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. Abstract

In a cylindrical plasma, tearmg modes can be calculated by asyrnptotlc matching of 1deal
- mhd solutions across a critical layer. This requires a quantity A’ which represents the ‘discon-
tinuity’ in the ideal solution across the layer. In a torus, poloidal harmonics are coupled and
there are many critical surfaces for each toroidal mode number, and correspondingly many
~discontinuities A/ ..The ideal mhd solutions do not determine the A/, but only a relation
between them-described by an “E-matrix”. We discuss the calcula,tvion-of the E-matrix for
a large aspect-ratio tokamak. In a weak-coupling approximation it is tri-diagonal and can be
computed from integrals over the uncoupled eigenfunctions or from simple “basis-functions”
compmsmg triplets of coupled poloidal harmonics. This weak coupling approximation fails .
if Al is already small for an uncoupled harmomc An alternative strong-coupling approxi-
' rnatlon is developed for this case.



Intro duction »

In the cylindrical limit of a circular cross section tokamdk, linear pertﬁrbations can be
described by independent fourier harmonics with poloidal and toroidal mode numbers m
and n. Then if ¢(r) is the ‘safety factor’, a singularity of the ideal magneto-hydrodynamic
(mhd) equations o_ccﬁrs at ng(rq) = m, where the perturbation is resonant with the field line ‘
rotation. There may then be instabilities in which non-ideal effects (such as resistivity).are
“important only in a critical layer (*) around ro; elsewhere the perturbation is still described
‘by ideal mhd. Thesevi'nstabilitlies can be calculated by asymptotic matching of a solution
of the full equations in the critical layer to solutions of the marginal ideal mhd equations
elsewhere. The mhd solutions satisfy the boundary conditions at ‘the magnetic axis r = 0
and at the plasma boundary r = a. . |

The marginal ideal mhd solutions can be represented near r = rg as
- Yrr=Arr(l2 " +ALr |z [*) ' B @)

where 1 is the perturbed radial magnetic ﬁe.ld z =r —ro and L,R refer to left and right
of the cntxcal layer. The indices v relate to the ‘large’ and ‘small’ solutlons in the sense of

,Newcomb (@ and
u'i=1/2i(_1/4+p)1/2’ . o B ‘ | @

" The Mercier @) stability criterion isA'(D 4+ 1/4) > 0. At zero pressure vy =1,v. = 0 and
Apr R are then related to the logarlthmlc derivative of ¢ as | z |— 0. | '
The solutions inside a symmetric critical layer have even (teanng) or odd (thstmg) parity

and asymptotlcally can be wrltten
o=l X - HAR@) X P @3

(where X is a ‘stretched’ coordinate /6 with § the layer width). The quanfities A% (w)
~ depend on the details of the plasma, model used in the la.yer Matching eq.(3) to eq.(1)
| ylelds ) ' ' |
‘ - §vsv- " - | . -
At (w)A™ (W) — 5 (Ar+AL)(A (W) +A™(W) + 624~ )ApAL =0 (4)
If we suppose that A*(w) and A~(w) do not vanish simultaneously (as a function of w)
then there are two distinct solutions to eq.(4) as § — 0. In one of these AT (w) << At(w) .

- and the eigenvalue is determined by

A)=6+ma | B R | (3'



s

- with A’ = (Ap+ AL)/Z This is the ‘tearing mode’. In the other solution A*(w) << A~ (w)

and
A*(w) = 647 A, t - )

This is the“‘twisting mode”. Note that A’ embodies all the information needed‘ from the
ideal mhd solution. Henceforth we will refer to A’ simply as the ‘dlscontlnulty in the mhd
solution and if A’ = 0 we will refer to the solution as “continuous”. |

In an ax1symmetrlc,torus the individual poloidal harmonics m are coupled together,
although toroidal harmonics n remain independent. Consequently, for each toroidal mode
" number n there can be many critical surfacesl'(whereve,r ng(r) = integer). Except in the
vicinity of these critical surfaces the pert.urba,tion is still given by ideal mhd equations. Our
objective is to describe a quantity which summarises all the information required from the
. ideal mhd equations in a torus, in the same way that A’ summarises all thev‘.informatio'n,
necessary in a cylinder. - » '

