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Abstract

A nonlinéa,r bounce a\}eraged drift kinetic equation for trapped electrons is de-
rived. This equation enables one to compute the nonlinear response of the trapped elec-
tron distribution function in terms of the field-line projection of a potential fluctuation
(€794, )s. It is useful for both analytical and computational studies of the nonlinear

evolution of short wavelength (n > 1) trapped electron mode-driven turbulence.

I. Introduction

| Trapped electron modes have long been considered to be an important cause
of transport in a magnefically confined tokamak plasma.!~® The mode is destablized by
electrons which are trapped in a local magnetic well and execute fast bounce motion.
Typically, the trapped electron’s bounce motion is the fastest relevent time scale (7, =
wy 1), and is much faster than the mode oscillations or dynamical interactions(r = w™?! or
Aw~1) ie: wp > w or Aw, where wy is the frequency of the trapped electron’s bounce
motion, w is the frequency of the mode oscillation, and Aw is the decorrelation rate
characteristic of dynamical interactions in the presence of turbulence. Due to this fast

bounce motion, the trapped electron response is significant in magnitude, and basically

hydrodynamic. Particularly, in the collisionless regime, the electrons can no longer be

1 Present address: Department of Physics B-019, UCSD, La Jolla, CA 92093
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treated as laminar, so that nonlinear electron dynamics must be considered in the study of
the nonlinear evolution of trapped electron mode driven turbulence.? In order to facilitate
the analysis of the nonlinear evolution of trapped electron mode driven turbulence, we
here derive a nonlinear bounce averaged drift kinetic equation for trapped electrons. The
derivation is based on the nonlinear drift kinetic equation of Frieman and Chen,® and
is carried out by utilizing a multiple scale technique,® which is essentially a power series
expension of the solution to the nonlinear drift kinetic equation in the small parameter §
(=75/7). To zeroth order, the solution simply states that the trapped electrons bounce
along the magnetic field lines on the fastest time scale (1;). To next order, we project
the equation along the magnetic field line, and then proceed with the bounce averaging
procedure to eliminate the fast variation due to the bounce motion. In this manner, we can
obtain the desired nonlinear bounce averaged drift kinetic equation in terms of the field-
line projected potential fields (e~*"%%$,)p. In the calculation, the mode is not presumed to
be fully aligned with the field line, i.e. (e7*"%%¢,)s can not be replaced by ¢,. As a matter
of fact, the modes of interest are localized on the mode rational surface, while the trapped
electrons bounce along the field lines. This difference have been shown to have important
impact on both linear! and nonlinear properties of the trapped electron mode, and the
associated turbulence. The derivation is straightforward but tedious, on account of the
fact that a partial integration inside a bounce average (e‘i“qo%A)b ~ ing(e”"19A), is
required. This relation cannot be directly obtained from an ordinary partial integration
rule, since the function 9—%‘9—4 does not exist at the ends of the banana orbit. However,
a lemma, is proposed, proved and utilized to surmount this technical difficulty in the case
of high mode number n > 1. The application of this equation to the study of nonlinear

trapped electron dynamics in drift wave turbulence will be discussed in a future publication.

The next section contains the theoretical formulation and derivation of the nonlinear
bounce kinetic equation. A lemma concerning partial integration in a bounce average is
rigorously proved. It shows that the equation obtained is only approprate to describe the
nonlinear evolution of a short wavelength mode, i.e. n>> 1. Discussions and conclusions

are then presented.



II Derivation of Nonlinear Bounce Kinetic Equation

In this section, starting from the nonlinear drift kinetic equation of Frieman and Chen,
we derive a nonlinear bounce averaged drift kinetic equation for trapped electrons. We
work in a toroidal geometry with circular, concentric magnetic surfaces. We adopt the
usual (r, 6, €) coordinates corresponding, respectively, to the minor radius, poloidal angle,
and toroidal angle. In this coordinates system, the equilibrium magnetic field can be writen
as B = B(&: + £&y), where € = 7 is the inverse aspect ratio, B = By(1 — ecos 9) is the
magnitude of the magnetic field, q is the safety factor, and €, € are the unit vectors in the
poloidal and toroidal directions, with &, being the unit vector in the radial direction. To
the lowest order, the equilibrium distribution function is assumed to be a local Maxwellian

with density N and temperature T,
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where m, is electron mass, and v is its velocity.

