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Abstract

The description of stability of the gas dynamic trap is shown to be extremely sen-
sitive to the nature of the boundary conditions. Two model Boundary conditions in a
moderately long mean free path limit are considered: insulating boundary conditions
and conducting boundary conditions. The former boundary condition reproduces the
magnetohydrodynamic (MHD) results of previoﬁs studies, Whére the outflow of ions
contr.ibute to‘the MHD stabilizing properties of the system. However, with conduct- -
ing boundary conditions it is shown that the outflowing ions do not contribute to the
system’s stability. In this case, which is likely to be physically relevant, the MHD stabi-
lizing term only comes from the ele‘ctron pressure in the expansion region, and the gas
dynamic trap would not be as stable as previously envisioned. The physical difference
in these two boundary conditions is attributed to a passive feedback mechanism from

the oscillating edge potentials that is only present in the insulating boundary case.
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1. Infroduction |

Stability of the gas dynamic trap (GDT) has previously beeﬁ studied based on the mag-
netohydrodynamic (MHD) model.}? This analysis showed that flute modes in the trap can
be stabilized by the expander regions. The curvature of the magnetic field lines in the ex-
panders is favorable and large; large enough to overcome the destabilizing contribution of the
axisymmetric mirror cell. One of the results of Refs. 1 and 2 is that stability is proportional
to the total pressure gradient in the expanders which includes the density of ion momentum
flux arising from lons streaming along fleld lines as they escape the expander. The increased
energy is especially important for GDT because in the expanders the ions are accelerated by
the ambipolar potential to an energy several times the central temperature thus increasing
their momentum flux.

Kinetic treatments often reproduce similar results as MHD?®* predictions for isolated
plasmas in mirror geometry or tokamaks. However, kinetic treatments allow for additional
modes or effects; e.g. trapped particle curvature driven modes,>® hot particle effects where
decoupling can arise if the curvature drift is larger than the mode frequency, and charge
uncovering.” In the GDT, the geometry also differs from usual considerations in that the
plasma is not isolated from the wall; instead it is essential to understand the dynamics of
the plasma that flows to the wall. Here we develop a kinetic treatment to describe a model of
a mirrbr-tra,pped plasma satisfyﬁng the conditions of the GDT, including the flow to the wall.
We find that the description of the stability is highly dependent on boundary conditions. If
one takes insulating boundary conditions, where the parallel current density vanishes at the
wall, then the MHD result of Refs. 1 and 2 are recovered. However, if one takes an opposite
extreme, conducting boundary conditions where parallel current density at the wall is not
constrained to vanish, one finds the ion outgoing momentum flux in the expander does not

contribute to stabilization, although the electron pressure in the expander does contribute.



This latter result is particularly important for the stabilization principle of the GDT. Our
treatment of the conducting boundary condition assumes that line bending effects that would
otherwise give rise to line tying at conducting boundaries is not significant for sufficiently
low beta. Instead, the mode is assumed flute-like over most of the axial length but varies
rapidly near the end walls where in a Debye length the potential can change rapidly and
vanish at the wall. However, because of the low density and short length of this region, the
effect of this transition from a flute response of the mode is negligible, as can be shown using
the analysis given for electrostatic fast growing trapped particle modes described in Ref. 6.

This paper will develop in detail the formalism to describe the theory with conducting
boundary conditions for the GDT which has not been previously developed. The result
with insulating boundary conditions reproduces the criteria of Refs. 1 and 2, and u short
derivation that follows from kinetic equations is givenv in Appendix A. The physical difference
that gives rise to the two different responses is explained in Appendix B.