_In the present paper we consider only the toroidal tearing mode. This will be seen to
. be a natural extension of the cylinder tea.rlng mode. In part IT we will examine the toro1da.1
- twisting mode Unlike the tearing mode, this is an lntrmsxcally tor01da1 perturbatmn, not
directly related to the cylinder twisting mode B _

The toroidal tearing mode problem was ﬁrst addressed by Grimm et al (5) who constructed'
a 2-D computer code to calculate the ‘outer region’ solutions. In a later paper Connor et
al ® described the mhd solutions by a set of M poloidal harmonics; . Then if there are N
~ resonant surfaces among these harmonics, a set of (M + N) basis-functions (éolntioné of the
| marginal mhd equation ea‘eh consisting of M harmonics) was introduced. These consist of
M solutions regular at r = 0 and continuous (ie no change in large or -sma_tl_l'solntion) across
the critical surfaees and N solutions constructed by starting with (only) the small solution
at each critical surface and continued outwards (contmuously) to r = d. ,

The full solution is then written as a linear combination of these (M+N) basis functlons
- with M coefficients c; and N coefficients of. By construction this satisfies the boundary
conditi_on at 7 = 0. The requirement that it also satisfy the boundary condition at r = a
yields M conditions through which the M coefficients a; can be expressed in terms of the
N coeficients . ‘The introduction of N quantities A, describing the discontinuity in the
small component (relative to the large component) at each resonant surface then leads to a

- solubility condition which can be written

|E~A|=0 | | - M



where the E-matrix is calculated entirely from the values of the basis functions at the critical
surfaces and at r = a (ie from ideal mhd) and A = diagonal{A, }. The dispersion equation
for the toroidal tearing mode frequency follows by writing A, = Az (w). Clearly the E-
matrix is a quantity, corresponding to A’ in the cylinder, that summarises all the information
needed from the ideal mhd solution in order to determine an eigenvalue of the full problem.
(Strictly, the matrix E described here is the inverse of that in ref. 6.)

In the rest of this paper we discuss the calculation of the E.'-m‘atrix'f_or a,'la,rge aspect-
ratio tokamak. We first find, in section 3, that a systematic treatment in powers of ¢ leads
to somewhat diﬂ"ereut basis-functions to those of ref. 6. These consist only of triplets of
harmonics irrespective of how many resonant surfaces there mey be. Each triplet consists
of -a central harmonic with a discontinuity in its small solution at its resonant surface plus
small sidebands which are continuous at their resonant surfaces. Furthermore, unlike the
basis functions of ref. 6, each triplet individually satisfies the boundary conditions at both
r=0andr = a. With these basis functions the matrix E has a simple trl-dragonal form.
This development is formally a weak-coupling theory with couphng parameter ¢/ A% (where
-AY, is the discontinuity in the m** harmonic in the absence of couphng).

- “Strong coupling” occurs, even when e << 1, if one or more of the AD are srrrall; this
situation is.discussed in section 4. There we find that the most convenient description is in
terms of overlap integrals between single harmonics ra‘.ther' than in terms of basis functions.
- This development also leads to a tri-diagonal E-matrix. An alternative description of the
strong coupling situation, using 'ba;sis functions, is also discussed in section 4. In this case
- the basis functions are multiplets of coupled harmonics (not generally Just tnplets) and they
do not lead to a tri-diagonal E- matrlx . _
Finally, in section 5 we ‘mention some consequences of the E-matrix for the tormdal »

“tearing mode frequency and structure A fuller dlscussron of this will be glven elsewhere.

1 _Ma_rgin:il Ideal MHD Equations

The margmal 1deal mhd equatlons were derrved in appendix B of ref. 6 and are summarlzed
here. The coordinate system (r,0,¢) (where ¢ is the toroidal angle, 0 is an angle-like poloidal -
coordinate and r is a flix-surface label)'is chosen so that the magnetic field lines are straight i
and the Jacobian is J = R?r / Rg The axisymetric ﬁeld can-be ertten

B BRI x Vo)V .

- and the safety factor is ¢ = rg(r)/Rbf(r).



