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Abstrac't

Nonlinear interaction of electromagnetic Wéves and acoust{c modes in an electron-
positron plasma is investigated.b Thé plasma of elect‘rons" and positrons is quite plastic
so that the imposition of electromagnetic (EM) waves causes deﬁression of the plasma
and other structurél irﬁprints on it through either the nonresona.rﬁ: or resonant inter-
action. >Our theory shows that the nonresonant interaction can lead to the coalescence
of pihotons and collap‘se of plasma cavity m higher (> 2) dimensions. The resonant
interaction, in Which the group velocity of EM waves is equal to the phase vélocity
of acoustic waves, is é.nalyzed and a set of basic equations of the system is derived
via the reductive perturbation theory.. We find new soluf;ions of solitary types: bright
solitons, kink so_litoﬁs, and dark solitoﬁs as the solutions to these equations. Ah‘im-

plication of the present theory on astrophysical plasma settings is suggested, including

the cosmological relvati\}istically hot electron-positron plasma.



I. Introduction

When a plasma becomes so hot that it becomes relativistic, the temperature T of the plasma
exceeds the rest mass energy of electrons mc? = 0.5 MeV. In this relativistic regime the pro-
cesses of electron-positron pair creation and annihilation become important:
2y £ et + e”. In relativistic temperatures the electron (and positron) energy e, far
exceeds the rest mass energy so that electrons and positrons behave kinematically similar to
photons and come into equilibrium with nearly equal population. In this case the popula-
tion of electrons far exceeds that of protons. Such highly relativistic plasmas may be found
in the early Universe,! in active galactic nuclei (AGN),? and in pulsar atmospheres.® The
pulsar plasma is most likely magnetized, while that of the early Universe may be unmag-
netized. The plasma in AGN may or may not be magnetized. The other environment in
which relativistic electron-positron plasmas appear is the et + e~ collider. However, it is
very transient. Good labora,tofy examples are found also in semiconductor plasmas of holes
and electrons, in which the plasmas are likely to be nonrelativistic. In the present paper we
discuss only physical processes of unmagnetized plasmas. Furthermore, our emphasis is on
nonlinear processes. Some of the linear processes of such plasmas in a general relativistic
formulation may be found in Ref. 4, while some of the magnetized plasmas are in Ref. 5.
The plasma of the early Universe may be relativistic (1072 < ¢ < 1sec) or mildly rel-
ativistic or nonrelativistic (1 < t < 10"®sec). Let us consider the epoch of the Universe
of approximately 1072 < ¢ < 1sec after the big bang (a;lthough a slightly wider window of
1073 < t < 10! sec may be permissible). In this epoch the temperature of the Universe is low
enough that nuclear matter has become familiar hadrons made up from quarks and gluons
but high enough that electrons, positrons, and photons are in abundance and in (near) ther-

mal equilibrium. Neutrinos are abundant and may be strongly coupled with other leptons.

In the present work, however, we neglect this coupling. In this case the plasma density is



from 10% to 102 cm~3. Before the electron-proton recombination (¢ ~ 10'3sec), the cosmic
expansion is such that the cosmic metric a scales as a o« /2 and thus the mass density
pm o t=%/? and the radiation density p, o T* o t~2, where T o fiw  a~! o ¢~1/2, The
period of 10~2 < ¢ < 10'®sec is sometimes called the radiation epoch. (More traditionally
the radiation epoch is 10° < ¢ < 10**sec). We rna.y call this epoch the plasma epoch, as the
plasma is the main constituent matter form, including photons. During the early part of
this epoch 10~2 < ¢ < 10°%sec the plasma and radiation temperature T is (much) larger than

mc?. Similarly the primordial magnetic field (if any) scales as B o a™? so that the plasma

beta 8 = 4wnT/B? is invariant (if the dynamo effect is not operative). It is important to

note, however, that it was found that even the thermal equilibrium nonmagnetized plasma
can sustain low frequency magnetic fluctuations.® More details of plasma parameters.of this

epoch are discussed in Sec. V.

In the present paper we are concerned with collective processes in nonlinear interaction’

of a relativistic electron positron plasma with photons. For the purpose of illuminating the

unique prbperties of electron-positron plasrriaé such as plasticity, we emphasize the dominant

‘population of electrons and positrons and neglect ion effects. If ion effects are restored, they
would exhibit more traditional phenomena. These less idealized cases are left for a future
publication. High frequencyAphotons in such a hot plasma contribute to the equilibrating
pressure (P) force where P o T4, while there remain low frequency electromagnetic waves.® It
is these low frequendy electromagnetic waves and their nonlinear interaction with the plasma
that we are interested in and we investigate in the following. —The reason for this is two-fold:
(1) its intrinsic nonlinear interaction is rich and reserves a full treatment; (i1) its implication on
cosmic evolution is potentially immense. The first point is well recognized by many previous
authors.”®® The second point is not well appreciated yet. The black body radiation from the
big bang is observed as the 3°K microwave background radiation. Its observed anisotropy

is very small and less than 10~%.! Although this puts a severe constraint on theory of galaxy




formation, it should be noted that the observed highly isotropic distribution of black body
radiation is connected with high frequency (i.e., fiw ~ T) photons. No signature of low
frequency (Aw < T') photons is known and thus constitutes no constraint if their imprints
on matter are nonadiabatic. In this regard the nonlinear interaction between the plasma
and low frequency photons is important. Perhaps as a result of this, there may emerge a
structure in the plasma, which ultimately gives rise to a seed of galaxy formation. Yet we
note that such signatures in black body radiation anisotropy are nondetectable, as long as
they are of an isothermal nature. We believe that this assertion is critical to cosmology. A
full impact of our theory on cosmology cannot be expounded in the present paper.

We thus simplify the problem into that of interaction of the electron positron plasma with
low frequency photons with high frequency photons being treated through the pressure term
of the ideal photon gas. Once we cast the problem this wa};, our task becomes a well-defined
. physics problem of its own. Our present work may be regarded as a physical treatment of
such an abstracted plasma and results can stand on their own. In fact our treatments are
so simplified that their direct applications to cosmic plasmas and other situations have to
be done with considerable caution. For example, we will not discuss collisional effects (and
thus kinetic theory) of the plasma at all in the following until Sec. V. Clearly these among
others are very important and should be considered in detail in the future. It is, nonetheless,
the case that our present model seems to capture most of the essential features of cosmic
plasmas.

Our paper is structured as follows: Sec. II discusses the basic model equations of the
posed problem in the long wavelength limit, in which the characteristic length of plasma
modulation is much longer than that of low frequency electromagnetic radiation. The in-
teraction is nonresonant. It discusses photon packet collapse and structure formation in a
plasma. In Sec. III we turn to a resonant interaction between the low frequency photon

and the plasma phonon, in which both wavelengths are comparable. A similar structure



formation is expected, although the theoretical treatment has to be accordingly modified.
Section IV discusses more detail of the result of Sec. IIL In Sec. IV we discuss solutions to
the equations obtained in Sec. III, including its characteristic steady-state properties, such
as shock and soliton formation, and numerical investigation of these. We conclude in Sec. V
with discussions of more detailed parameters of the cosmological electron-positron plasma.

