate .. (measured in ¢,/ LT) is obtained by varying ‘Ic and £ of
qu. (7) so as to ‘maximize 5 =‘_k ImQ. It should be noted that Q) of Eq. (7) is a function of the
combination of shear and raciial mode number'g»iven by 0(24+1) rather than the shear o itself.
Numérical. evaluation of ‘Q from Eq. (7) shows that for the limit of I' = X, || = p,y = 0 the
maximum growth rate is Jpax = 0.20 with 0(204+1) = Tppax = 2.4 and k = kpax = 1.3. If the
shear ¢ is sufficiently small, therefore, thé radial mode number £ for maximum growth tékes
a value satisfying (24 + 1) = Gmax and the maximum growth rate Ymax is still independent
of shear o. For ﬁnité values of I, i, X)j, po and X, the radial mode 'nun'lberlﬁ and the
Wavenumbér k= ky ps that give the fastest gfowéving mode take much smaller vdlues than
Zma; = (Gmax/0 —1)/2 and Ermax calculated from Eq. (7). These parametric dependences of
- ¥(k,{,0) are discussed in more deta,il'by Haméguchi and Horton.®
For a ﬁked radial mode number £, if the magnetié shear o is small enOIigh éuvch that the
- condition k% < |0(2¢ +1)| < 1 holds, the eigenvalue  of Eq. (7) may be further simplified
e LB+ (E-ro@], @)
where & - o(2¢+1). We note that Im 2 is independent of >k up to O(7) in this case. o
| Following linear perturbaiion theory,é we now calculate the stabilizing effects of the
' compreésibility 0f the parallel flow .(i.e.-, T'#£0) and,lt'he parallél diffusion (i.e., y, Xﬂ;ﬁ 0).
Assuming fha't.azf, |wyko?| a,nd. |X|jko?| are small, we expand the la,sf term of the left-hand
sidé of Eq (6) as Taylor series in z. Here we also assume that the mode is localized near |
z = 0, or more precisely, we solve Eq. (6) on a finite domain of z (|Z] < L) With the -
~ boundary conditions that || = 0 at [F| = L. Therefofe, by taking the %zalues of aéF,
lugko?| and |Xjjko?| to be small enough, the Ta,ylor expansion is uniformly’c'onvergeht. The
size of the doma.jn L., however, is taken to be large enough, so that the lowest order solution
of Eq. (6) is well approximated by Eq. (8) with the eigenvalue Eq. (7).

Writing ) as the sum of the lowest order growfh rate Qo given by the right-hand side
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of Eq. (7) and the remainder Qy, where |Q;/Q0] is also assumed to be small (order of o*/2),

we expand Eq. (6) in terms of these small parameters. Retaining up to the term of 54, we

‘obtain v
23 -
EA,—Z + (Eo + By — V() = Vi(%))¢=0
where Ep = —k% — Qo /(o +1), By = —01/(Qo+ 1), Vo = —02 32/Q2, V; = ((291/90)02 %

—Fot :2'4> /92 and F =T/Q%—i(y +X”)k/ﬂo +3X)k/(Qo+1). The lowest order solution
of the eigenfunction ¢ = ¢ + ¢; + - - - is given by Eq. (8), which we Write as 5(2) indicating
the Eth radial eigenmode. The corresponding ¢th elgenvalue Qo = Q( ) | is glven by Eq (7)

' The next order elgenvalue O = Qg) is obtained from the following relation
B= [ vi@#ra/ [ o, - o)

where the inﬁégral is taken over the total domain (i.e., |Z | < L; in the case of the finite

: domain). With the use of 0 df Eq.. (8), Eq. (10) leads to the following result

A N : : '
o= ZFA‘e((QO'ilj ;2_0%-) S )
W_hére Ay = 3(‘2>£2+2E-|-1)/ 4. In the case of smaﬂ? = o(20+1), Q(e)b may be simpliﬁed with the

use éf Eq. (9). Iﬁ this case, Q((f)z = —i5+0 ( 3/2> and we have F' = zl"/a—i—(’) ( 1/2) namely,

,the effect of parallel diffusion ) and X} is smaller than that of the para,llel compre_ssibility

i T~ /.L.” + X ~ O(1). Therefore, we o‘b_ta.inh | |

3(22 + 20 +1)
8(2L + 1)?

ngb:_ ~P+O( 302)

The growth rate 5 = Im& =k ImVQ(»"Z) is then estimated from

(25;1)a_(_1_+3(2£ +2e+1)r) 0(2“1”@(53/2) ‘

Im0® = m 0§’ + maf = 2" T 8L+ 1)

' FOr_mula,‘(l2) shows that the parallel compressibility (or nonzero I') reduces the growth rate.