The linearized marginal mhd equations for a perturbation with toroidal mode number n

can be expressed in the form

g[(m —nQ)ym] = D _[BE 2 + CEyi] ’ - (9)
, dz. o o S :
(m —ng) 5" = YlDha + Bfus] - (10)

% : :

where y = Rof& - Vr is effectively the radial com'p.onent of the displacemént § and 2z =
R%*B - VqS/ B, is effectively the perturbed toroidal magnetlc field.

2  Weak- couphng Theory

~ In a large aspect ratio tokamak with circular cross section and B~ 62,. the coefficients B,
etc are ~ elk—m| and, in particular, the coupling between neighbouring harn.ru.)nicsv- m,m=E1,.
" is ~ ¢ In order to develop a systematic expansion correct vto O(€?) it is necessary to retain
diagénal coeficients to order ¢? and off-diagonal coefficients to order e. The coefficients which.
remain ‘can then all be expressed in terms of the Sha,_fra,nov; shift, the pressure pafam‘eter :
—(2Ro¢? /Bg)dp/ dr and the shear parameter s = rd(log ¢)/dr. Finally we then have as

our basic equations corréct to 0(e?):
rol(m = nq)ym] = L7ym + > (L0 sy + MIE sy o (11)
r _ ™ . _ . -

A

F(m — ng) =2 5

= Pmym + Z (Nmilzm:i: + P ymil) , - ’ (12) o

where we have also introduced Zm = Zpm + (M;‘/Lﬁ) Y. The coefficients L ,M,N,P are ‘
given in appendix B of this paper. - N
If all coupling between different harmonics is ignored, egs. (11) and (12) reduce to
d1d, - -
and if we also retained only the zero order (in ¢) parts of P and L7: this would be the usual

cylinder equation -

L0y, = (m mq)[ E(m —Nq)Ym — T(m -—nq) ) — mqo‘ ym] =0 o (14)
- with | |
. 1d,r? : ' ' ‘
o=j)/B= ?E:( . =) _ : | (15).

Now, eq.(14) has Mercier 1ndiqes vy =1,v_ =0 but the correct indices are

4



. ‘ : 27'pl ' :
ve=1/2£(1/4+ D)"?, D= 3233(1 ) (16)

Consequently, eq.(14) cannot be used as the zéro order starting point for a development in
powers of €. To avoid singularities in higher order we must include the most singular part of
P (which controls the indices v+) in the lowest order equation, even though it is formally
small in ¢ Then the lowest order equation becomes

2rp
Bt

which has the correct Merc1er 1ndlces

Oy =120 — 221 _ )y o (17)

As the startmg point for our development in powers of ¢ we take a particular solution
©(r) of eq. (17) which satisfies the boundary condltlons at r =0 and 7 = a and has a

dlscontmmty AO in'its small solution across the smgulanty at nq(r) = m. Then, returning

to egs. (11,12), one can see that %9 induces sidebands m=1 Wthh are given by

: Zi?l&ﬁmil = N 5;12()+Pm yQ
-+ (m_ﬂ:r—nq)g[@zﬂ) (L’"ﬂz<°>+Mm on W)
where 50 = (Im)"E{(m —ngp®]

- As the' first order contribution we take solutions’ ymil of eq. (18) which. satlsfy the boundary
: COl'ld]thIlS at 7 = 0 and r = a and which are continuous (in the sense described in the-
1ntroduct10n) across the singularities at ng=mzkl

We also require the O( 3 contnbutwn t0 Y, This is given by

~(0) (3) m m(0)/ 7l (m=ng) d Lﬂ(z) d o .

+(m ~ng) (L) ez s 5:;1 + Mmﬂyﬁiﬂ)l

-|___Z(Nmil (1) L+ Pm:!:ly?(n) 1) - : . (19)

and we again take the continuous solution satisfying both boundary conditions.