Kinetic effects are briefly touched upon there.

II. Nonlinear Schrodinger Equation for Relativistic
e~ — e’ Plasmas |

We model the relativistic electron-positron plasma immersed in a photon gaimby a fluid
description. Electrons and positrons are described by the two-fluid theory“gggcvll_;the long
wavelength photon effects are described by the Maxwell'equations. Short waveleggth photons
(hw ~ T') are treated to contribute only to the pressure term. There are two distinct regimes,
one is the frequency of electron-positron coilisions v, (and the frequency of eléctron-pdsitron
pair creation) is much larger than the plasma frequency, w,, and the other is the reverse.
In the former case the local thermodynamic equilibrium should be quickly established. In
the latter case, on the other hand, collective finite frequency"r_pgfdes survive and interesting .
nonlinear coupling among electrons, positrons, and photons can take place. In the present

article we concentrate on the latter case, as the former is more trivial.

The continuity equations for electrons and positrons:take a form

5 .
£+V.(nivt)=ycn7—vn_n+, ' (1)

ot

where n4 are the positron (+) and electron (—) density, v+ velocities, n., the photon density,
v, the pair creation frequency, and v the annihilation rate. Herewith subscripts + refer to
quantities of positrons and electrons. In a similar fashion the equations of motion for electrons

and positrons may be derived. Here, however, we treat the annihilation and creation of



particles phenomenologically, as we eventually neglect their effects assuming w, > v,.. Thus

we obtain

dVi
mw—ﬂ:ﬁ(Eﬁ-

ViXB

) - —1—- VP, —mvvy , (2)
ny

where P, are the positron and electron pressure and the last term on the right-hand side of
Eq. (2) is a phenomenological expression.

We can show that the longitudinal electric field and the associated plasma oscillations are
completely decoupled from transverse electromagnetic waves in a positron-electron plasma.
We can further show that the acoustic oscillations do not accompany charge separation in
a positron-electron plasma in contrast to ion-acoustic oscillations in an ordinary plasma.
This contributes to the plasticity of the electron-positron plasma; i.e., the relative ease
of structure formation in this plasma. Thus for our present purpose of the study of the
coupling among electrons, positrons, and photons, Poisson’z; équation is unnecessary to solve:

V -E[ = 47re(n, —n_) = 0 and the longitudinal electric field E; = 0. The Maxwell equation

1s then
1 0% 47 0J
— 2 — e _— e — —_—
vE-i-caﬁE ¢ Ot (3)
where
J=ns,ev, —n_ev_. (4)

The closure of the second order moment equation may be accomplished by assuming
that the pressure of the plasma is equal to the photon’s, which behaves according to the

Rayleigh-Jeans law black-body radiation. Then the pressure is given by
Py=nsTe =0Ty, (5)

where Eq. (5) is the Stefan-Boltzmann law with o = 72/454° ¢®. Equation (5) yields

1 43
P:i:=’5_T/'§n:h , (6)
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le., the plasma is a polytropic gas with the adiabatic constant 4/3.

In the following we consider a situation in which electromagnetic waves propagating only
in one direction (z). We assume that the amplitude of the electromagnetic waves is large
enough that in the first order equation the electromagnetic force dominates the pressure
.force, but that it is small enough that the wé,ve is nonrelativistic, eF/mwc < 1, where w is
the frequency of the radiation and E the electric field of the radiation. This allows us to
expand the equation of motion in the following way in the nonrelativistic kinematics. The

first order equation in the power of E of the electromagnetic waves is

Bvi eE v .
B - +— (7)

BN

where E may be assumed to point to the y-direction if the wave is linearly polamzed (the
option of circular polarization and linear one is not essentml and we take the latter for the
sake of concreteness). The nonlinear terms v - Vv and vy x B/c and the pressure term are

neglected in this order. The solution of Eq. (7) is
v = 4 eE/(~iwm) . A (8)

The perturbed (the ﬁrst-ofder) continuity equation derived from Eq. (1) is

oy

5 =0 (9)

where we noted that the equilibrium for the zeroth order cancels the right-hand side terms
and that V- v{¥) as obtained from Eq. (8) vanishes. Thus we obtain ng_l) =n" = 0, which
implies no charge separation, as asserted earlier. This can change, of course, if the presence
of ions is taken into account, although charge separation remains small as long as ions are a
tiny minority.

The second order of the equation of motion Eq. (2) is

¢E 2

wm

1
o/3ny

6v§f )

= vnil®, (10)

= —%mv



where the convective derivative v - V'v vanishes and the nonlinear term +evi) x B /c gives
rise to the first term on the right-hand side of Eq. (10). We have retained the slow varying
component of the nonlinear term in Eq. (10) by taking the absolute value. In the present

article we neglect the second harmonic response. Combining Eq. (10) with the second order

continuity equation ang)/at +nV - v(f) = 0, we obtain
0? dn (ng\1VP_, eE
_— — = ¢ 2
=T 3 (a) Vitnny = 2V mw|

where the second term on the left-hand side is linearized to give

eE |
mw

P 0 _ayra@ oM | B

atz ni 2 ’ (11)

where 2 = £ (n/c)*/3. Equation (11) is the acoustic equation driven by the ponderomotive
force of photons on the right-hand side.

The Maxwell equation, Eq. (3), is cast into

1 &2 4re O 8re?
N v — - — - (2
VE+ 5 2mB=—— = (nevy —nov) = —— (n+n?)E, (12)
where n® = nl? = n® since n{?) = n = 0. By writing w? =Wl +wl = 8rne’/m,
Eq. (12) becomes

1 &2 w? n(

2 p -9 n
~-VE+2E+5 5, E=-2"F. (13)

The term on the right-hand side of Eq. (13) is a third-order quantity, while the terms on the
left-hand side are all the first order. However, these terms of fhe first order cancel each other
because of the dispersion relation of electromagnetic waves in the positron-electron plasma

w? = w? + k%% Let E = Re(ae**™~*t), Equation (13) then reads

2 2 2
— V2 - 2ik 2, % @ wd oy = -2
V*a — 2:k Va-f-(k + = cz) -2 = 6t+0(a) 2 (14)

where én = n(® and V and /8t operate on a in slow scales.



Imposing the linear dispersion relation w? = w? + k% ¢?, we obtain from Eq. (14)

da 1 v s 2y _ Wi 6n
zat--zv,sr V’a+2 p Via + O(6f) = EZ-n—a, (15)

where v = 0w/ 0k.

