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Abstract

The general expression of the power transfer from a high-energy ion beam to a
background electrostatic plasma wave is obtained as a function-of an arbitrary wave
amplitude. The injected ions are assumed to slow down through classical transport
processes and form a weakly destabilizing distribution function. It is verified that
phase space gradients produced by a finite a,fnplitude wave enhances the power transfer

significantly, as was also indicated in earlier work.

- *Permanent address: Institute of Nuclear Physics, Soviet Academy of Science, Novosibirsk, U.S.S.R.



In an earlier work,! the expression for the power transfer from an ion beam (injected
at high energy and undergoing particle annihilation) to an electrostatic plasma wave, was
- derived in the two limiting cases; the small (corresponding to Landau damping) and large
amplitude limits. It was not possible to completely describe the power transfer rate in the
transition region of the linear to nonlinear theory. In the present work, we construct a
solution to this problem which holds for intermediate amplitudes as well and we explicitly
demonstrate the existence of an enhanced maximum of the power transfer (relative to linear
theory) at finite amplitude. This calculation demonstrates a case where the response of a
nonlinear wave??® can differ dramatically from simple Landau damping predictions as was
also discussed in Ref. 1. If the background dissipation can be described by linear theory,
-the saturation level of the nonlinear wave may be much larger than the expectation of
simple dimensional arguments. This arises in this problem because the source of particles
establishing the steady state cannot feed particles in the trapping region. As a result a large
phase space gradient arises at the separatrix of passing to trapped particles, which then
causes an effective enhancement of the power transfer at a rate unrelated to the linear iaower
transfer drive. Similar enhancements due to phase space gradients were observed in a drift
wave calculation even without a particle aﬁnihilation mechanism present.*

We assume that a high-energy beam is injected into a background plasma where a single
mode of an electrostatic plasma wave (or an ion acoustic wave) is present. The injected
ions simultaneously slow down and annihilate due to classical drag and charge exchange
processes and thereby form a weakly destabilizing distribution function to the background
plasma wave. We also assume that the distribution of the initial velocity vy of the injected

(o]
ions is given by Iy(vo) = @ Sr(vo), with the normalization /

-0

St(vo)dve = 1. Considering
the one-dimensional problem as in Ref. 1, we write the distribution function of the fast ions

as F(t,z,v) = /Oo f Si(vo)dug, where the Green’s function f = f(t,z,v;vo) satisfies the



following kinetic equation

0 0 E0 0
8_{-}- 5{-{_%05 z/af+a-a%+Qo5(’U—Uo)- (1)

Here each fast ion with the mass m and the charge ¢ is assumed to slow down due to collisions
with the Background plasma with a drag coefficient (deceleration) a and to annihilate at a rate
Vs. The electrostatic electric field £ is taken as € = —9¢/0z, with ¢ = g cos(kz —wt), where
wo is treated as constant under the aésumption that the growth rate of the wave is small.
Transforming the iﬁdependent variables to % = kz —wt(k > 0) and E = %?/2—® cosp — b,

where ® = qpo/m, a = a/k and U = v —w/k, we rewrite Eq. (1) as

| iU%_— =+ gQu (E' @cosgb—az/)—lu0> _ , (2)
where u(¢, E) = |u]| = \/Z(E — ®cosp —onb)\, v = volky ug = vo —w/k,
1 if >0 fr(,E) if ©>0
g={ ‘ and f={ '
0 if 4<0 f~(,E) if u<0.

We note that E is a constant of motion of a slowing down particle and the particle is reflected
by the effective potential Peg(v) = @ cos?h + ) at the turning point ¥, Which is defined as
the minimum value of v, that satisfies u(zﬁt,E) = 0; the other roots 1, of u(¢t,E) =0 (if
they exist) are inaccessible to particles born to the left of the turning points (Fig. 1). The
Bounda,ry conditions of Eq. (2) are, for a fixed E, f+ — 0 as ¢p — —co and f+ = f~ at the .
turning point ¢ = t;. For a given E, there are a finite number (IV(E)) of “birth” points
{wéi) } (1 <4 < N(E)) where the delta function of the right-hand side of Eq. (2) takes
non-zero values. Here z/J,Ei) satisfles £ = u3/2 + ® cos ¢£i) + _av,bgi). The solution to. Eq. (2) is

then found to be

N(E) o v
- Q e dyp vy
E) = ; kUI3U'/5¢l¢=¢g> exp <_U/¢§,") " Fv /t " ) . (3)