In the electrostatic approximation, the nonlinear drift kinetic equation is

9 | = Vi ‘Npe e e ., 0 ~ :
(7 FUIVI+Tte - VL +vers)h® + N(h® ¢) = =7 Fe( 57 + De)® (2)
and 9 5 |
- 1
Vi= 3 +69r 39
—(5@' +qa—£)
Ve = —(—1—( in €, + cos 6€p)
e ROIQ | r
. _ T 1[+ (_2___3.)1_8_
We = B Ly e 27 56
N(he,¢) = —6" X VqS . Vhe
e a €
= S 2o 2y - 2o n
where, v? = f y e = Bl 171 = 4l oy, = ve(%)? is the effective collision

frequency, v, is the electron ion collisional deflection frequency for a thermal electron, and

3



he is the nonadiabatic part of the perturbed electron distribution function

fé = %Fegb + he (3)

Since there is no toroidal coupling, we can choose a fourier representation in ¢ for both ¢

and h®,

Re(r,6,6) = ) hi(r,6)e (4a)
¢(r,6,€) = Z Palr, G)e—inf (4b)
The fourier transform of equation (2) is
9_ ﬂ g 1 =T e e — __i _@__ ~
[at + qRo(89 —1nq) + Uge - VL + Vegslhy + Nn(h®, ¢) = T, I*"e((%L + @e)bn.  (5)
with
s 0, V10, 19, 0.
Na(h®,6) = 5 mg;:n[( 50 )(= gahns) = (S 358m ) (5 k)] (6)

The ordering of each term in the above equation is as follows. Starting from the first term
on the left hand side of Eq.(5), each term is proportional to w, wy, Wae, Vesf, Aw, w, and
w?, respectively. For trapped electrons and physically reasonable turbulence levels, wy is
the biggest. The remaining parameter may be ordered in different ways. For collisionless
trapped electron modes, we have w > wge > vefy, for collisional trapped electron modes,
we have either w > vefr > wge (dynamic) or vesr > w > wq. (dissipative). Here the
nonlinear term must be treated on equal footing with the linear term in order to include
the strong turbulence case. Generally, the nonlinear term is proportional to Aw, where
Aw is the turbulence decorrelation rate. Typically, Aw < w¥ is the case.

We simplify this equation by applying a multiple-time-scale expansion method, i.e.,

we expand the solution of Eq.(5) in a power series of a small parameter § = 2(< 1)

he(r,8,T) = kO (r,8,T) + BV (r, 8, T)6 + heP(r, 0, T)6% + - .- (7)
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where T = (t, 6t,62t,- -) represents the (multiple) time scale, and in practice, h¢(r,8,T)
will be approximated by hf,(o)(r, 6,T). Substituting Eq.(7) into Eq.(5), to the lowest order
we have:

0 . e
(g5 — ing)hsO(r,6) = 0 ®
The solution of this equation is
 hEO(r, 0) = RE(r)eime® - (9)

Equation (9) indicates that to the lowest order, the trapped electrons follow to the magnefic
field line (¢'™9%) on the fast time scale, and the coefficient of this response Ag(r) evolves
on a slow time scale.

The study of the evolution of A%(r) on the slow time scale is of the most practical
interest and therefore is the main subject of this paper. This evolution can be obtained by

eliminating the fast bounce motion (bounce average). Proceeding to the next higher order

in Eq.(5), i.e.
(2 Gae Fs g (R eime®y 4 LD iﬁq)he<l> + N (he©®, ¢)
It e, | eff\l'n qRo 080 n (AU
e o . '
= —EFe('ét- + Qe )Pn . ' (10)

Multiplying this equation on both sides by =%, proceeding with the bounce average,

and using the condition that heW is 5 single-value function of 4, we obtain

a 1 - = ie in. —in €
(2 4 g B+ (€05 - Fu (™), + (e N, (05O, 8
0 —in —ingl A V '
= E( S gy 4 {0, 4)) (11)

Here the bounce average is defined as

o, [ db

Kl Kl

(A)p = (12)

Before we make any further simpliﬁéation of this equation, we must prove a useful lemma
concerning partial integrations within a bounce average.
Lemma: If a function A(r, ) is well behaved (nonsingular) at both ends of a banana

orbit, then, for sufficiently large mode number n > 1, we have
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(a7 5 Ay ~ ing(e "I A), (13)
Proof: . =f ﬁe-inqo_a_A
)| 00
8o _
o [ o D
0 —in 8 —in
=2 _° doﬁ(elvnlqe A-2[" deAaae(elv"lqa)