Thus we have constructed a particular solution to the mhd equations consmtmg of a
trxplet of harmonics (y,(n>_1, (yL0) 4 42 )),ym 41) all of which satlsfy both bounda.ry condltlons
The central harmonic has a dlscontmulty in its small component at its singular surface and
is correct to order ¢?. The sidebands are continuous at their singular surfaces and correct,
to order e. (It is important that this triplet satisfies both boundary conditions. If, like the
~ basis functions of ref. 6, it satisfied only that at » = 0 then instead of yg)ﬂ being O(e) it

~ would be O(me) and the theory could not accommodate large m)



The triplet described above may be computed by integrating the coupled equations for
th'ree.adja,cent coupled harmonics (ignoring coupling to all other harmonics) from r = 0 to
r = a. A discontinuity AD in the central harmonic at its critical surface, and the three initial
boundary conditions at r = 0, are iterated until all three harmonics satisfy the boundary “
conditions at r = a. A computer code for constructmg triplets in this way has been wr1tten
and will be reported on elsewhere.

Note that a triplet does not itself describe a general tearing mode; this reqﬁires a solution
with a discontinuity A, in every harmonic. Nevertheless a set of these triplets forms a basis

for constructing a general tearing mode.

3 The E-matrix

A general tearing mode can be constructed from a superposition of the tripleté defined in -

the preceding section. As we will need to identify both harmonic and tnplet we now write

 the tnplet as

Y = {ym m—l’ygr?) +y7(:7)n?y7(71.,)m+1} . - ' . S - ’ (20)
(the first subscripf 'identiﬁes the triplet, the seco_nd the Har_monic); In the superposition

Y=Tedn S ey

three triplets contnbute to any harmomc m and the discontinuity Am in 1ts small component

- at the smgula,r surface (nq(rm) =m) is given by

A, [am O +an (C,(,?)m +C@.) + am+105:11 m] =A%, 0O, (22)

where the Cjn are the coefﬁcxents of the large component of the corresponding y; » at the

resonance T ThlS recurrence relatlon leads to a solubility condltlon

- where A = dlagonal{Am} and F is tndlagonal Bearmg in mind that F is calculated only

as an expansion in €, eq.(23) can equally be written
|E-Al=0 D - | (24) -

where E is also tri-diagonal. The elements of E are given by

oo _o \ _ - . |
— 0 m,m m,m . .
.Emm =4, (‘W : : B (25)



A?n Cfr}:)!:l,m
¢

m,m

Em,m:lzl.. == (26)

"These elements ca,nlbé expr‘essed entirely in terms of the zero order function YO, If eq.(18)

is multiplied By y,(,?)il and the left hand side integrated by parts, one obtains an expression

.. for C"r(ng:l,m ) .
-Cm:i:l,m — I (27)
c Adt1
where I is a bi-linear integral of %(7?3:1 and y© (of order €) defined in appendix B. A similar

prodecure applied to eq.(19) allows one to express C3 in terms of integrals of y{) and y,(,‘?)ﬂ,

Another derivation of the E-matrix is given in appendix A.

4 Strong—couplihg Theory

The expressions for C) and C® in the preceding section highlight the fa.ct' that the coupling
parameter is really ¢/AJ. Consequently, even when e << 1, the coupling becomes largé if
A, is small. A different treatment is then required.

We write thé_ ﬁhderlying_equa,tions in the form
Lt = 3 K . o N )

where £ and K are defined through éqé.(li) and (12) and 9, = (m —nq)ym is the m®
harmonic of the perturbed_radiai magnefic field. We again start with the uncoupled function
0, satisfying L%, = 0 and the boundary conditions with a aisco.ntinuity A% in its small
| component at its singularity.: We then introduce a set of radial harmonics of ‘tl’-le uncoupled

equation, such that

(LR dwn =0 | | (29)
and 1/)5‘ has ‘the s_ame discontinuity A%, and satisfies the same boundary conditions as 2.
‘Assuming that the 2, (which are orthogonal in p) form a complete set we can expand Y,

in them and obtain

L UR<YR | KPE > o | |
Y= 2 ROy ' -G

~ where Ap =0, —-A, CP is a coefficient of the large component of ¥?, at its singularity -

and _ , , .
. e <(¢p )2> . | - . . . .
/\p =0 S Tm 7 : . )



Now |K™#!| is a small quantity, of order ¢, while the A2 (p # 0) are of order unity.
Consequently for each m we need only retain the p = 0 term in eq.(30) (unless A, were also

of order unity, but then ,, is itself negligible). Then we have, in the lowest approximation, -

o = a0, o | - o | | (32)
Inserting this iu eq.(30) again yields a three term recurrence relation |

on(Bn=80) = Sl . SN

and a solubility condition

|E=A[=0 S S (34)
with | |

&m@="mﬂ=<¢|K“H¢wi o o - (35)