We now calculate the power transfer Piota to the fast ions from the plasma wave
kq 2n/k co o0 | :
Poa=nt [ do [~ dogof= [ duoPluo)Si(uo+uw/k), @
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where

wqcpo 27“ sin _ ku
/ -/‘I>cos1/;+mb 'Qb E) <f+ + f + O (U)) ' (5)

In the following, we assume that S7(vo) is a peaked function about vo = Vo with a relatively
narrow width AV, where AV satisfies (® + «)/Us K AV € Ug = Vo —w/k. In Eq. (5) it is
assumed that the contribution to P is from a narrow region in velocity space where the speed
of particles is near zero in the wave frame, so that quantities of O(ku/w) are ignorable. Since
f* satisfies f*(¢p + 27, E + 27a) = f£(¢, E), we use the transformation £ — E — 27na,
¥ — 1 — 2wn (where n takes on successive positive integer values) and then find that we

can invert the order of integration of Eq. (5) as

27 .foo B 427 Pe(E)
/0 Ilb Acosd;+d1{; /E1 —00 ¢ ( )

where E; denotes a local maximum of the function £ = ® cost + ayp at ¢ = 1y (as shown

in Fig. 1). Using the relation

I ®__1,
Y

.U «

Y2 0] Y
$ 2 gy,
Yy

Y1 o 1

we readily obtain from Eq. (3)

- 2Q) Vg v® v s1n¢
fr+f _%‘)‘ kug |8u/6¢|¢=¢§.-) P <_T> (1 o /«p(') u dd)) (M

if ¥v/®/a <« 1. With the use of Egs. (5)~(7), P(uo) is calculated as

_ wipoqQ Vg Ve (E(ud ¥s)) sin ¢
Plu) = == exp (= 22) {/z(u@dd’”/-oo (o B )

v® Ve (B (ud¥s)) sin ¢ :
B a JI(ud e (Z-oo u('l/J,E(ug,@bb)) dlb) } ’ (8)

* where we used E(u?, %) = u/2 + ® cos b, + oy and

/E1+27roz JE ]\%E:) 1 / P
E; , Uol@%/a'l/)|¢=¢gi) - I(ud)

=1
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with the domain I(u2) of 1 on which the energy E(u?,¥) = u3/2+ @ cos ) + a1 lies between
Ey and Ey + 2ma for a given ug. As explained in the caption of Fig. 1, the total length of
the domain I(u?) is 2. In deriving Eq. (8), we used the relations dE = (o — @ sin ¢§"))d¢§i)
at each birth point 1/),5” for a fixed uo and uOu(E,v¥)/0¢ = ®sintp — « for a fixed E. The
lower limit of ¥-integral v,bbi) of Bq. (7) has been replaced by —oco in Eq. (8) since up > ®*/2,

It is easy to show from Eq. (8) that P(u2) = P(uo) exp(vug/a) is a periodic function of -

u? with period 4ra. Therefore, the total power transfer of Eq. (4) is givén by

1 7% dz
e 2 vz
Protal 2/0 \/26 P(2) S1(v/z + w/k)

el S sa kb e [T ae ), )
where z = u2, z, = nAz(n > 0) and Az = 4ra. In deriving Eq. (9) we used the fact
that exp(—v+/z/a) and S;(\/z+w/k)//z are slowly varying functions of z éompared to the
spread UpAV of the initial kinetic energy of the particles and the period Az = drar of P(2),

respectively. Since the average P of ’Pb(z) over a period Az is independent of z, and

1 & o0
“we obta,iﬁ |
exp <;V Uo) .
zn+Az
— (84 _
Piota = T ora /zn dz P(z)
exp (—'I/ Ug) - .
_ wipo Q) o ) [thr ,
—. Tk Ao /2n duO /I(ug) dd)b g(E(yOa¢b)) ) '(11)
where
Yt gin ¥ gin :
9(B (g ) = /_oo Pay- 22 (/_w y d¢> : o (12)
Transforming the variable u3 of Eq. (11) to E‘ = E(“m 1y, We have .
1 [tz B +2re : ‘
5 A ) 0= [ 4B s = 27r/ iE (13)
Zn uo |

)



where the domain Q of the integration is transformed to a rectangular region as illustrated
in Fig. 2(a).
We consider the contribution to Pioys from the first term of the right-hand side of Eq. (12).