Here 6y is the poloidal angle at which v}, vanishes. The ﬁrst 1ntegra1 on the right hand side
of the above equation does not exist since the function £ I I 7 4 is singular at both 6, and
—0y. Nevertheless, we can consider the limit:

e—ingd e—ingf 6y 8 e—ingb
I'=2 lim [( )0‘ ( Ivlll )—0' —fo dgA% Ivlll )] (14)

o- =6, |Vl

Where 6y is defined by 65 = 6y — € and € > 0. 6] approaches 6 as € approaches 0 from
above. The strategy here is to separate the divergent part from the last term in the above
equation, so that exact cancellation with the first two terms can occur. At this stage, an
explicit expression for |vj| in terms of 8 is desirable. We define a pitch angle variable »
such that &2 = [Lv? — uBo(1 — €)]/2eBo, where p is the magnetic moment. For marginally
trapped particles & & 1, while for deeply trapped particles x <« 1. Since both‘ v? and p
are the constants of motion for trapped particles, « is also a constant of motion. In terms

of k, we have |vj| = 2¢/pBoe(x? — sin? Q)Jz‘, where 6 is defined by « = sin %Q. Now

0y —ingé
ch—a—(e o)

- I

(',' e—ingf

= dfA (——inq an 111 |v||]) (15)
~o7 vy
with
L. _1 sin 8
06 = 4/s:2—sin2%

Let’s divide the integration range (—6; , 8y ) into three subranges: I, (—6;", —6; +n); II,
(=85 +n,6; —n); 111, (65 —n, 6y ), where n is determined by

Ing| = I—ln loplloz —y (16)
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In the subranges I and III, we have
0
Ing| <z 1n vl

~In the subrange II, we have

0
Ing| > I—--hf1 oy ]

Since |ng| = |m| > 1, we expect n < 1. By solving Eq. (16), we obtain n ~ ﬁ, which

relates boundary layer size to the mode number of the fluctuations. Eq. (15) then becomes

oy —ing 0  _—ingd
dGAa(e y=—ing | dBAS
oy —07 en
/ T /; -t 64 2 o]
- +/ nlv : 17
AR PR P T oo

The last two terms on the right hand side of Eq. (17) diverge in the limit of 6, — 6, and

can be determined to be

b0 deAe_in 9 5 9, e—ingd . (Ae—inqe)e_ i
/-_ s ol 26 B lonl = —(A=mm)e + V2nd ememems (18)
mw ol u
—0°-+5r,1;;r ) -i.nqa bl —m é A —znqe) o
dIAT— ZIn v —/2n 19
/:'90_ |oy] 28 l Ih=(4 vy )— Ingl v/ 11 Byesin Gy (19)

Substituting Egs. (17), (18), (19) into Eq. (14), we finally obtain

8o Ae—ingt

I=ing [ db
—60 v |
80— 3ret —ingf
+/ Al dG—Ae 9 In vy |
—botgty ol 08

(Ae—inqa)eo _ (Ae—inqe)_ea_
+4/2|nqg| ~iBcent, | (20)

The above equation clearly indicates that for sufficiently large mode number n, the last

two terms are negligible, so that

do 5] dé
e " — A~ ing f —— Ae~ind? 21
jg fonl© o6 oy | (21)
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which in turn leads to relation (13). The accuracy of making this approximation is deter-
mined by ﬁ. Hence, the approximation is accurate only for high mode number modes.
Below, this lemma will serve to simplify those bounce averages in Eq.(11).

(a) First, let’s examine the last term in Eq.(11). By direct application of relation (13), we

have

( —ingd ~ e¢n> — (e—inq9¢n)b (22)

with \
T __ % 2__ _ §
we _we[1+r’e(vg 2)]
«_ng cTe
We = r eByL,

(b) For the second term in Eq. (11), it follows that

-3 'm, 1 i 3 1
(€905, - V1 (Reei™10)), = %m((vﬁ + %)(cos 6 + 30sin b)), (23)

After a lengthy but straightforward calculation, the bounce average on the right hand side
of the Eq. (23) is found to be

2
(v} + %)(cos 8 + 365in6))s

=S {3ueBolt — * + (26" ~ 1) I‘fi";
+19§yeBos[(n2 —1)(36% — 2) + (4% — 2) fi(('“))]
+v (21112,((3 1)+ 40%3[(k* — 1) + E((N))]} (24)

where K (x) and E(«) are the complete elliptical functions of the first and second kind, i.e.