In the present section we investigate the interaction between photons and phonons when
they are not in resonance. This means that the group velocity, vg, of photons in this plasma
is not close to the phonon (acoustic) velocity c,. This can be fulfilled either by vZ > c? or
by vZ, < cZ. In the former case such interaction as the beat wave acceleration' takes place
and will not be discussed any further in this article. Some more discussion of this case may
be found in Tajima!! and in Leboeuf et al.!? In the latter case (Wi <) kK wp/c This
condition in a relativistic plasma is much less severe than that in a nonrelativistic plg}_mls‘ma, as
the relativistic sound velocity ¢, ~ ¢/+/3 is fairly close to the speed of light. In other words,
in relativistic plasma a wave pacicet of photons with long wavelengths may be relatively easily
able to satisfy the nonresonant condition of v <K c In between these two nonresonant

cases lies, of course, the resonant case v2. =~ c?, which is deferred to the next section for

o
discussion.

The nonresonant case of interest (v2 < ¢?) may arise in a variety of settings. One
can imagine a case where most photons propagate in one predominant direction (say, the
z-direction) with the mean wavenumber k, with a much smaller wavenumber spread Ak, ~
Aky < ky € wy/c. We refer this to Case (i). Such a wave packet is basically one dimensional.
See Fig. 1(a) for é, schematic spectral distribution. An extreme alternative to this is a
wavepacket spread in three dimensions in a nearly uniform fashion, Ak, ~ Ak, ~ Ak, ~
lkz|, |ky|, |kz| € wp/c. A schematic spectral distribution of the latter wavepacket is depicted
in Fig.- 1(b). Such a wavepacket is basically two or three dimensional, depending on the

presence of the third dimensional spread. We refer this to Case (ii). Some of the cosmic

plasma may fall onto this case (v2. < ¢2), including the “hydrodynamic” cases.



In Case (i) we transform variables z,t to £, T as

ck 2
E=¢ x—Tt =e(r—vgt) , n=€ , (=€ , T=¢€t,

where € is the stretching parameter'3!* and we take €? = 2. Then Eq. (15) reads

.0a 1 vg 2, w? én
R e e

a,

where V2 = 0} + 92 + 02. Equation (11) transforms into

5 & & » &
2 7 o 2 _a2Yy 2 2
¢ g 2% g + (0% = <) 7@ ( ac2>] bn = o VOB

(18)

The operator on the left-hand side in the brackets of Eq. (18) becomes —c; V? when v2 <« c2.

It becomes v V? when vZ, > c2. If vZ ~ c2, it will be treated separately in Sec. IIL.

When v}, < ¢, Eq. (18) gives rise to

2
2w2¢ _ o€ 2 12

If én and E are localized; i.e., én and |[E[*> — 0 at infinity,

noe2

E* .

n = ———-—>
2mw? c?

Substituting Eq. (20) into Eq. (17), we obtain

da 1vs,2 9 [(w\*'1 ,
i ts R Ve +§§“(w— gla’a=0.

When the plasma is relativistically hot ¢z =

2
Eq. (21) becomes =2~ (3’21)

1
3
1 B 9 1/2 EE 1 . .
357 \oF ) - By putting £ = (3— = > a, Eq. (21) is cast into

s

i§+5’v25+|8|25=0,
or

where § = % Then Eq. (22) can be written in a form®

oH

'é':——,
Y

where the Hamiltonian is given by

10

(19)

(20)

(21)



B 2 _ €]
= [ |5 |VXE —— .
n= [ Lz V< EP - - de (24)
Note & is the stretched coordinates on the moving frame. One can normalize the spatial
coordinate & such that the coefficient of the first term in Eq. (24) becomes unity. The

8,15

Hamiltonian is a conservative quantity. Gauge invariance®!® implies the conservation of

light quanta: '
N= / E2de’ . (25)
The system described by Eq. (22) has been shown®'%!® through the virial theorem,!®

1

direct integration,'® and numerical integration!” that the wavepacket tends to collapse in

systems with dimensions larger than one, while systems with one dimension do not. In a

spherical symmetric system on the moving coordinates &' the quantity
I=[&2 (B2 +|Eal?) de; .

obeys

62] 4 /
52-2-58H—2/|E| dg' < 8H.

Integrating I twice in time, we obtain

I<4HP +Cit +C, . (26)

where C); and C, are integral constants. If H < 0, the positivity of I implies that the
inequality is valid for ¢ < %o, toward which the system exhibits a singular behavior. The size

of the density depression &,, behaves'® as
€ro(t) o (to — 8)*/%,
and o (27)

E(t) « (to —t)~%*,

11



exhibiting the collapse of the electromagnetic wavepacket with a density depression in a finite
time. However, once the size of the depression becomes of the order of the collisionless skin
depth, ¢/w,, the present treatment becomes invalidated. Some of the nonlinear numerical
simulations'® can be a guide to suggest the more detailed evolution of such an entity. Al-
though Ref. 18 handles electrostatic plasma waves, the relevant equations are similar to our
case. The high frequency waves collapse, creating a growing plasma density depression. The
deepening cavity eventually tries to emit short wavelength acoustic waves of the cavity size.
The work in Ref. 18 indicates that when the plasma is isothermal (the temperature of both
species are equal) and the (ion) Landau damping is significant, the emitted acoustic waves
are quickly absorbed so that the collapsing waves are “burned up.” In the present relativistic
electron-positron plasma case the Landau damping is supposed to be significant (see Sec. V).

Thus the collapsing electromagnetic waves in the plasma ¢avity would be burned up.

III. Resonant Interaction between Photons and
Phonons

In this section we investigate the resonant interaction between photons and phonons in an
electron-positron plasma, the case left out in the previous section. That is, the group ve-
locity of (a set of) photons (or electromagnetic waves) is nearly equal to the phase velocity
of phonons. See Fig. 1(c). In order to derive the basic equations that govern the resonant
interaction of photons and phonons in this plasma, we need a different systematic expansion
method than that employed in the previous section. We again use the reductive perturba-
tion theory with the expansion adopted being to specifically incorporate the physics of this
resonance.

In the following we take the normalization that the length is measured in terms of ¢/wpe.
the velocity in ¢ and the density in ng, the mean density of electrons, where the electron

plasma frequency wy, is defined as w2, = 47nge?/m. In these normalized units our equations

12



are derived from Egs. (1)—(3) as

3;: +V (nava) =0, (28)
dv:l:.L ' ‘
L — k[, +(vxB).] (29)
dviz _ 1 E)Pi
V.-E=ng—n_, (31)
VXB—%{=TL+V+_L—TL_V_J_, (32)
9B | )
5+ E, =0, @)

where d% = -z%-}—vx % and z is the longitudinal direction parallel to the propagation of photons
that resonate with the plasma waves. We restrict the photon propagation in the w-,@i;ggtion
and the electric linear polarization in the y-direction in this section. Thus Eqs. (28) and (31)
can be written as 0;ny + 0;(ng vey) =0 and 0; E; = ny —n_.