We now extrapolate the growth rate glven by Eg. (12) to larger magnetic shear and
est1mate the threshold value of o: Although Eq. (12) is obtained under the assumption that |
the second term in the right-hand side is sufﬁaently smaller than the first term, we estimate -
‘the condition for the margmal stability or ImQ = 0 by balancmg the first term and the
second term. The shear parameter o.s obtained by this balancing is an estlmatAe of the |

critical magnetic shear and given by

2 3022 +20+1) [\
Tarit = 190 1) 4020 + 1) :

where the £th eigenrllode becomes unstable if 0 < Oait- Thus higher £ modes are the first to

be stabilized. The most strict critical shear parameter ot is then given by the £ = 0 mode:
. ’ 3 —2 : . . . . . ) .
Ocrit = 2 <1+ ZP> T _ . (13)

~In terms of critical value (Ly/ L7) cxity we have _ , |

B 0eE@EE. w
Where v is the rat1o of the speaﬁc heats If ' =T¢/T. =5/3, we obtam Oarit 2 0 40 and
(Ls/L)ess(T3/ T) ~ . 2.5 from Egs. (13) and (14) For other values of T, the critical shear
values calculated from Eq. (13) are g1ven by Oait = 0.32 and 0 19for' = 2 and 3, respectwely
The choice I‘ = 3 may be the appropnate representatlon of the one-d1men51onal parallel ion
dynarmcs in the collisionless system near the absorpt1on layer w = ky v;. For the parameters
used for the 3D nufnerical simulation's‘ preéented in Sec. IV (ie. I =2, p = X = L0,
Uy = =X, 1 =01 ‘and ky ps > 0.2), thébcriti'cal magnetic'shéar becomes a;rit = 0 54, Which:is '
calculated by means of the initial value code The critical magnetm shear obtained from the
fluid model (with T' S 2) glves a larger Value than the formula obtained by Hahm and Tang'!
for the gyrokinetlc model: (L,/L7)&5° = (3/2) \/775(1 +ﬂ/Te)(2€+ 1) or esit = 0.27 when

T; =T, and £ = 0. .S'ince the fluid model used in the present work does not necessarily
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address the phyeically correct threshold value of magnetic shea,r, the discrepancy between
the fluid model and the gyrokineticv model is expeeted’fo exist. |

In the next seetion, we will consider _nonlinea,r-VSa,turaJtion of the mode with shear suffi-
ciently smaller than its critical value oqye. In this case, the linear modes are strongly excited
and the fluid model of .Eq’s. (3)-(5) is considered to give a reasonablykaccurate description of -
the mode. The scaling of the anomalous ion heat conductivify X; arising from the 7; mode
in the flat density profile is presented there and shown to be a decreasing function of the

shear o.
IV. N umerical Simulations

' TIn this section, results of numerical simulations of the n; mode in fh’e-ﬂ&t deneit& profile are
‘presented. The initial value code used to solve the noﬁlinear partial dif‘fer‘entia,l e‘qﬁa,t.iov'nsb
- (3)-(5 ) is.a modlﬁcatlon of the code used in Ref. 9, whlch was modified from the ongmal
version of the HIB code 1213 Tn the mltlal value code, Fourier representa,tlon for the 7 and
z vana_bles _and a ﬁn;te, dlf‘ference scheme for the :c venable are employed_. At each tlme_
step the dependent vaﬁables'are advanced by means of the predictor'-eorrecto_r mefhod. The
boundary condition is that all the physical variables e,re periodic in ¥ and Z with periods Ly
~and L,, re'spectively., and they vanish at |Z| = L, as discuss_ed in Sec, II. We refervto the
" (m,n) mode of the Fourier representation. as the mode whose § and 7 dependence is given by
the phase 27 (myj/ L, ~nZ/ L,). The Weve numbers k, and k, are thus give@ by k, = 27m/ L,
Cand F, = an/Lz. The rational surface of the (m,n) mode is located at T = th/mU L,
since V) « (mox/L, — n/Lz) = (mo/L,)(z —vn_Ly/m'a L,) for the (m,n) mode. As the
initial conditions, small perturba,tions are given to each (m,n) mode at t=0.
The size of the demain us'ed'.througlhout the following calcule,tions is given by L, = 20,t
L, = iO7r and L, 5"7.5w, so that the smallest finite wavenumbers are kyps = 0.2 and

k,7Lr = 0.267 and the distance between the two. rational surfaces of the m = 1/n = 0