! dt
K(”)—'—/ N T2
E(x) = / VIt

Vi—82

In cases of practical interest , however, the complicated, albeit complete expression above

is not needed, since stability of the trapped electron mode is determined primarily by
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deeply trapped electrons. Therefore, a simplified expression can be obtained for k < 1,

ie. 2 2
((vﬁ + —él'-)(cos 6 + 36sin b))y ~ 5 (25)
and
02
(e"”‘qe" V_L(he znq@))b ~ sz—he (26)
with | '
_ng cT.
WR = r eBoRo

..(¢) For the nonlinear term, we have
( —inq'aN (he(o) ¢)>
3

c in —in 15} 1 —in 9
=5 2 AT b, - e g e,

ny+nr=n

_inggdlng .\ _ini09 O Te
d7' (9 qe ¢n1)bhn2}
n2q a —m e 19, —in a e
_2_ ; { : 37‘ 1q0¢n1)bhn2— _71,—(6 1q0¢n1) E;h
n1 nNa=n -
n2g dlnq —iniqb e |
m——— Fmi)ohn,} (27)

Since the fluctuation scale length is much shorter than the equilibrium scale length, the

last term in the above equation, which is proportional to %ﬁ-, can be neglected. Therefore

(e—ianN (he(O) ¢))
n 0 —z|n1 e n —m1 0 5 e
= > ATl ik, — T e g0, )55 R, (28)
n1+n2=n

Substituting the results from (a), (b), (¢) into Eq. (11), we finally obtain the desired

nonlinear bounce averaged drift kinetic equation for trapped electrons:

9 ; Te _ ¢ 0 - TN/ ~ingf
(57 + Wwde + vess)hn = = gFe(at +iw, ){e™ ™ dn)s
— nzq 0 —m1q9 e _ M9, —iniq 0+, '
Z m—iZn;_ e T 5’7' bna)bhn, r (e ¢n1>b8rh"2} (29)



This equation describes the nonlinear evolution of the perturbed distribution function
of trapped electrons on the slow time scale of mode variation. It shows that this nonlinear
evolution is completely determined by the knowledge of a single quantity (e ™"?%¢,)s, and
that the result is not sensitive to detailed imformation about ¢,. This simple form of the
nonlinear bounce kinetic equation renders an analytical study of the trapped electron’s
nonlinear dynamics tractable. Also, it is potentially useful for computer simulation study
of the nonlinear evolution of trapped electron mode turbulence. In the derivation, the fact
that the bounce motion of the trapped electrons and the mode variation are on different
time scales have been utilized. This enables us to separate the slow oscillations of the
mode and dynamical interactions from the fast bounce motion, and eliminate the latter

by a bounce average.

The linear part of the equation is the same as that used by Catto and Tsang in Ref.(1).
In that reference, the authors have shown that the response to the bounce averaged field
({e7"1%¢,,)) introduces several effects in the linear stability theory of the trapped electron
mode. First, it introduces linear couplings among modes with different m but same n.
However, this coupling effect does not qualitatively effect the growth rate. The more sub-
tle effect introduced by the bounce average is the radial localization of trapped electron’s
responce to a narrow region of width k_}E around mode rational surface. For a slab-like
mode, this results in a strong reduction in the linear growth rate by a factor of \/%
Nonlinearly, one can see from Eq. (29) that this radial localization effect demonstrates
that the nonlinear interaction of trapped electrons weak, since the radial localization effect
not only reduces the overlap of different modes but also spatially restricts the nonlinear
interaction to a very narrow region around mode rational surface. A comprehensive dis-
cussion of trapped electron dynamics and its impact on trapped electron mode turbulence
will be presented in a future publication.

We note that a related equation has been previously’ used in their study of the two-
point theory of trapped particle mode turbulence. However, the equation obtained in
this paper is much more general than the previous equation in that it can be used in
any mode representation rather than just in ballooning representation. Thus, previous

result is a special case of that presented here. Also, in this work we have shown that the
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equation is appropriate only for description of the nonlinear evolution of a high n mode,
i.e. accurate only to an order of o(JLn—q). Finally, we want to point it out that as long as
finite ion larmor radius effects are not important, Eq. (29) can also be used to describe
the nonlinear dynamics of trapped ions as well.

In conclusion, we have derived a simple, tractable nonlinear bounce averaged drift
kinetic equation for trapped electrons valid in the limit of large mode number n > 1. The
equation, with its physical content and simplicity, is quiet suitable for the study of the
nonlinear evolution of trapped elecfron mode turbulence analytically or through computer
simulation.
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