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ABSTRACT

Plasmas in axisymmetric mirror devices can be made stable to MHD
interchange modes by injecting energetic ions which contribute
significantly to the pressure and spend a sufficiently large fraction

of a bounce time in regions of favorable curvature. Piteh-angle

scattering—adverselyaffects the method by reduclng this fraction. The
ions must be sufficiently energetic that pitch—ébgle.scattering is not
detrimental for tﬁat part of a slowing-down ¢time during which they
contribute significantly to the pressure. We have solved the
bounce-averaged Fokker-Planck equation, including drag'andeitéh—angle
scattering, and calculated the energetic ion contribution to the
stability integral. With specially tailored magnetic fields, the

required injection energy and power drain are found to be reasonable.
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I. INTRODUCTION

Plasmas in axisymmetric mirror devices are subject to the
—~magnetohydrodynamic - (MHP) - interchange instability[1l;
fields have traditionally been used instead, because plasmas in such
minimum-B fields have interchange stability. There are drawbacks to
the use of quadrupole fields, however, such as the complexity and
expense of the magnets required, and the enhancement of radial losses
when quadrupole fields are used to plug a long central-cell region, in
a tandem mirror device, Because of the advantages of axisymmetric
mifrors,vit is desirable‘ﬁo find a méthod forrétabiiiﬁing intefchange

modes in such devices,

We have investigated one such method, the use of energetic ion

injection. As with ion injection into tokamaks, partially stripped

~~Quadrupole -

ifons must—beused—(erg. He™)—sothatthe —ion can be trapped inm the
magnetic field when it becomes fully stripped. Neutral injection is

not feasible because of the high energies required.

When the energetic ions contribute significantly to the pressure
and spend a sufficiently large fraction of a bounce time in regions of
favorable curvature, they make a stable contribution to an interchange
mode. This requires the pitch-angle distribution to be quite narrow,
and centered on an optimal value of the pitch angle. The ions must be
sufficiently energetic initially that they pitch-angle scatter away

from the optimal pitch-angle only after they have slowed down
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considerably, and are no longer contributing significantly to the

pressure,

‘We have not considered the possible excitation of non-MHD
instabilities due to the presence of the injected ions, such as the ion

two-stream instability or the Alfven ion instability.

The stability condition 1is expressed in terms of the fast-ion
distribution funetion in Section 2, The fast-ion contribution 1is
Qgtimizgd‘rby using a‘ spgcially tailored‘ magneticr f;eld line modgl,
which is described in Section 3. The kinetic equation for the fast-ion
distribution function, which describes the effects of guiding-center
motion, pitch-angle scatteriﬁg and drag, is given in Section 4; the
bounce-averaged equation is derived there also. In Section 5, the

power drain, required for steady-state injection at marginal stability,

is expressed in terms of the rate at which energy is lost from the
plasma due to ion-ion collisional scattering into the loss cone. When
pitch-angle scattering is neglected, the required power drain can be
evaluated analytically, and this is done in Section 6. The effect of
pitch-angle scattering is discussed qualitatively in Section 7, and a
rough estimate is given for the injection energy required to avoid the
adverse effect of pitch-angle scattering. An approximate solution to
the bounce-averaged kinetic equation is derived in Section 8, assuming
that for the energies which contribute significantly in the stability
integral, the fast-ion distribution function remains sharply peaked in
piteh angle. Finally, in Section 9, the stability condition is

evaluated numerically, using the approximate distribution function
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derived in Section 8, The power drain is found to be a reasonable
fraction of the loss cone scattering loss provided that the injection

energy is sufficiently high.
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IT. STABILITY CONDITION

The stability condition for the MHD interchange mode in a low-B
5

-mirror-device -is

dg

!
B3r2

Revpe, + PP >0, (1

where the integral is taken along a magnetic field line, Kk 1is the

curvature of the line, ¢ = rA¢(r,z) is the flux, and

2
v .
- 3 1 2
P, +Py = Z s d vmjtzr + v")fj
S d

is the sum of perpendicular and parallel pressures, summed over all

particle species, with fj the distribution function for the jth

species. Near the axis of the device (the z-axis), or in a long thin

device, Eq. (1) can be written as

rlzye, +P) >0 (2)

where the magnetic field on the axis is b(z), and the equation of a
field line is r = r(z), so that the curvature is given by rl(z). Tne

approximate relation between r(z) and b(z), valid close to the axis, is

b(z) r2(z) = b(1) r2(1) . - ‘ (3)
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B
For the plasma ions and electrons, the distribution functions will
be approximated as Dbeing isotropic, and will be taken to be