B = 5, |

Thus, the E-matrix for strong coupling is again tri- diaéoual é.nd similar to that in weak-
v coupling theory Indeed, as shown in appendix A, the off d1agona1 elements of the strong
and- weak coupling forms of E-matrix are identical to 0(e)- Nevertheless the two forms are
formally based on quite different approx1ma,t10ns The weak-coupling result depends on -
A (e/AY) bemg small and includes order (e/ A )2 contributions, ‘whereas the strong coupling
result depends on (/M%) being small and includes only 1owest order contributions. One
expects the strong- couphng form to be more generally applicable: o
Although we have constructed the strong couplmg E-ma,tnx from overlap mtegrals it
'_ca.n also be computed from basis- functions 1/)’( ). Thus one sets-up a set of basis-functions
Pi(r), each of which is a multiplet containing N coupled harmonics (where N is the number
of critical surfaces) launched from r =.0. In each multlplet one harmonic (only) has a
disCOr_lti_nuity_ Al at its critical surface r;, the others are continuous.” For" each multiplet -
basis-function the discontinuity, and the bjoundary-con.ditions atr= 0, are iterated until all
harmonics satisfy the boundary condition at‘ r = a. When a tearing mode is constructed -
from these multiplet basis functions wifh coefficients a;, the discontinuity A/, at the mth

singularity is given by .
Am Z o (rm) = Anombn(Tm) ' S (36)

with a solubility condition



|F-A"t|=0 P o | 37)

In this case F need not be tridiagonal, since each multiplet basis-fuf;ction may contain several
“strong” harmonics if several AJ, are small. ' |

Returning to eq;(34), it is clear that a self consistent solution exists when (4,, — A?,;)
is order ¢ for all relevant m. However a self consistent solution also exists if (Am =A%) is

order €? for a single m and 0(1) for the remainder. This special case can be computed using

- just three basis-functions, each of which contains the same triplet of coupled harmonics,

centered on the harmonic with near vanishing An. In each triplet one (only) harmonic has a

discontinuity at its critical surface. This discontinuity and the boundary conditions at r=0

are iterated until the triplet satisﬁes the boundary conditions at r=a. -

5 Summary and Conclusions

A. The E-matrix

In a cylinder, tearing modes can be calculated through an asymptotic matching procedure in

which the full plasma physics is needed only i in a critical layer where ng(r) = m. Elsewhere

. ~ the plasma is described by margmal ideal mhd. At the cr1tlca.1 surface the ideal mhd solution -

allows a discontinuity A’ in its small component which is to be equated to- the corresponding
* A™(w) from the solution to the equations with full physics in the layer. This gives the tearing
mode dispersion equation A~(w) = A, Thus'A’ contains all the information needed from
the ideal mhd ‘external’ part of the problem. | - | ' ' |
In a torus the various poloidal harmonics m are coupled, so that for each toroidal number
n there are many critical surfaces ng = integer and correspondmgly many dlscontmultles A
in the ideal mhd solutions. Each of the A,, must be matched to its correspondlng Ap(w).
However, the mhd equations do:not specify any particular set of A,,, only a relation
between them. This relation is given by the E-matrix discussed in this paper. Just as the
single quantity A’ confaihs all the ideal mhd information needed for the dispersion equation
ina cylinde-l',,_s-o the E’-ma.tri){ contains all the information needed in a torus. '
We have discussed the structure and calculation of the E-matrix in two large aspect ratio

limits. In the weak-coupling theory ¢ << A [A? is the dlscontmulty for an uncoupled

harmonic] and the coupling between adjacent harmonics is 0(e/A2). ‘The E-matrix is tri-.
diagonal and can be calculated by perturbation or by computing a set of triplet basis-

functions. In each triplet the central Aharmonic‘ has a discontinuity at its critical surface

but the side bands are continuous. Note that only triplets of 4cou’p1ed harmonics need be

. computed irrespective of the number of critical surfaces. The number of triplets required



equals the number of critical surfaces.