We expand the quantities Vi, v4g,ny, and E; as follows:

viy = vl +2vE) 4. | (34)
vae = vl + o 4o - (35)

cmtten®4an® s (36)
E, =eED +2EF 4. (37)

where the superscripts in parenthesis indicate the power of ¢, the expansion parameter.

Furthermore, we may write as
VB) = 90, i) 4 g
ES}) — ES}]). ez‘(kz-—wt) +ce. ’

13



BS}) = ﬁ&) efkr=wt) 4 o e ,

where the subscripts refer to the harmonic component or to the power to the e!(¥#=«t) QOp

the order of ¢!, from Eq. (29) we obtain
¥ =+ L% EW . (38)

This is equivalent to Eq. (7).
From Egs. (32) and (38) we obtain

kx B +wEY = %E‘j’ : (39)
and from Eq. (33) we obtain
B = % zx BY, (40)

~ where k = k; Z. From Eq. (39) and (40) we arrive at the dispersion relation

wl=2+k2, (41)

Hence the group velocity A is
Ow  k,
Sl (42)

In executing the derivatives, we employ the reductive perturbation theory.!®!* In the

problem of the present section we stretch the coordinates as

€ =z — \t) , r =l (43)

O (r‘?_ﬁ) = k,O(¢'/?), and O (5%) = w O(e¥/?). On the order of ¢¥/?, Eq. (29) then yields
0 3 ~ (2
) 5 VL — vl = +B (44)

Egs. (32) and (33) give rise to

14



0

. ~ (2 0
ik x B +iwBE +/\mx%B(I)+/\65ES}£
1 fom® 1 0 =)
- =2
—w ( E-Ll | W 55 E.Ll ’ (45)
DB L 8D gy s 9 g
—wBY k:E% — A =B} —E|{=0.
wBiY + ik By % 1+ 2 X g B (46)
Hence
£#&) Ei @) A0
vy D = o (Efl + " a—gEgl) (47)
It follows from Eq. (32) that
, ~2) kI~ A 0 k; 0
zkaSf)+z:ESfl)+;kx-é—£-B(l)+ agE“) 0, (48)
and from Eq. (33) that |
B Lk xBY 2 2 BY 15 x LEW |
—iw B2 k -2 =B] =0. - (49
| Ww Dy +7‘ xE.L 86 + 6£E , ( )
Combining Egs. (48) and (49) and making use of the zeroth order dispersion relation (42),
we obtain »
&) k:Z =3 2. 0 '
BJ.21 =7 = Ef - BEx ‘aEES.I% (50)
On the order €? we collect terms arising from the momentum equation (29) as
8 ~ = -
—iw v, ik O — 6§ (i_zl =+ (Eﬂ + oM E x B(B) , (51)
where d/dt = —iw + €%/2 0/8;1' — X' /29/0¢ + ev () (ik, + €/X 8/0¢). This leads to
2 4,0 @
| Wl = - (iE()Hag vin) - (52)
The Maxwell’s equations (32) and (33) in O(e?) yield
ikzixB(z)—i-xxjéB +iw E(2>+A§€E3)
0 (2, =) + (v =) 59

and

15



—iwBY + ik.z x BY) — A%B(“) +ixd B =0. (54)

Using Egs. (47) and (54) to eliminate vfﬁl and vgﬂl, we obtain by combination of Egs. (53)

xw and (54) xk

. = .0 = 0 =3 2\ 0
(iw? —ik2 — 20) E® + (w — Akp)Z % o BE) 1+ (w—k) = 5 B 22 e 2 g
= 2)\ ZA 8 ~(1)

Equation (55) can be simplified by using Eq. (50), yielding the coefficients of & = E :1) as well
as that of E(?) {1 to vanish because of the dispersion relation w? = k2 + 2. The term 2 % B fl)

was replaced by the relation (50). After these algebras, we obtain from Eq. (55)

1 8% -
— — Bl =n®EY (56)

Equation (56) is one of our basic equations governing the nonlinear behavior of the coupling
between the e"e* plasma and radiation; i.e., n(!) and E®,

For relativistically hot electron-positron plasmas with photons interacting with leptons
opaquely, the equation of state can be taken as that of ultrarelativistic particles or equiv-
alently that of photons. Thus the pressure of the positrons or electrons Eq. (6) is written

as

¥

Py=pB(ns) = B[1+en® +n® 4.7, (57)

with the adiabatic gas constant v = 4/3. Then

PO=8 , Pigy=pByn® (58)
(2) 1 (1)y2 3
PY = B [yna(2) + 3907 - DY | (59)

and A is equal to the normalized o~1/2. If the nonrelativistic gas constant is used, the expo-

nent v of Eq. (57) takes the value of 5/3, the coefficient v and 3 v(y—1) in Eqs. (58) and (59)

16



take the values of 5/3 and 5/9. In our present normalization, the field E and B are measured
in the unit of (mcwpe/e) and the pressure is measured in the unit of -=(mcwpe/e)? = ngme?.
Therefore, the radiation pressure is measured in the unit of the electron rest mass energy
density. Introducing these expressions into the equation of longitudinal motion (30), we have
in O(¥/?)

d o, 0 @

_’\bzn:h +a_£v:l:x=03 (60)
and ‘
39 w9 o |
A@fviz+_'373§ni =0. | (61)

From Egs. (60) and (61) we obtain

AN =yB. - . (62)

In the present section we consider a specific case in which the group velocity}of the
electromagnetic wave is equal to the phase velocity of the longitudinal Wa,vé. We refer the
reader to Fig. 1(c). The longitudinal wave is basically the acoustic wave.

In the following we take the ultrarelativistic case in particular for concreteness.sake. The
acoustic phase velocity in the ultrarelativistic temperature limit is e, = ¢/V/3, as derived
from the equation of state (57). Thus let A be specified as

A= % . ) (63)

This sets the normalization of the constant such that

|
ol
VY
o
>
—

and 0%

> =

8=

We also note that
o) = anl, (65)

17



and
ng}) =n® and Eﬂ,) =0, (66)
as found in Sec. II already.
In the order €? there is no term. In the order €%/2 for £ = 0 (the harmonic number for ks)

we have from Eq. (28) and (29)

5, 9 0 0 d
A —n@ L 202 L 2 (1) (1) (1) (1) (1) —
/\aﬁn +a§v,,. +6Tn +n 3€v + vy 65n 0, (67)
and
0 o} 13}
S W ¢) BT (1) (1) (1) — n(2)
/\65% taov 65” + 3 ﬂaén
2 9 4 3,
28— (nN2 _ Z3,01) 2L (1) — (2)
+qﬂa€(n ) 3ﬂn aﬁn +(v x B)}? (68)

where n(f(), is denoted as n® here and the right-hand side of Eq. (68) can be cast into
3 .