11



mode and the m = 1/n =_1rmode in the case of shear o = 0.1 is about 13p,. The equally
spaced 150 mesh points are used for descritization'of the interval —L, < 5 < L, and 58‘
modes are chosen for the Fourier representa,tioe that cover at least all th_e unstable modes
with —3 <n < 3. The diffusion parameters used in the simulations are pu = X = 1.0 and
pr =Xy =01, As ﬁoted in Sec. II, the pa,rallel diffusion parameters ) = X)| = 1.0 are
chosen so as to model the collisionless ion Landau effecf for high temperature plasmas. In
order to obtain turbulent saturation, rather than local quasilinear saturation, the background
ion pressure gradient is kept eonstant.9 | |

The anomalous ion heat conductivity X; is defined by

B @R o

Here the time average g( ) of a time- dependent function g¢(t) is defined by

_T—rooT/

and the space average ( ) is deﬁned by

' Where A denotes the mode width in the z d1rect1on In practlce, the t1me average is taken

L.'J - -
p / dz , (16)

OVer a reasonably long tlme period of T after the saturatlon is attalned ‘The size of the mode

_width in the % direction A is used as a normalization factor of Eq. (16) so that averaged '

values calculated from Eqs. (15) do not depend on choice of L, When the modes are localized.
In our 51mulat10ns the deﬁmtlon of A is given as follows for a function f(Z) representing a |
physical quantity averaged over 7 and % Z, we define |
L if |f(Z)] 2 fmax/10

I(z) = - '

- | 0 if [f(Z)] < fmax/10,
where Jfmax is the maximum value of |f(Z)| on |Z| < L,. Then the mode width A is defined

A/‘dm,

12
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which gives a reasonable estimate of the “support” of the localized mode. The fluctuation
level of the _space—dveraged anomalous ion heat conductivity X;(t) = (pi¥1r) /(—plo) is then
given by

1/2

Ax; = {0a@® =x)r} ", , (17)

which is shown by error bars in Fig. 1.
The énqmalous'ion heat conductivity X; of Eq. (15) obtained from the 3D simulations is
“shown in Fig. 1 as a function of o/ Kt - s/K = (T;/Z-)/LS(LEI + L7'). The line denoted by
ﬁ,- = oo in Fig. 1 indicates the shear dependence of X; in the case of thé flat density pfoﬁle, '
“where K7 =1 and s/ K = o. It is shown that magnetic shear reciu_ces the anomalous hea.tv
conductivity X; approximately as X; o exp(—ﬂa) with 8 ~ 4, similar to the Xi with finite-
density gradient repvofted by Hamaguchi and Horton®. In other words, fhe scaling of the
anoma,lou‘s' jon heat conducfiyity X Wlth the zero density gradient is given by |
X =g 22 () exp(=60) W
~where 8 =~ 4, g~lando = (T,e /ﬁZ})(LT/ILs). We note hére that this expression of X2 giVes
a pra,ctlicallyA negligibly small valueuof Xi- at o = Ot |
As a comparison, we also show the s/K = ¢/Ky d‘ependénce' of X; under the coﬁcﬁtions
that D = 0.25 and KT = 1.25, or equivalently ﬁi = 4.0 and T3/T. = 1. In this éase, X; scales

as

el @e(5)
with ,5 ~ 4.5, which is slightly‘ larger than ﬂ ~ 4, Iﬁ view of the previously ob.t»ainedA X;
scaling (Eq. (1)) for smallér m (M. < m S 3), this scaling with 771-' = 4 suggests that the
‘parameter o = a(K ), which determines strength of shea.f dependence of X;, approximately |
varies as oK) ~ /K when K (or 7;) is sufficiently lafge. Here § = B(K) also has a weak
dependence on K given by E(K ) =45 — 4 as K{ ~ 5 — co. Thus taking account of the

limit (n; — nic)/Ln — 1/Lr when o < a;:ri"t and L, — oo, we see that there is a smooth
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connectlon between the X; scahng of Eq. (1) for smaller n; and the X; scaling of Eqs (18)