However, even at large aspect ratio (e << 1) the weak-coupling approximation breaks
down when A?n is small. ‘An alternative strong-coupling a,pproximation requires that e < A7,
where A2, is an eigenvalue associated with a higher radial mode of the uncoupled m®* poloidal
harmonic-and is of order unity. Tllis approximation again leads to a tri-diagonal form of
E-matrix when this is computed from ovefla.p integrals of uncoupled harmonics. It may
also be computed from multiplet basis functions but it is then not necessarily in tri-diagonal
form. A special case of the strong-coupling approxirna_tion involves only three harmonics

and can be computed from triplet basis-functions as in the weak-coupling approximation.
B The Dispersion Equation |

‘An important feature of the asymptotic approach to tearing modes is that the E-matrix
calculated from ideal mhd alone, can be used in conjunction with many different models for
the critical layers. Each such applications must be discussed individually, 'b'ut some general
observations may be made. V : | , ‘ _' ‘
The dispersion equation is obtained by substltutmg A ~(w ) from the layer model for the

g Am in the E-matrix.
D) =| B~ A7) [=0. o Ce9)

Now, in both weak and strong coupling approximations, the off-diagonal elements of the  E-
matrix are proport1ona1 to a small coupling parameter. Consequently the toroidal d1spers1on
equation (38) will have solutions only when at least one of the diagonal elements is small.
There seem to be two generic cases: either (A —Ay,) may be 0(e) for several harmonics, or
it may be 0(e ) for one harmonic and 0(1) for the remainder. In either event, the frequency
of a toroidal tearing mode will be close to that of an uncoupled harmomc Thus the toroidal
tearing mode is a natural extension of the cylinder tearing mode. [However this is not the .
case for the twisting mode which we discuss in part II: The toroidal twisting modes are
1ntr1ns1cally tor01da.l and are not an ‘extension of the cyhnder modes — to which they are
essent1ally unrelated ] . , ,
‘As far as mode structure is concerned, if (A9, — A7, (w)) is small for only one harmonic
then the toroidal eigenmode will comprise only that princlpal harmonic and weak side-bands.
If (A% — A7 (w)) is simultaneously small for several harmonics, then the toroidal eigenmodes : :
will consist of strong admixture of these harmonics as well as many weaker sidebands.
Two important models for plasma within the critical layer are the low- 3 resistive mhd and
the Rutherford”) non-linear reéistive mhd models. For these models, A7 (w) is proportional

to some power of w and vanishes at marginal sta.blhty for all harmonics sunultaneously In

10 -



‘the cylindfical case marginal stability is then described by A’ = 0 and stability by A’ > 0.
In the same way marginal stability of toroidal tearing modes, for these models, is given by
|E] =0 and stebilit_y. by Ag < 0 where Ag is the greatest eigenvalue of the E-matrix.

" Another important layer model is that of a kinetic plasma with diamagnetic drifts.®
Then A (w) will be large (in the reciprocal layer width 6) unless w is close to the local
diamagnetic frequency w,. In this case the side bands will be small both in the toroidicity € -
and the layer width 6. ‘

Appendix A. Formal Theory.

The weak-and strong~coupling approximations can be considered as formal perturbation

-schemes. The basic. coupled mhd equations can be written schematically as
(Ln+40) ¥m =S KP¥ s (A1)

where A,, represents b’oth the magnitude of the discontinuity at the singular surface and an
appropriate operator {for a pressureless plasma this operator is simply é(r —~r,,)]. Then the -

: ‘tnplet 1ntroduced in section 2 satisfies

(£m+AT ¢T Ekmﬂ%ﬂ R o - (A2a)
mi1¢mi1 _I{m:ﬁ:le . ’ » _ - - . -. A ‘ (A2b)

A [Note carefully the difference between the eqgs.(A. 2) for a tnplet which refer only to a single
m, and the egs.(A.1), which refer to all m.]. \ ' o
If we formally solve eq. (A 2b) for $T ., we can obtain an uAnclc')upled equation for the

'central harmonic of the m* trlplet, ie., _
{,cm # 0% -3 (g ) 92 =0 4
+ L:m:i: - : -

It is convement to denote this as .