Averaging Eq. (11) over u2 with the use of Eq. (13) leads us to consider

, P Ei+2ra ¥ (E)  gin ¢
Gy=— [ dE /_m NI (14)

We define 1;; as the coordiate satisfying E; = @ cos 0 + ahio = P cos ¥y + atpy as in
Fig. 1. Note that we take ¥y < ¥u < ug + 27 (see Fig. 1) and tu = thy only if a/® > 1.
We split the integration over ¢ in Eq. (14) into the two domains (—o0,%;1) and (Y, Yi(E))
and exchange the order of the integrations over E and ¢. Changing the variable from E to

u = u(¢y, F) yields

, 1) Yer uz2(¥) . Y2 u2(¥) X
Gy= = /_w dip /w)) dusin + [ - d¢/0 dusing | | (15)

where u1(v) = u(, B1) and uy(v) = u(4, Er + 27a). Performing the integration over v in
Eq. (15) and using the relations uy(¢p — 27) = ui() and sinep = @7 (uy duy/dyp + ), we

obtain
- Y

Gy = , dip ur (9) -

to

Clearly G4 = 0 if ® < o (when %y = ¥y ). Therefore the total power transfer is given by

Pua= 61 (2) 48226 (5)] 21 (16)

where § = IZ]ZU ~ O(1), and
a(5) ==k Uim € - (@/izp) o ¢]1/2>2 | i
(8)= 450w 2 (3) [ b Stomta - siu=d] " 09
PL = Proat(® — 0) = _"mz“’Q 222 exp [_% (Vo -w/k)} . (19)
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Note that Gy(y — 0) = 1, Gy(y — o0) — 64/7%, Ga(y) = 0if y < 1 and Go(y —
o) = 16/ 72y3/2, The contribution to Piotal from G, agrees with Ref. 1 for all y while the
contribution from ‘G, agrees with Ref. 1 in the asymptotic limit ®/a > 1. The result for
O/~ 11is a new result. The numerical structure of Gy (y) and Gy(y) is given in Fig. 3.
We note that linear theory applies if ®/a < 1 and the power transfer changes scale when
®/a > 1. For &/a < 1, Gy = 0, and the power transfer rate Gl.PL is comparable to the
predicted linear Landau damping rate. If the G term were not present (which can be shown
to be the case if annihilation of particles trapped in the separatrix region did not exist), the
power transfer rate, due to the nonlinearity of ® in the Gy term, would gradually change
for finite ®/a and for large ®/a it would be reduced by a factor 64c/7%®. If in addition
to the destabilizing drive, a linear dissipative power transfer of the wave to the background
plasma was present at a rate G’vaL | (note Gy < 1 if linear instability is to occur) the level of
saturation is determined by the zero power transfer condition (G1 — Gq)PL-= 0 (if Gg € 1
the saturation level is ®/a = 64/7% Gy). However, particle “a,nnihﬂa,tion forcgs the f;résence
of the Gg term which completely changes the scale of the saturation level. We néte that

the power transfer is amplified by a large factor w/ka'/2. The critical point, ®/ o= 1, just

occurs when a separatrix arises and the particles slowing down from the source are unable"

to penetrate the trapping region. Saturation then occurs when ®/a > 1. Then neglecting
Gy, the zero power transfer condition, (fw Ga/ kal/? — Gy) P, =0, predicts that saturation
occurs when & = (16w B/ 72k G4)%/3, roughly a factor (w?/k?a)'/?, larger than would be

inferred from examining parameters arising in linear theory.
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Fig. 1. The birth-point curve E = Tul+®cosp+ap (A) and the effective potential curve
E = O = ®cosy) + ap. (B). For a given E, the birth points ¢{(: = 1,2,3) and the
turning point v; are also shown. Here 935 = 1y + 27. We note that .o indicates inaccessible
points ¢ that satisfy u(¢, E) = 0. The total length of the integral region I(u3) is in general

or, which is easily seen in the special case of this figure by moving the section a to a’.

Fig. 2. The integral regions of Eq. (13). The hatched region of (A) indicates {2, which may
be transformed to the hatched region of (B) by transforming ¢ — a’, b — & and ¢ — ¢’ in

(A).

Fig. 3. Plots of the functions G4 (y) and G,(y). For larger y, G1(5.0) = 0.20, G(5.0) = 0.096;
G1(10.0) = 0.14, G5(10.0) = 0.041; G1(25.0) = 0.068, G4(25.0) = 0.012. For y = 25 the

asymptotic form is about 10% larger than the numerical value for G5 and 20% for G;.
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