Maxwellians, Then

Pp+Pp = 20 (T +T) + By + P, ()

where the subscript f denotes the fast-ion contribution,

© 1/b pda 1
(p Pl = 2mm S dv f —Z (1 - = AT . (5)
.L + “ f w f 0 v O E 2 f

and me is the fast-ion mass. Here the velocity variables used are

V,A,c where v is the speed, where XA = (sin®y)/b, with x = cos*1(v"/v)

the pitch angle, and ¢ is the sigh‘of Ve We denote v"/v by £, so that

The distribution function f, is assumed to be an even function of o.

The stability integral, defined by Eq. (2), is S = S

p + Sf, where

Taz 4
Sp =2 J 5 rne(Te + ), (7)

is the plasma contribution, and where the fast-ion contribution is

A2 Z¢ dz(1 - l-kb)

Con I
Se = 2mms. S dA S vidvf, f r'(z) . (8)
£ e A 0 £ -Zy g

1
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.
We have assumed that fe 1s independent of z, and that ff = 0 outside
the range of magnetically trapped ions, A1 <A X Aoy where A1 = l/bmaX

and Ae =1/b

mine With Dby =Db(1) and by, = b(0) the maximum and

minimum values of b(z) along the field line, and where tz, are the

__turning points, wnereﬁvw,;,O,,i.e.”WAb(zt) =1,




ITII. TAILORED FIELD LINE MODEL

The model for the shape of the magnetic field lines which we use
~is- especially -tailored -for -this -problem,; -to maximize —the stabilizing
contribution of the fast ions. The field lines are taken to consist of

straight line segments:

r(0) , for 0 < s < s
r(o) - A (s-sq) , for s1 € 5¢< 5

ris) =« - L o 9
r(D0T + (A4 - A)(1-8)] , for So < 5 <1

r(1) for s> 1

where sq and s, are the break points, and Aq, Ay are constants. For

continuity, we must have

r(0) - Ay(sp = s¢9) = r(DIT + (A= A0 (1 = s5)] .

Equation (3) will be used to relate r(s) and b(s): without loss of
generality we may take r(1) = 1, and b(1) = 1. Then bpax = 1, and
Bpin = 1/R, where R is the mirror ratio; hence, r(0) = RV/2, Tne field
is thus specified by four parameters, which are taken to be Sqs So, R,

and r>, where ry, = r(se). A1 and A2 are given, in terms of these four,

by

A= ®RY2 ey /sy - sy (10)
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Ay = (1 =5 A/(1 = 55) = RY2 - 1)7(1 - 5p) . (1)

The field line for a particular choice of parameters is shown in Figure

1.

The curvature consists of a sum of delta functions:

rl(s) = -h18(s = 59) + By0(s = 55) + (Ag-A)8(s=1) . (12)

The integral containing the curvature in Eq. (8), the fast-ion

contribution to the stability integral is

Z
T
ro=s 2 gl (13)
-z £ 2

which can be evaluated to give

Fq(x), for r% < A <R

F(2) ) )

Fo(A), for 1< A<r3

where

Fi(A) = -4, L0-a/R)712 &+ (1-a/R) /2] (15)

and

-1/2 1/2
Fo(l) = Fy(A) + A,000-2/r8) T4 (-asrd) 71 (16)

Since F1 < 0, the fast-ion contribution is destabilizing if )\ is in the

range rg < A <R, corresponding to turning points Sp in the range
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S1 < St < S5. Such ions have been exposed only to the bad curvature at
S = Sq. For values of X in the range 1 < ) < r%, corresponding to
s < sy <1, an ion has seen the good curvature at s = s,; 1f its

turning point is only slightly beyond s,, its parallel velocity at

5= S5 is quite small, and its bounce-averaged curvature drift is large

and favorable,

The integral containing the curvature in the plasma contribution,
Eq. (7), is easily evaluated also; the limits %1 should be interpreted

as *(1-¢), so that the good curvature contribution at z = 1 is omitted,

as it was for the fast ions. Assuming that n (T, + Ti) has
 approximately theVSémé'Valué'ét'éi'and'sé; the result is
- 2
Sp = ’-Ine(Te + Ti)(-A1R + A21"2) . (17)

Since R = r2(0) > r2(sy) = r3 and A; > A, for field lines with r(s)

monotonically decreasing from s = 0 to s = 1, it is obvious that the

plasma contribution is destabilizing.