Hutf = (L + O = G wT | - o (AY)
then we can write the full set of egs.(A.1) (for all m) as

Hotbn = (AL, = A = G Yo + 5 K i (AS5)
_ x : i

The right hand side of eq.(A.5) is a perturbation of 0(e?) (the oﬁ'—diagohal term ~ € is

equivalent to a diagona.l term ~ €?). Thus we can write

11



= ontlt P . - (ae)
where | » i | | | |
Hofn= (80 = B = Grlantl + S K omantls (A7)
The left side of this equation can be annihilated in the usual way. Then |

(A8~ 8= <UEIGAIVE >) B < VR W > cmn =0 (A9

and the solubility condition is

|E—Al=0 - o | (A9)
' with

B = 81 < 48 | KR Ky 14 >

Em ;ma1 =< ¢ | ]{m:i:l I ¢m:1:1 . ) o ’ _ _ ) (AlO)

which s equivalent to the wea,k coupling resuIts derived in sectlon 3.

The strong coupling approximation can be considered in a similar way. The basm equa-
tions are again represented by eq.(A.1). Now, however, we assume that’ several poloidal
harmonics have Am small in the cylinder limit and a zero order solution is therefore con-

structed from a hnear combination of these M ‘degenerate harmonics. Thus 1,&,,, is wr1tten

The coefficients an, are undetermined in lowest ofder. When eq.(A.11) is inserted in eq.(A.1).

' the solubility condition for v,bm in ﬁrst order ylelds ‘
(A% = An)am + Z < Y2 |KmE [Vnzs > amas = 0 o (A12)

with solublhty condition : .
B~ An|=0 o o L (A13)

where Epm = A° and Em ay =< ¢m |KmE g0 L >, which is equivalent to the results of

section 4. )

‘Note that in this strong-coupling approxima.tion, the elements of £ are described in terms.
of 42 and the off-diagonal elements are 0(¢) while the diagonal elements are 0(1). In the.

- weak-coupling approximation the off-diagonal elements are also 0(¢), and to this order are

identical with those of strong-coupling, but the diagonal elements contain contr1but1ons of
both 0(1) and 0(*/ Amr)-
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~ Appendix B. Some definitions

The coefficients L, M, N, P of egs.(11) and (12) are given by the followirig expressions.
A, r? n? 3 ‘ .' ‘ Ly

Ip=mill3an -2y ol 3y R -5
L7 = m(m :i:,l)A's o _ B ‘ (B.2)
MP=NIF=0 ) . (B.3)
MEE = 4m{G(m = ng) + (m £ 1 - ng)[ % - AL - 3)]} 39
NTE = 4 (m j:l){Q(mil—nq)+(m —‘nq)[%—A's(l —s’)]}' - (BB

m.

(m ;nq) 27‘p'(l N

P o= (m —ng)® + (ra’)q + 57
_ 0

rpmong, g

B m - |
B B R
1(3R2+2RA’ 2A’2+22’)} | | |
()~ e " |
'¥m2[§-A’2+£%+3RA']} | DR - @9

PR =g+ s) 4 (m fnq)(mil—~nq)(A’s+%). (B.7)

‘where a = —2Rp' ¢/ Bo, s=rq'[q and A, is the Shafranov shift of the magnetic axis.

The coupling integral I which appears. in eq.(27) is a generalisatipn to finite pressure
equilibria of the coupling integrals discussed by Edery et al®, It is defined by
j__ Ytbmigs [0 | T a(l+s) = -
= ’P/ dr{m(m+l) A’+R+2(m—nq)(m+l—-nq)
—rA E¥m dwm d")bm+1 ¢md¢m+1 [A,( 1) + + _(m +1-— 'nq):I

Sdr o dr R 2 (m-nq) |
: , ¢m ’ ( nQ) . / '
—(m + Ddbmer——= [Ag( ~1)+5 + m] } (B.8)

where the integration is to be interpreted as a _prm_mpal part integration at each singular
‘surface in the sense that . . A
' a mi1=8 . ra ' . .
P/ Xdr _=_/ Xa'r+/ T Xdr Xdr ©(BY)
] 0 0 . Tm+1+5’ .
in the limit 6,6’ — 0.
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