and (19) for large m:.
V. Conclusions

In this work, we extend the previous calculations of the ion temperature gnadient driven
turbulence to the case of weak density gradients. The new formula of the e,noma.lous ion
heat conductivity X; due to the ion temperature gradient driven turbulence in the limit of _
zero density gradient is the natural extension of the previously obtained .formulaé of XZ The
neW formula connects continuously with the previous formula when L, — oo with a minor
adjustment with the numerical coefficient given in Sec. IV. The weak density gradient linlit
(Ly > LT) is important for the H mode discharges of tokamak plasmas, where the density
profile is known to be flat in the bulk plasme.6’7 In the case of intproved energy conﬁnement
of H mode discharges, microinstabilities such as the n; mode are considered to be pa,rtlcularly ‘
_important to account for the observed a.nomalous heat transport 11,14-16
Considering the region where the magnetic shear effect is stronger‘tha,n the toroidal cn‘r—‘
- vature effect, 17-22 we present the set of equatlons of the ion temperature gra,dzent dmven
mode with a dlmensmnless sca,lmg of both the 1ndependent and dependent var1ables appro-
priate for the weak den31ty gradlent limit. From the scaled set of equations, 1t is easﬂy
shown that the ion temperature gradient driven mode ‘With Ln = 00 depends‘only' on one
parameter ¢ = (7,/T;)(Lr/Ls) and the anomalous ion heat conductivity X; has a form
X; = (ps/LT)(cj}/_eB)f(a), iAthere flo) is & function of the magnetic shearv o. The present
work determines the functional form f(c), as given in Eq. (18). |
When magnetic shear is relatwely large, the hnea.r analysis for a fixed radlal mode number
¢ (Eq. (12)) shows that the linear growth ra.te decreases with magnetic shear o, as in the case
of the n; mode with finite L,.% This is principally due to the pa,redlel conlpressibility, which

leads to-the' existence of the critical magnetic shear 0. An approximate formula for o.y

14



is given by Eq. (13), Wnich gives ogit = 0.40 for I' = 5/3 and ooy = 0.32 for ' = 2. These |
nnmerical ';falues of critical shear ouy; obtained from the fluid model somewhat differs from
eie Obtained from the g_yrokinetic model!! with the comparison given in Sec. III.. When the
magnetic shear o is sufﬁciently smaller than its critical value o, on the otherﬂ" hand, the
modes with hlgh radial mode numbers £ are strongly excited and the linear growth rate is
shown to be 1ndependent of shear.

Three-dimensional nonlinear simulations are used to determine the function of f(o) or
shear dependence of X;. It is shown that X; is a decreasingv function of shear, weakly depen-
dent on e when o is small and strongly reduced by o When-ais‘large. This dependence on
" shear is parameterized with the edcponen’pial ﬁt

Ximg 2 (&) exp(-o) " e

where g ~ 1 and ﬂ ~ 4. Although this exponentlal dependence of X; on o is one of several
: poss1b1e parameterlzatlons it expresses with a single parameter ,B both the Weak and strong
dependence on o. The exponential decrease of X; with i increasing shear prov1des a sufﬁmently.
small value of X;(0) at o = oy to Be useful without a,n‘exp.licit cutoff at o = Ot Recent
gyrekinetie sifnulation323 (with finite ;) also show e similar tendency in the shear dependence
' of X; for small values of o (¢ <0.05). |

The scahng X; of Eq (20) is the natural extens1on of the prev1ously obtained X; scahng |

t= 02 (L) (- mesp(-a()9), e

 withs = L /Ls, K = (Ty/T.)(1 + 7;) and a(K)‘ ~ 5 When_ (Ti/T)A +mie) < K 4. In
'fact if 0 K Oait, then (77, Mic)/Ln =~ 1/ Lt and the coefficients of the exponential functions
| of Egs. (20) and (21) become equal. We find that o(K) scales as a(K) ~ B/K when K is

large. ‘

15



- Formulas (20) and (21) thus connect smoothly when one takes Eq. (19) or

=02 (B e (<52) I
xi=g7 (55) o0 Fx) | 22)

with f = 4 ~ 4.5 as the X; scaling for the large 7; region (5 S K < co). Equations (20)—(22)
E give the scaling of the lqcal anomalous heat con'dﬁctivity that should explain the anoma-
lous ion heat flux in experiments where the toroidicity is less important than »m.a,gnetic
shear. In H-mode diéch'arges, if the domina,ﬁt heat transfer is dlﬁe to the (slab) ion temper-
ature gradient driven tﬁrbulence, the anomalous heat conduéﬁivity X; in the bulk plasma

" is given by Egs. (20) and (22), which is of order of the gyro-reduced Bohm diffusivity

(= (ps/LT)(cT;/eB)). The improved global energy confinement of H-mode discharges, there- |

* fore, would seem to result from an improved local confinement at the edge region where values

~ of 7; are relatively small. Also, we find that the sheared E x B flow vg(z) in the transition E

boundary layer reduces the growth rate of the 7; mode for finite values of L vg/cs.
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| .Figure Caption_

i. The anomalous ion heat conductivity X; obtained from the 3D simulations. The‘ pdram—
eters used for the simulations are D = 0, K r=1for the 7; = oo plot (where s/ K = o)
and D = 0.25 and Kp = 1.25 for the n; = 4 plot (where s/K = o/Kr = 0.80). The

« other parameters are I' = 2, y = X, = 1.0 and puy =X, =0.1.

20



i

0.1

- 0.1

0.2
- s/K

0.3

Fig. 1

- 04

05