Although the field 1line shape considered here could only be
achieved exactly near the plasma edge, by the use of appropriately
shaped conducting surfaces, it could be achieved approximately

throughout the plasma in the limit of a long thin device.
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IV, PITCH-ANGLE DIFFUSION EQUATION

The drift kinetic equation for the fast-ion distribution function

is

of aA amg  v3 £ 9
—-B—E- + (V“b + Vd) o Vf - Tf— \) ——§ —b— —}:()\E ———)
Vg g 3 5 ) (18)
—.;E-sv[(v + v3)f]l = S8(v - vg)/vg

where b is a unit vector tangent to a field 1line, and V4 is the

guiding~-center drift velocity. The slowing-down rate due to electron

drag is
E
vy = (me/mf) z%/re . (19) i

where
!
|
y L
1/2 n_e Lnh

Ve, = 121 ° . (20) |
€ 3 mey3 :
e'e i

The "eritical velocity", given by

3Tr1/2me 1/3
Vo = (———) v ' : 21

c - e
Mml

where Ve = (2Te/me)1/2, is the velocity below which ion drag exceeds

T PR [ T e e e e e e e s v——— 1
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electron drag. The critical fast-ion energy is
E, = 14.8(mf/mH)(mH/mi)2/3 Tos» where my is the proton mass. The

pitch-angle scattering term in Eq. (18), whiech contains the

A-derivatives, becomes comparable to the drag term only for velocities

,smallenﬁthan,vawzw(mi/mf)1/3wvc (or. for distribution functions which.

are very localized functions of A). The corresponding fast-ion energy
is E] = 14.8(mf\/mH)1/3 To. We have assumed that no impurity ions are
present in the plasma, and neglected the fast-ion contribution to the
density. We are interested in a steady state, so the time derivative

will be set equal to zero.
Thé”fighﬁéhand sidé of Ed. (18) is théﬂééurce of éﬁe}éétiériéns'ét
veloeity vy, whose spatial and A-dependence is contained in the

function S. We shall solve Eq. (18) for v < vy, with the boundary

condition

SEA%)

f - , for v >vy . (22)

vs(vg + vg)

The boundary condition corresponding to having no particles in the loss

cone is

£f+0 , for A»>1/b (=1 . (23)
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Since the magnetic field is assumed to have axial symmetry, the
guiding~center drift is in the ignorable direction, and makes no

contribution to Eq. (18), which becomes

of

St 3
A A

S
) - (3 e vdel =0, (2w

where £ is distance along a field line., Since the appropriate limit
here is Vg << L/v, where L is the distance between the mirrors, the

bounce-averaged equation is used:

i V?é ) dLg of

dag, 1 23 3 3 (25)
+ ( f—é—)'v—z—a—;[(v +Vc)f]=0 ’

where f 1is independent of £ (to lowest order in vsv/L). We have

assumed that Te, and hence v is independent of %£. The assumption

feld

made earlier, that ne 1s independent of %, which implies that vy is

also independent of £, has also been used. The boundary condition for

v > v, is the bounce-averaged one:

da dg
SS9+

N, AP SR . . (

N
N
>

vs(vg + vz)
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In the following, the dimensionless

used. With the substitution

£ = G(u, )
vg(u3+1)

Eq. (25) becomes

my 1 P 3G
2(2) e T (DA 2T

Me y3w3 + 1) 22 u

where . . _

S,
t

L
(-
-

I, g
2 du

velocity u = v/vc will be

(27)

=0 |, (28)

(29)

(30)

and s, 1is the turning point, Ab(st) = 1.

fime-like variable T, defined by

my -3
T:g._]'.jz,n(_L_t_lJ__) .
3 e 1 + u53

The introduction of a

(31

where up = vo/vc, enables us to write Eq. (28) as

oG 1 9

3G, _
BT 00 1A gl =0

(32)
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This equation is to be solved for 7 > 0 (i,e. u < uo), with the
initial condition
s )

t T
G > J ds S/ (vg J SE), for 7+0 , (33)
0 3 0 £

and the boundary condition

G +0 for A+ 1 . (38)