We find that the two systems are different with regard to the perturbed electron 'Hensity
response, but the ion density response of the two systems is identical. This appears paradox-
ical since it is the outward ion momentum flux in the expanding region that is responsible for
the MHD stabilization. However, for the insulating boundary case we find that the electron
density response couples to the ion outward momentum flux through the constraint that axial
flow at the ends for these two species must be identical. The perturbed ion current end flow
is proportional to the products of the outward ion momentum flux and field line curvature
in the expander (i.e. the MHD stabilization term). The electron end flow can match thls by
having the end-potentials modulate in just the right‘ way. Through the electron éontinuity
equation, the perturbed electron density in the bulk is then proportional to the electron end-
flow which in turn is proportional to the MHD stabi]jzutiou term. If there is a conductor

at the ends the end potential can not change and one loses the passive feedback mechanism

on the electrons. With the conducting boundary the interchange instability driven from the



central region can only be slowed down by dissipative effects as described by Kunkel and

Guillory.®

II. Equilibrium

The magnetic field configuration bf a gas dyna,mié trap is shown in Fig. 1. The trap consists
of the central cell and two expanders terminated by the end walls which absorb plasma
flowing out of the mirror cell. The favorable curvature in the expanders is supposed to
provide overall stability of the whole machine. Typically the expander is much shorter than
the central part L4 <« L., and the mirror ratio in the central cell is large, R = Bmax/Bo > 1,
with Bpa.y the peak magnetic field, By the midplane fields and the subscripts “A” and “c”
refer to the expander and central cell respectively.

In the central cell both electrons and ions are described by the Maxwell distribution

functions

MJ o -E/T;
Fie = Fjm = no (271"[}) € ) (1)

where ng is the plasma density, £ = %M ; v? + g;¢ is the energy, M; and T} are the mass and
the temperature of species j. We consider the plasma with singly charged ions, ¢; = —q., so
that equilibrium density ng is the same for both species.

For the sake of simplicity we will assume that T, < T} in order to neglect the effect of
ambipolar potential on ions. Note that in the central cell this pbtentia,l is constant along
field lines almost everywhere except for regions close to the mirror throats where B ~ Bpax.
In this small region ions also depart from its Maxwellian form.

Since the electron collision frequency is assumed to be large enough the electron distribu-
tion function in the expander is the same as in the central cell. The ion collision frequency

v; is assumed to satisfy
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where L. is the central cell length and vr; is about the ion thermal velocity (see Eq. 7
below). In such a regime of colhs1onahty the ions have a long mean free path compared to
the machine size, but can still maintain a Maxwellian distribution (with a filled loss region)
over most of the central cell. Only near the mirror peak does .the ion distribution distort
from a Maxwellian and eventually tra,nsform.to an escaping half Maxwellian at the point
where B = Bp.,. In the expanders the ion population consists of particles with y < E/Bpax
which can escape through the mirrors. Their distribution function in the right expander (see
Fig. 1) is

Fip = Fipr 8(E — 1t Broax) 6(vy) | (3)

where 0(z) is the step function. For the left expander one should change v — —v in Eq. (3).

Using Eq. (3) to calculate the ion density in the expanders we find

B \/? 1 B ‘ B i
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Since electrons here are distributed according to the Boltzmann law, n, = ng exp(—g. ®/T.),

it follows from quasineutrality that when B < Bmax the ambipolar potential ® is given by

T, B
@A = ——-—Zn 4Bmax

(3)
This potential extends to the end wall which absorbs plasma flow streaming from the central
cell. At the wall there exists a Debye sheath that reflects electrons and thereby édjusts the
electron loss flux to the end walls to equal the ion flux. ‘
Using Eq. (3) we can evaluate the particle flux from the trap and find the loss rate Vs

which is defined as the ratio of number of particles lost per unit time per unit magnetic flux

tube to the number of particles in the tube:
2 / d3v v Fia
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where B,, is the magnetic field at the end walls. In the integral in the denominator we

can neglect the contribution of the expanders because of their small length and low density.

Then we find

ds\ 7' .
Vp = UTy (Bma.x /L —B—) -?’UTiRLca : (7)

where vr; = 1/27T;/7M; and the subscript L. indicates that the integration is taken between
the mirror points of the central cell. The inverse quantity, v, ! ~ R L./vri, gives the particle
lifetime in the gas dynamic trap.