(v x B)P = —ZZ|EQP by utilizing the relation v{), x B, = +£iEY

X (—‘-m X E( ) +ETX 5 E( ) > and a similar relation for v(;_g__l X Bﬁ_ll) Equations (67)

and (68) yield

Aan(1)+)‘< 836 o® 4o < 0 (1))+iv£1)

;) 8{ or
8 2 4 0 10
+o 2 5 (1)—5”()6_5"(1) 4a_£|EJ_ 2. (69)

Noting that the wavenumber &, at which the group velocity of the photon becomes equal
to the phase velocity of the phonon is k, = 1 and that the photon frequency w at k&, =1 is
w? =k2+2=3, Eq. (69) can be written as

oo T 0 10
z ) (1) = (1))2
or +6“‘ 9 ° 9 9¢ ELil

where |E 1)|2 2|E(1)[2 as E(l) E(]) ik==wt) 4 c.c. From Eq. (56), on the other hand. we

(70)

obtain with the aid of nio = U:hz:O/’\ = 3w ;(i::go

92
6—§2E(1) =33}, () . (71)

18



Introducing v and E by the relations

7
v=—-olly, (72)
6
5 7N\1/2 '
E= (5_4) E_(Lll) J (73)
and ¢’ = <% \/5)1/25, = (% \/?_y)l/zT, Eqgs. (70) and (71) are now written as
8_T+-v%_—8_€ |E| ’ ‘ (74’)
PE - -
6_52 =vE s (75)

where the primes of ¢’ and 7/ have been removed in ’Eqs. (74) and (75) and herewith.
Equations (74) and (75) are our basic equations for the photons and phonons in resonance
(Ow/0k = ¢s) in an electron-positron plasma. When the viscosity effect comes in at the
order O(u) ~ €%, Eq. (74) becomes

o v Pv 0

57—'+v6_£_#§§7~—62|El2' (74')

IV. Stationary Structure — Shocks and Sdlitons

We look for particular solutions to the problem of one-dimensional resonant interaction of

electron-positron plasma with electromagnetic waves described by Egs. (74) and (75). In

this section we write E as E. We also restrict ourselves to a class of solutions that depend

only on { = ¢ — V', where V is the phase velocity. In the following the derivative with

respect to ( is expressed by a prime.
Equations (74) and (75) are cast into |

2

()

s (5) = -0z, | (7o
E"=vE . , ‘ ‘ (77)
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Integration of Eq. (76) yields
2
P=—Vv+3’2—+|E|2, (78)

where P is a constant and is essentially energy except for an additive constant. The velocity

v can be written from Eq. (78) as

u=V:t\/5\/%v2+P—|E[2. (79)

It is required for reality of v that the “total energy” @) be positive

2

Q=K2—+P>O. (80)

Equation (79) takes the form

v=V+v2(Q—-|EP)? . (81)

With Eq. (81) Egs. (77) yields
E'={V+v2(Q-I|EP)/*}E. (82)

Some discussion is presented in Appendix whether the initial and boundary conditions to

Egs. (74) and (75) are well or ill-posed.

(Real E)

Let E be real and we introduce a pseudo-potential (Sagdeev potential) ® by the relation
0% 2\1/2
«6—E={V:i:\/§(Q—E) 1B, (83)

so that the “equation of motion” for F is
oE_ o0
8¢z~ QE’

Integrating Eq. (83), we obtain
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s=-Yp e Q- lon, (85)
Integration of (84) with respect to { yields the “energy conservation”
. 1 n2 '

where W is the total energy.
[Case A] (V >0)

From Eq. (83) it follows that when V > 0 the plus sign in Eq. (83) gives 0®/0F = 0
only at E = 0, while the minus sign yields two roots E = 0 and E? = P, which requires
P > 0. From this the minus sign should be taken. The three extrema of ® are £ = 0,
E = +/P. See Fig. 2. The potential maximum ®js takes at £ = ++/P with Oy =
“Lp-lvi4 (B +P)3/2.

Case I: 0 < W < ®,y, periodic solution.

Case II: W = @, (homoclinic), kink or antikink soliton solution.

Case III: W > @y, free particle (unbounded).

"Case IV: W < &, E < —/P, one-side unbounded.

Case V: W < Oy, E > \/]_3, one-side unbounded.

Thus bounded solutions of interest take place in Cases I and II. In particulaf, Case IT
yields kink or antikink solitary solution. For ¢ — oo, E — /P and for { — —oc0, E — —/P

for the kink and vise versa for the antikink. From Eq. (81) v — 0 as [(| = co.
[Case B] (V <0)

In this case for a reason similar to Case A we must take the plus sign in Eq. (83).
The potential is now ® = —% E? + 3? (Q — E?)*? — %—E Q*/?. Hence when £V? —2P20,
®(E = £/ )20. This situation is depicted in Flg 3 L, II, and III. Note that |E|* < @ for
real v from Eq. (81).
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Case: 3V?-2P >0

A solitary wave exists for W = 0. For 0 < W < oo a periodic wave (approximately with
two periods) solution and for W < 0 a periodic wave (approximately one period) solution
exist. See Fig. 3(I). The electric field E goes to zero and v — V ++/VZ+ P > 0 as || — oco.

Case II: $V2-2P <0

Asymptotic solutions; i.e. E becomes uniform as || — oo, are not possible.

(Complex E)

To solve Egs. (74) and (75) for more general cases of complex electric field E, we introduce

the expression

B=pl@exn (5 [ o©)de) | (87
where p determines the amplitude squared and o the phase of E. Substituting Eq. (87) into
Eq. (75), we obtain

(po) =0,

!
oo’ = —2v' + [p‘l’ 2 (oY 2p’)/] ;

namely

po = F(t), (88)

o= 20+ p/? (p‘l/zp')l +G(1), (89)

D —

where the primes denote the derivatives with respect to . Let us choose G = 0 and F(7) =

Fy = constant so that

o= Fop_1 , (90)
F02 1 -1/2 ( -1/2 1\’
—2—?=—2v+p (p p) . (91)
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From Eq. (91), we obtain

1 o1 1/2 VY.

5&?;—;- [V:t \/_( V4P - p) ]+p‘1/2(p Y2p) (92)
By writing R = /p > 0, Eq. (92) can be written as

B L)

R' = 3R’ (93)
where
~ 1 F2

[Case A] (V >0)

The potential & looks like Fig. 4(a), if F§ is sufficiently small. The maximum point Rmax
is given by 88/0R = 0; i.e.

21/2 F2 .