For simplicity, we assume that the source is a delta funection in the

pitch-angle variable A,

S=C8(x =1y : (35)

with Ao independent of s. The constant C can be related to the rate of

fast-ion production, per unit volume:

(v - vp)
v
0

The initial condition, Eq. (33), is then

G » Q/2m68(x=2y), for T+0 , (36)

where
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St0
5o, ,
0 b

Q= — , (37
\)S Ig(}\o)

where St 0 is the turning point for X = Ao and I2()\) is defined by

Eq. (30).
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V. POWER DRAIN

The fast-ion contribution to the stability integral, Eq. (8), can

be written-in-terms. of G a8 o e

s. = w2 S an HOY FOU (38)
£ = 5 MV 1 : '

where F()) is defined in Eq. (13), where R is the mirror ratio, and
where
U b
] 0
HOAD = o8 ;0 83 a0 (39)
ug 0 (ud+1)

Combining Eqs. (17) and (38), the stability condition, Sp + Sp > 0, can

be written

R
mevl S A HOD FOO > Bng(T, + T;) (AR = Ayrd)

N} —

or, with ﬁ = H/Q ,

4n (T, + Ty) (AR - Aord)
e''e i 1 2'2 . (40)

N —

R -
f1 dx H(A) F())

B T U

T T T e

Rl 3 S I St
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The injection power density, integrated over a flux tube, is
2 ds &
meO f —5— l’lf .

The required power drain from a fusion reactor can be written in terms
of the plasma energy density multiplied by the ion-ion 90°-scattering
réte, which is approximately the rate at which plasma ions are
scattered into the loss cone. The effect of an electrostatic potential
is neglected here, for simplicity. We thus define the dimensionless

power drain as

3

where

1/2 3/2
1/t = (me/2mi) (Te/Ti) - (/1)

with the electron-ion collision time Te defined by Eq. (20). The power
drain needed to marginally satisfy the stability condition, Eq. (40),

is given by

2
(AR = Asr5)I,(A)
1 2127240 v (42)

P = % R
f1 dAH(AF(A)

where, using the definitions of Vg and Ty
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Vg 1y = @mg/m) V2 (my/me)23(T, /1372 (43)

Because of the factor,zg,,itwiswmost advantageous -to-inject- -light-

ions, whose fully stripped values of Ze are as small as possible.
Helium injection is therefore best, although lithium is almost as good.
(Since trapping in the magnetic field requires a change in the charge
state of the ion, hydrogen injection is ruled out.) We note that
although the factor (Ti/Te)3/2 tends to be unfavorable in mirror

devices, where Ti/Te may be larger than unity, the slowing down of the

fast ions heats mainly thé'elécfrbns, which tends to prevent Ti/Te from

being too large.

e AT it g & en o ————— e St oAt ———— . * e em+ " e +ee it et . < A e



-20-

VI. FAST-ION STABILIZATION NEGLECTING PITCH-ANGLE SCATTERING

If we consider velocities u > (mi/mf)1/3 in Eq. (28), the

pitch-angle scattering term 1is negligible and we have G = const,

_(independent of u), given by the initial condition, Eq. (36).  Assuming

Uy = vy/v, >> 1, Eq. (39) may be evaluated approximately to give

H = 271G, and Eq. (40) becomes

2
Une(Te + Tl)(A1R - A2T2)
Fig)

1

5 . (44)

mfv% Q>

Equation (44) requires that the fast ions contribute significantly

to the pressure, so that %—mfv% Q is comparable with ne(Te+Ti), and
that they see a bounce-averaged favorable curvature, so that F(iy) is

positive. (Recall that -A.R + A r3 is always negative.)
1 2'2

For example, wusing the parameters sq = 0.05, 55 = 0.2, R = 4,
r% = 2, we have -A4R + Azrg = -8.8. The function F()) for these
parameters is shown in Figure 2. By choosing AO = 1.8, we have

F(1g) = 3.5. Thus, Eq. (44) becomes

1

2
5 mevg Q > 10.1 ne(Te + Ti)

From the definition of Q, Eq. (37), and the fact that the steady-state

fast-ion density is given approximately by
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nf e f —i—s Y.lf/\)s = QI2(>\0)

one finds for this example (using 12(A0> = 1) that the steady-state

fast-ion energy density must exceed the plasma thermal energy density

Byrroughly a faéﬁof'dfré;ﬂif'Ehe”VaIUé7Xb = 1;9 weré ﬁsed ihéﬁééd"dfrrﬂirr

1.8, then F(Xy) = 7.7, and this factor need only be about 3.