An extensive detailed discussion of the GDT concept is given in Ref. 9.

ITI1. Basic Linear Equations

We consider an electrostatic perturbation which is easiest to describe in the eikonal rep-
resentation; i.e., the perturbed potential is expressed (s)exp[—iwt + S5(¢,0)] with k. =
V(9S[0p) +VE(0S]/00) = ky Vb + kg VO, where ¢ is the magnetic flux, 8 is the azimuthal
angle and s is the arc length of a field line. The perturbed distribution function f; satisfies

the following small Larmor radius kinetic equation

af; . : OF; F;
G it — ) fy - iga)e (w32 + T B) = ) ®)
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where
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is the diamagnetic drift frequency,
ckyg M; 1 Vi
LW =T BJ (”IZI + '2'”i> (’i W) ; (10)

x is the field line curvature and Cj(f;) is the linearized collision operator. The parameter
z = % (kL vy cM;/¢;B)? is assumed to be small, z < 1; it describes finite Larmor radius effect

(and has to be retained for ions only). In the paraxial approximation z is constant along a



field line because ky o< r~* o (¥/B)Y? and vy « (pB)'/2. In Eq. (10) we neglected plasma
rotation and also 8 effects that alter the drift motion. We shall also neglect temperature

gradients so that
% _ ko cT; dno
gino dip

Assuming that w is smaller than the bounce frequency, w < vr;/ L., it follows that to

(11)

lowest order f.(E,u) is constant along a fleld line. We average Eq. (7) along the line and

obtain
— Qe¢ * i |
Wfe —Dge fo — T (w—w))Fopr = 1C(fe) (12)
with
1 ds : ds
p== [ —0 ) =] (13)
T / Y| )|

where the integrals are taken between the turning points. Note that electrons aretrapped
by the magnetic field in the central cell and the ambipolar potential in the expanders. Most
“passing” electrons are reflected by the potential in the Debye layer at the Wa.ll..‘

When averaging Eq. (8) for ions which are confined in the central cell we will obtain
nearly the same equation as (12). However, ions having y < E/ By are not reflected by the
magnetic mirrors and produce an important endpoint effect. Hence ions are treated slightly
differently than electrons. We divide Eq. (8) by vy and average the integral between the
points of maximum magnetic fleld keeping the endpoint contributions. For g > E/Bpax
we have that f* = f~ at the turning point (the superscripts + and — refer to the parallel
velocity direction of the particles), but for 4 < E/Bmax fir # fi. Then the endpoint
contribution on the right.end for f is finite, while f;” vanishes, and the left end gives the
same result for particles going in the opposite directions. We shall assume an even mode in
¢ so that by symmetry f+(v,s) = f~(Jvy| —s). Now subtracfing the contributions from

the f* and f~ averaged equations, keeping in mind that v)| has opposite signs for the two
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directions, (and introducing the notation f; — % (fi" + f) where = signs are for positive

and negative velocity particles) we obtain

of ~0a fi= 22 (1= D) ) Far = T )~ EE LD 0 —u By (19
The last term on the right-hand side comes from the end point contributions and describes
ion losses from the central cell due to the ion flow through the mirrors.

We will assume that w >> v; so that ions are almost collisionless. Still we should account
for collisions for small pitch angles because the last term on the right-hand side of Eq. (14)
is a peaked function which angular spread in the midplane is of the order of R~1/2 « 1.