The soliton solution appears Where the total energy is equal to ®(R = Rmax) In this case
the electric field E in Eq. (87) suggests that it holds its maximum pmax = Rpax as |§| — 00

and its minimum pmin = RZ,;, at |¢| < oo [see Fig. 4(b)]. This is a dark solitary wave.
[Case B] (V <0)

In this case the potential ® looks like Fig. 4(c). There is no homoclinic point and thus
no soliton solution, unless Fy = 0, that is o = 0. If ¢ = const. then p = const. so that there
are 'no'plane wave solutions for which v = const. If Fy = 0, we have a solitary wave solution

that was already given as a particular solution in Fig. 3.
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(Numerical Integration)

We carried out numerical time integration of Eqgs. (74) and (75). Starting from an arbi-
trary initial condition, we obtained various results, including some wavebreaking resulting
in angular profiles. These are too complicated to present here. Instead we present a few
cases of runs starting from the equilibria discussed earlier in this section. The discussion on

well-posed and ill-posed boundary conditions is given in the Appendix.
[Case A I} (real E)

This case corresponds to [Case A] of real E in the first part of this section, the positive
V, and 0 < W < @y, the mode being trapped in the potential ® and thus bounded. This
is a periodic solution. We take the periodic boundary conditions for v and E. It should
be noted that Eq. (75) is a homogeneous differential equz;tion with respect to £ and does
. not fix the amplitude of E by itself. In order to determine the amplitude of F, therefore, it
is necessary to invoke the energy conservation. The electric field amplitude at v = vy i

determined as

1 1/
E(omss) = [Q = 5 (max = V)] - (96)
The initial condition is determined by the steady-state solution of Egs. (74) and (75)
E'=[V-v2(Q-E)/]E (97)
and
v=V —\V2(Q - E})'/?, | (98)

with the boundary condition of £’ = 0 at the edge of the computation box. An example
of V.= 1 and P = 5 is shown in Fig. 5. The time step and spatial grid size are 0.001 and
0.05, respectively. A numerical viscosity of 0.01 is included for computational purpose. We

see that the periodic waves of v and F propagate to the right with the roughly prescribed

velocity without hardly any change of the profile.
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[Case A II] (real E)

This case corresponds to the homoclinic (soliton) solution of Case A for real E. This is
a kink soliton for E. The initial condition is determined by solving Eqs. (97) and (98) with
E((=0)=0and

1/2

E((=0)= +=-|5+P

3 2

2

() (Fer)"

The symmetry of E(—() = —E(() and v(—_—(j) = v(() is imposed for solving Egs. (97) and
(98). With this initial kink soliton profile, we solve Egs. (74) and (75) in time with the
boundary conditions E(0) = —vP, E(L) = /P, and v(0) = v(L) = 0, where 0 and L are
the left- and right-most coordinates of the system. An example of V = 0.5 and P = 0.1 for
this case is illustrated in Fig. 6. The kink soliton propagates to the right. Towards the end,

the distortion of v profile appears, which is attributable to our boundary handling. |

[Case B I] (real F)

This case belongs to C(ase B as discussed in the first half of this section, V' < 0. For
the total energy in the range 0 < W < oo (Case B I) the solution is periodic with two
independent periods, with the shorter one arising from the small hump and the longer one
from the overall well. The initial condition is once again determined by Egs. (83) and
(84) with boundary conditions E = 0. The periodic boundary conditions for v and £ are
employed. The normalization of E is again that of Eq. (96). hAn example is given in Fig. 7
for the p’arémeteré of V.= =5 and P = 1. One discerns the non-sinusoidal oscillations due

to double periods.
[Case B II]

This is the homoclinic (solitary wave) case of Case B of real E with W = 0. The

initial condition for Eqs. (74) and (75) is given by the solution of Eqs. (97) and (98) with
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5V — 8P > 0 under the boundary conditions £ = Ey and E' = 0 at the center, where
Eo is a zero of ® = 0 between /P and v@. The boundary conditions are chosen to be
v(0) =v(L) =V + (V2 4 P)i/2 ang
1 1/2

B(vmin) = (@ = 5 (omin = V)], (09)
and E'(vmin) = 0. An example with parameters of V' = —2 and P = 1 is shown in Fig. 8.
Note that the velocity v changes its sign from positive at the asymptotic points to negative
at the peak of the soliton. It is observed to move to the left approximately with velocity

V(< 0).

[Complex E]

We numerically investigate the homoclinic (dark soliton) case of the complex E solution

of type Eq. (87). Once again the initial value is chosen as the equilibrium value
E = R¢i/?6 ,

3
— 2
a_/o dé Fy/R?

R"= {v- 2(Q -RZ)}W}R%%‘E ,

1/2

v=V-[2Q- R},

with R(§ = 0) = Ry, and R'(¢§ =0) =0, where Ry is found from the & curve. The sym-
metry is imposed as v(—¢) = v(¢), Re(E(-£)) = Re(E(¢)), and Im(E(-¢)) = —Im(E(¢)).
The temporal Egs. (74) and (75) are solved by

2
?+%(%+R2)=0, (100)
8’R 1 Fg
@ = vRt I (101)



with the periodic boundary conditions for v and R and thé normalization of
| 1 1/2
R(vmax) = [Q -3 (vmax = V)?| . \ (102)
An example of a dark soliton with V = -5, P =1, and Fy = 0.1 is shown in Fig. 9.
All these solutions that started from the equilibria we discussed early in this section seem
to show stablé propagation in time (within our integration period), although in some cases a
certain degree of degradation of the original profile of v and E is observed. In particular, the
kink soliton (and, therefore, perhaps a trapezoidal soliton; i.e. a pair of kink and antikink
solitons) for Case A is stably observed; the soliton in Case B is also stably observed; and the
dark soliton in the complex E case ié also observed to be a stable entity over the pe;iod of

runs we performed.

V. Summary and Discussion

We have investigated nonlinear interaction of electromagnetic waves and .acou'sti_c modes in
an electron-positron plasma. The ponderomotive force of electromagnetic waves acts on thé
electron-positron plasma density. The density depression of the plasma created by the EM
waves in turn acts on the propagation and diffraction of the EM waves: it tends to trap the
EM waves. Thus the self-trapping of EM waves and self-evacuation of the plasma resuit.
When the typical wavelength A of the EM waves is much greater than the collisionless
skin depth c/wpe, the packet of the EM waves is Virtuaily :;tationary with respect. to the
sound propagation (which is ¢/v/3 in a relativistic plasma). Such a situation was called
the nonresonant interaction of EM waves and acoustic waves. This précess may happen
explosively in two or three dimensional cases, as the phenomenon accelerates, as the density
perturbation grows and further intensifies the process. Thus the nonlinear coupling of EM
waves and plasma in this case can give rise to significant structure formation and the plasma

density profile can be easily sculptured by the “self-attractive force” of EM waves.
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When the group velocity of the EM waves and the phase velocity of the acoustic waves
match, a resonant interaction (and possibly amplification) of acoustic waves by the EM waves
becomes possible. This happens when the typical wavelength of the EM wavepacket is equal
to the collisionless skin depth for the relativistic e~e* plasma case. The coupling between the
EM waves and acoustic waves has been analyzed, using the reductive perturbation theory.
Our analysis led to coupled equations for the acoustic wave field v, and the EM field E,
Eqs. (74) and (75). Equation (74) appears in many literatures of EM-plasma coupling.
Equation (75), however, appears to be a new type of equation in this connection. This is
a homogeneous equation. These two equations conserve energy. The initial and boundary
value problem of this system is discussed in the Appendix. We are able to obtain stationary
(or propagating) solutions to the system of Eqs. (74) and (75). They take such forms as
bright solitons, shocks, trapezoidal solitons, and dark solitons, as well as periodic nonlinear
wave trains. To our best knowledge, these solitons obtained for the system of Eqs. (74)
and (75) are a new discovery. These solutions represent, once again, a possible significant
structure formation in an electron-positron plasma. Thus in either nonresonant or resonant
cases we find possible mechanisms of structure formation in the electron-positron plasma.
This plasma can be said to be more plastic than the usual electron-ion plasma. This is
because the former does not develop charge separation and thus no restoring force, while the
latter invariably develops charge separation and this tends to saturate the above process.