The dimensionless power drain, Eq. (42), using the parameters

corresponding to Figure 2, with Ao = 1.8, is
/

P = O.22(mH/mi)1/2(mi/mf)z§(Ti/Te)3/2. With a-particles ;n a deuterium

plasma with T, /T; = 2, for example, we have P = 0,11, Hence, if direct

conversion of the energy lost by loss cone scattering were used, about

11% of it could be used for the ion injection. If the value A5 = 1.9

were used, this becomes 4,5%.
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VII. THE EFFECT OF PITCH-ANGLE SCATTERING

Pitch-angle scattering adversely affects the stabilization method
by spreading out the fast-ion distribution so that it includes values
of A for which F() is negative or zero. For example, in Figure 2,
F()A) is only significantly stabilizing in the range 1.5 < X < 2.0.
When the )\ value of an ion scatters to values greater than 2,0, the ion
sees only bad curvature; for A < 1.5, the averaged good and bad

curvature tend to cancel. For X < 1.0, of course, the ion has

scattered into the loss cone and makes no further contribution.

In order to minimize the effect of pitch-angle 'scattering, the
injection velocity Vg must exceed the velocity (mi/mf)1/3 Vo by - a

sufficient amount, which can be estimated as follows.

By solving Eq. (31) for u, assuming that u>> 1 and uy >> 1, we

have, approximately,

m -1/3
u = ug(1 + %'EE ugr)

The integral in Eq. (39) can also be written approximately as

m ©
1) = 2n fuf g AEEED (45)
. 1+2 Ewd 0
2 my

Only values of T < (my/me) u53 contribute significantly to the
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integral., For all such values, we want the spread in A, due to
pitch-angle diffusion, to be small, i.e. A < 0.25. From Eq. (32), we

have the rough estimate

moz @eol/? o | (46)

Thus, it is necessary that

-3 1/2 ~
[2(mi/mf) ug )i < 0.25

which leads to the condition on the injection velocity:

Vo > 3.2(mi/mf)1/3 Vo . a7

The required injection energy, Eo = %.mf v%, is therefore required

to exceed by a factor of ten the energy E; defined by

2
E = % mf[ (ml/mf\)1/3 Vc] = 1”’.8(mf/mH)1/3 Te 0 (48)

o
Where my is the proton mass., For example, at an electron temperature
of 50 kev, the required injection <energy for helium ions is

EO = 12 Mev., Since this conclusion is based on the rough approximation

given by Eq. (46), a more accurate calculation is needed.

et i a Tie | T
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VIII. SOLUTION OF THE PITCH-ANGLE DIFFUSION EQUATION

The rough considerations of the previous section have shown that
r < 0.03 is required to avoid the adverse effects of pitch-angle
scattering.  An approximate method for solving Eq. (32), for small

values of T, can therefore be applied. We first write the equation as

2
3G _ a0 38 pony &8, (49)
9T ERN BAZ
where
AN = -3 GI/I (5o>'
=T an 1 2 .
and
D(A) = AL4/I, | (51)

— T T

U

e e e e et 32t et e = e e e et e oo . e e et

and Il(x), I,()) are given by Eqs. (29) and (30).

We solve Eq. (49) by first finding a solution which satisfies the
initial condition, Eq. (36), and then adding a second solution to

satisfy the boundary condition, Eq. (34), The initial condition is

G + (Q/21)8(A=rg), for T > 0o, (52)

where Q is defined by Eq. (37).