Let us discuss the cosmological relativistically hot electron-positron plasma in particular.
Several plasma densities characteristic of each particular physical process are examined. For
the plasma to exhibit collective processes such as plasma oscillations, it is necessary to have

the mean distance of plasma particles much less than the characteristic mean free path'®:

1
7 < (nokn)™t (103)

where n is the electron density and ¢ is the cross-sections of electron-photon collisions. Since
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in the relativistic plasma photons and leptons behave similarly kinematically speaking, this
cross-section can be a measure of photon-photon, electron-electron etc. collisions as well.
When T > mc?, the cross-section should be, instead of the Thompson cross-section, the

Klein-Nishina formula:

3 [ mc? '
OKN = g (E) orT (for hw > mcz) ’ (104)
while
OKN = OT (for hw <« mc?) | | (105)

where the Thompson cross-section o7 = & (e?/mc?)?. The typical energy of photons Aw is,

of course, T. Then the critical density n, below which Eq. (103) is realized is

3/2 3/2 _
Ny = 71'_3/2 (%) ’}‘3—3 ~Tx 1036 (%) cm"3 9 (106)

where 7. = €?/mc? the classical electron radius. Thus Eq. (103) is fulfilled in our plasma,
where n is typically 10%® — 10 cm=2. For more kinetic theory, see such as Ref. 20. Similarly
the plasma collisionless skin depth c/w,, for collective behavior should be shorter than the
mean free path

c
< (nogxn)™?

(107)

Whpe

[Note, however, that for modes with wavelengths A much greater than (noky)~!, the plasma
may be regarded as a usual fluid.] More discussion on the collisionless nature of the plasma

and kinetic effects is provided later. The critical density below which Eq. (107) is fulfilled is

2 2
Nne = §r;'3 Jw =5 x 10% —ﬁi cm™? (108)
m mc? mc? .

The condition that the mean distance of particles is much smaller than the typical collective

length (the collisionless skin depth)

(109)

4= - )
ni3 " w,,
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yields the threshold density of

1 -3 3 -
nt=(4ﬂ_)37’e =2 x 10*cm™2 | (110)

below which Eq. (109) is fulfilled. Thus in our plasma the condition n-Y3 < c/wpe <
(nokn)™! holds.
In our plasma the (average) photon energy Aw ~ T > mc?. In our classical treatment of

plasma collective mode to be relevant, we require
T ~hw > khw, . (111)
The density at which Aw, = mc? is given by
ng = -l—rgl A72=2x10%cm™?, (112)
4r
where A. = % /mc the Compton wavelength. Therefore most of the time we have
T ~ hw > mc® > huw, (113)

in our particular epoch of 102 < ¢ < 1sec after the big bang.

So far in our investigation we have neglected collision and kinetic effects. The viscosity
# in a collisional fluid is inversely proportional to the collision frequency. When the fluid
becomes less collisional, the collisional viscosity begins to lose simple meaning. In a less
collisional plasma the mixing of particles, so to speak, gives rise to large viscosity. In the
collisionless limit we now have interpenetrating “fluid elements”; i.e. collisionless plasma
particles. Each particle preserves its memory for a long time with a straight orbit as the first
approximation. Because of this, the particles now suffer Landau damping, which can play a

role of effective collision. The kinetic equation under consideration is

af  af [ 1 v xB of |
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where the collision term on the right-hand side is neglected and the pressure term can
incorporate the photon interaction through P = o¢~/3n%3, An approximate dispersion

‘relation for the phonon in e~ — et plasmas may be given by

4 w
15w (&) =0, | (115)

which exhibits large Landau damping, where W is the W-function.'® Because of the signif-
icant Landau damping for phonons with wavelength larger than ¢/wp., the most important
coupling would be the nonresonant (Sec. II) interaction.!® Another distinct kinetic effect (or
effect of particle nature) is the Compton scattering of photons (EM waves). The Compton
scattering by plasmons becomes important when Aw ~ Aw, for densities of n > n,, which
can happen very early in the plasma epoch. The discussion of such topics is beyond the
scope of the present paper.

In the description of fluid behavior the Reynolds numbe; sometimes plays an important
role. For Wavelengths‘ much la.rgei' than (nogn)~!, the plasma behaves like a usual fluid and
the Reynolds number may be expressed as R = A\%v/u, which can be much larger than unity,
where v is effective collision frequency either replaced by the Landau damping rate or other
collisionless mechanisms such as the chaotic orbit effect. On the other hand, for wavelengths
A ~ c/wye K (nogn)7!, the plasma is collisionless and nearly dissipationless.

The impact of the present theory on astrophysical settings is expected, as the theory
predicts a fairly stable stationary structure cafved out in a relativistic plasma. Detailed
examinations of the application of this theory to cosmologicailplasmas, AGN plasmas, pulsar
plasmas, etc., however, are too much to be contained in this short article. Instead, it should
be left to future astrophysical publications. For sexﬁiconductor electron-hole plasmas the
process of combination into positronium has to be taken into consideration along with lattice

ions and bound electronic responses.
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Appendix

We examine well-posed initial and boundary conditions to the system of Egs. (74) and (75),
where the spatial interval is @ < ¢ < b. To this end, by means of Eq. (75), we express v by

E as
v = E&E/E ,

which is introduced into Eq. (74) to give

(Eee/ ). = - (3 + 'E'2>e ,

l.e.

2
ngTE—EggE.r:—:<P-2—+|E,2) E2EF
: 3

or

(Ber E—E¢B,),=F. | (%5')
Integrating this equation from a to ¢, we have
EETE—EEE,=/G€ Fdt+ (B B - B El,_, , (A
which is formally solved for E, as
E =0E+E/f(G/EZ)d§+DE/:dg/E2, (A-2)
where C is a function of 7 and
G-—;/:Fdf, (A-3)
D=[EwE-FEEl., . (A-4)
If E at { = a is given and does not identically vanish, namely E(a,7) = f(r) # 0, then
%sz, ie.C=f/f.
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Therefore, when E and E; are given at ¢ = a as functions of 7, B, is determined by

3 3
By = (fINE+E [ (GIEd+(g f g fE [ de/E? (A-5)
where E¢(a,7) = g. We thus find that the initial and boundary conditions can be given in
a<¢(<bas
Case (I):

T=0:E(£,0) is given
§ = a: E(a,7) # 0 (does not identically vanish), E¢(a,7) are given.
A simple boundary condition may be that both f and g are constant. In this case C' and
D vanish, and (A-5) takes the form

B=5 “G/Ede . (A-5)

In this case, the boundary “6 = a” may be —oo, so that E approaches asymptotically the
constant value f as £ — —oo. (Then E¢ — 0.i.e. g = 0).