S LR T T U S peppa



—25—

A solution of Eq. (49) is sought in the form

G,(A,7) = explo(r, D1 (53)

where ¢ is a solution of

2 2
L Y PP RA I YOO Y A L) e (54)
9T DA BAZ oA

By substituting
oA, 1) = —w(A)/T - % gt + y(A, 1), | (55)

where y(A,t) is assumed to have a power series,

(A1) = yoA) + y T + .., , (56)

we may equate terms of the same order in 1, for T » 0, on either side

of Eq. (54), Then it is easily shown that

A 2
1 da
WO = ol L, el (57)
BTAy p172¢y)
and
oW = = 1 AT (VI0T + K (58)

The integration constants, C and K, are chosen to satisfy the initial

e

e e
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condition, Eq. (52). Thus, with the approximation y(i,t) = vo(A), we

have

-1/2 AL (M) I5(2g) 174 w)

) = ,473/2, SN =
Gy(x, 1) = QAT ) ID(Ag) 7] X I (I,

where wy(1) is given by Eq. (57) with C = 0,

The boundary condition, Eq. (3%), can be satisfied by adding a
second solution G, which is equal to -Gq, as given by Eq. (59), but

With'WT replaced by

A
A 0 2
wy(n) = 10 0 A 2

IS —_— , (60)
Y1120 101200

which corresponds to a different choice of the integration constant in

Eq. (57). Thus, the approximate solution which satisfies both initial

and boundary conditions is

- 3/2 -
G(x,7) = Q/47")ID(Ag) 7] T 0T, 0 [exp(

wo(2) (61)

- exp(- 1.

Figure 3 shows this function for a few small values of t, for Ag = 1.8,

ug = 4,0, and the same magnetic field parameters as in Figure 1.

ey
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IX. NUMERICAL EVALUATION OF THE STABILITY CONDITION

The integrals in Egs. (38) and (39) have been carried out
numerically, -in. order to. evaluate the right-hand side of the stability
condition, Eq. (40), with the effect of pitch-angle scattering
included. The results can be expressed in terms of the.dimensionless
power drain, Eq. (42), needed to marginally satisfy the stability

condition.

The quantity PO, defined in terms of the power drain P, by

P = Po(mH/mi)V2 z‘;‘:(Ti/Te)y2 ) : {62)
is shown in Figure 4, as a function of vg/ vy, where

vy = (mi/mf)1/3 Vo s (63)

and v; is given by Eq. (21). The saﬁe field parameters as in Figure 1
were used, and the mass ratio was mf/mi = 2. Three different values of
the injection pitch-angle parameter Ao Wwere used, The asymptotic
values of Py, for vo/vé >> 1, agree well with the results obtained by
replacing G by its initial condition, as described in Section 6. These
results were as follows: for XO = 1.8, Pp = 0,115 for g = 1.9,
Py = 0,045, For Ay = 2.0, with the value F()\y) = 40.0, which is used
in the numerical evaluation procedure, the analytical expression,

Eq. (44), gives Py = 0.005,
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Figure 4 shows that the value Vg/vg = 5 is adequate, to reduce
the power drain to a value comparable with its VO/VE >> 1 asymptotic
value. The rough considerations of Section 7 had predicted that
Vo/vg = 3.2 would be needed, for Ag = 1.8. . The. required .injection

energy is
- - 2 P
EO = (Vo/vc ) EC

where EZJ is given by Eq. (48). For helium injection, for example,
ES = 23.57,. At T, = 50 Kev, for example, E7 = 1.17 Mev. Then
Vo/vg = 5 requires an injection energy Eg = 29 Mev, Such energies may
be within the range of ion accelerators presently under consideration

for tokamak heating.
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FIGURE CAPTIONS

1. Magnetic' field line shape, for the model used in this paper,

Eq. (9) where the parameters have been chosen to be sq = 0,05,

Sp = 0.2, Ay = 3.9, and A, = 3.4, The mirror ratio is R = U,

The bounce-averaged curvature factor F()), defined by Eq. (13),

for the same field parameters used in Figure 1,

Tne fast-ion distribution function G(u,)\), defined by Eq. (61),
as a function of A, for XO = 1.8 and the same field parameters as
in Figures 1 and 2. The value of Up used is 4,0, and five
different values of the dimensionless velocity u were used: (a)

u= 3.8, (b) u=3.6, (¢) u=29, (d u = 2.5, and (e) u = 2.1.

Power drain P,, defined by EqJA162)4__as__a._£unction~_o£L-v0#vg

[where v, is defined by Eq. (63)], for three different values of
Ap(1.8, 1.9, and 2.0), and for me/m; = 2, and the same field

parameters as in Figures 1 and 2.
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