If E(a,7) = 0 for Vr(f = 0), but E(b,7) does not identically vanish so that E(b,7) =
h(r), we have

b
W=Ch+h [ (G/EYde,

hence
b
C=h/h- / (G/E?)de .

(D vanishes regardless of g, hence it is not necessary to specify g). Consequently, the time

evolution is given by

E, = [h’/h -/ b(G/E?)dg] E+E [ f(GEYde

= (K'/R)E — ( /6 b(G/E?)dg) E. (A-5")
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If & is constant; Eq. (A-5") reduces to

B =- ( J b(’G/E2)d§) E.

We thus find
Case (II):

r=0: E(¢,0) is given
f=a: E(a,7)=0 and ¢{=0b: E(b7)=h(r)#0 is given.

(@ = —o0, b — 400 may be assumed.) If both E(a,7) and E(b,7) vanish identically,
C is not determined, hence the time evolution of E at 7 = 0, (E)r=0, is not uniquely
determined by the initial value £(¢,0). There may be infinitely rﬁany solutions satisfying
' the same initial value. Unique solutions will be possible unc_ie;r special initial conditions
only, which are examined as follows. From Eq. (75) and the boundary condition it follows

immediately

: b b /1
| / Fdé=0, ie / (—v2 + 1E|2) E*de =0, (A-6)
a a 2 K3

where v = E¢/E. When (A-6) holds initially, it perpetuates, provided E , is given by (A-2)

(because (A-2) yields (75").) Hence (A-6) is a necessary condition in order that the boundary
condition is satisfied. In the special case that F is real and v is a function of £, F becomes
perfectly differential. Then in the limit £ — 0 as a — —oo, b — —oo, (A-6) is satisfied
automatically, and it leads to the solitary waves of Fig. 3(I). The solitary waves comprise
two independent parameters (V' and P), which can be selected freely. (This differs from the
KdV soliton). Hence by fixing these two parameters and a phase constant we have a solitary
wave, which is given uniquely. If the initial value is given by the solitary wave at 7 = 0,
the initial form moves with constant velocity V as T evolves. That is, the solitary wave is
a unique solution for the initial value. In view of Eq. (A-2), for the solitary wave we have

the relation E, = —V E;, which makes it possible to uniquely determine C. However, if

35



the initial state is disturbed slightly so that it is no longer a solitary wave, (though (A-6)
is valid), then for the perturbed initial value, C is not uniquely determined. Therefore a
continuous dependence of solutions on the initial value (given by the solitary wave) is lost.
In this regard, it may be said that the solitary wave is not evolutionary, hence it is physically
irrelevant. Here we note that this difficulty of non-uniqueness of solution originates not in
the condition (A-6), but in the evolutional pfoperty of (A-2) (or (75')) associated with the
boundary condition. (In fact, (A-6) is required also in Case II in the limit ¢ = —o0, b — oo,
but C' (solution) is unique provided (A-6) holds initially.) The periodic boundary condition
also leads to the same difficulty. Therefore we conjecture that
Case (III):
E(a,7)=E(b,7)=0 (a,b, may be + o0)

or the periodic boundary condition is ill-posed. -

Finally, we examine the case of infinite region of

—0<é< 0 and lim F = indefinite .

[§|—ro0

In this case as a physically relevant boundary condition we assume the outgoing wave at
£ = +o0 or £ = —o0, that is
E - Egexpik(6 -Vt) as £ — +oofor V>0

¢ = —c0for V<0,

where Eo(# 0) is a constant. From Eq. (75) we see
v— —k*<0 as £ — oo (V20).
Under this condition D at £ = 400 or § = —oo vanishes. Hence (A-1) becomes

EgTE—EgET=/_;Fd§ or = _/E“ng;
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consequently one hag

E, =OE+E/_;(G/Ez)d§ (or _/E“ng) .

(G:/;ng or —/6°°ng>

- Then, by means of the boundary condition at ¢ = —qq or +o0, C' is given by

boundary conditions.
Case (IV):
T=0; E(¢,0) is given , L

E (Case A, V > 0) belongs to IV, It the outgoing wave at ¢ = too (V > 0) is assumed,
in general at § = —o0, the solution will is comprised of the incoming and outgoing waves.
Only in a épecia,l case that solitary waves Propagate at { = —oo, the outgoing wave (namely
the reflection wave) does not exist. That is, the (nonlinear) potential o in Eq. (75) is
reflectionless. We thys find that the difficulty of the non-uniqueness of solution arises in

Case (III) only.
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Figure Captions

1. The wavenumber space locations of photon wavepackets (a) and (b) for the nonresonant
case vy, < cl. (c) The dispersion relations; the resonant photon (indicated by a dot)

with the phonon branch w = ¢,k.

2. The pseudopotential ® [Eq. (85)] for Case A with real E as a function of the electric
field E. The maxima at £ = +v/P and the minimum at E = 0. The homoclinic
(solitary) wave is realized for the Case II; i.e. W = ®ps. Case I gives a nonlinear

periodic wave train, Cases III-V unbounded (unacceptable) solutions.

3. The pseudopotential ® for Case B with real E. Case I can give two period waves as
well as one period wave around E = /P or —v/P. The solitary wave is realized
when W = 0. Case II: Periodic waves for W < 0, but no solitary wave possible.

Case IIL: Solitary wave is possible for W = 0.

4. The pseudopotential & [Eq. (94)] as a function of amplitude R. Case A potential is in
(a), Case B potential in (c), while the dark soliton for Case A is shown in (b). In both

Case A and Case B nonlinear peridic waves are also possible.

5. Numerical time integration of Eqs. (74) and (75) for v and E for Case A(I) with real E.

Periodic wave case. The phase velocity of the structure was measured to be V.

6. Time integration for v and E for Case A(II) with real E. Solitary wave case (kink

soliton) for E. Note that |v]| shows a bright soliton shape.

7. Time integration for v and E for Case B(I) with real E. The double periodicity pattern

can be seen particularly in E. Note that v changes its sign.

8. Time integration for v and E for Case B(II) with real E. The bright soliton is observed.

Note again that v changes its sign.

40



9. Time integration for v and amplitude R for Case A with complex E. The dark soliton
is observed in the amplitude R of the electric field. Although V > 0, the solitary

velocity v is locally negative with V + v still being positive overall.
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