The pitch angle scattering dominates collisions in this case and keeping only this term, the

collision operator is taken as

1 0 | df;
CiF) = v g oy A 5 (15)
where A = u/E,
1/2,. 4
v, = l/i(E) = ZM A (].6)

and A is the appropriate Coulomb logarithm. (Note that since the equilibrium potential ® is
assumed small compared to the ion energy, F, in Eq. (16) is the kinetic energy, £ = M; v?/2).
Multiplying Eq. (15) by 1ds/v and integrating over a field line, and using that A in this

operator corresponds to small pitch angles, we find

— 0 a9fi

with



IV. Solution of the Kinetic Equation

We now proceed to solve the ion kinetic equation assuming the folloWing ordering
*  —
W, W > Wy . . ) (19)
We shall also assume that electrons are highly collisional and ions nearly collisionless
VL wLv, . v (20)

Together with Eq. (2) this means that we are considering an instability which grows faster
than the plasma lifetime L. R/vr;. Note also the inequality w < v; R, which follows from
Eq. (2) and w < vyi/ L. |

For the central cell we are looking for the perturbed distribution function of i.ons in the

following form

fi=hit+gi, . (21)

- where g; is the perturbation due to the loss term in Eq. (14). Since the losses are small we
first neglect second term on the right-hand side of Eq. (14). Using Eqs. (17) and (19), we

find the following equation for

AN _(, W Dai 5

Because the equilibrium potential is constant along field lines in the central cell the averaged
potential % can be considered as a function of A = u/E. Estimating the collision operator in
Eq. (22) we find that if §(\) is a smooth function whose width AX R /A7/|w| (or AN 2 7/|w|

if A S A)) then collisions can be neglected and

*

hiz%(l—z)¢(l——%> <1+—°{—jli) Finr (23)

" In the case where @()) has rapid structure, the collisions modify the solution given by

Eq. (23). Equation (22) can then be solved using a Green’s function and it is found that
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®(A) in Eq. (23) should be replaced by Z(\) where

B—l

B = [ GONEN)AN . (24)

The complex function G(A, X’) is the Green’s function

W {Ho(f)Jo(f’) , A>X

GO,V ==
W=7 Ho(¢) (&), A< N

(25)

where Jp is the Bessel function Hp is the Hankel function that vanishes for [¢| — oo, and
£ = (4wA/?)Y?, Im¢ > 0. The function G is symmetric, G(\, X') = G(X,)), and has the
property

B—l

/0 "GN AN =1 (26)

This function vanishes for large |A — X|/A), where A\ ~ \/m when A R 7/w and
AX ~ T/|w| if A S 7/|w| (the width of the Green’s function corresponds to a pitch angle
spread of the order of \/m which is the angle at which a particle scatters during the wave
_period ~ w™!). Recalling the definition of 7 in Eq. (18) and using (20) it is easy to show
that Bzl < |A — X| < Byl ’

For a smooth function @()) it follows from (24) and (25) that B()\) ~ @(\) and we obtain
the previous result (23).

In what follows we will assume that the width of ®()) is larger than the width of the
Green’s function G and then the use of @ in Eq. (23) is justified.

In order to evaluate g; we assume that g; < h; and substitute k; for f; in the last term on
the right-hand side of Eq. (14) keeping only the largest terms in A;. This yields the following
equation

w -3 | 0gi  1q:® £

wr¥ M

Comparing this with (22) we find

= iq;(w?‘—w) . By / __W_X)__ -1 / '
gi = T P GON) g3y ¢ (Bak—X) &)
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. 52(0) (@ —w) GOL0)
=i 220 2 0) GO0 (29)

where 7o = 7(E,A = 0) = L(M;/2E)"/?. In performing the integration in Eq. (28) we
have taken into account tl;at the integrand does not change appreciably in the interval
0<XN<Bl. |

For the expanders we make an assumption that due to their small length the ion time of
flight through them is much smaller than any inverse frequency entering the kine.tic equation.
With this ordering, the largest term in Eq. (8) is the first one. In zeroth order we have
0fi/8s = 0 from which it follows that f; is constant along a field line and hence equals its
value at the mirror throat given by the distribution function in the central cell (23) To
find this function we note that in the perturbed state only those particles reach the mirror
throat whose energy satisfies the inequality £ — ¢; @mir > f Bmax Where @, is the per;;urbed
potential at the mirror peak. Using Eq. (3) for the unperturbed distribution func;:ién' and

neglecting g; in Eq. (2‘1) we find

fiA = -Fif\/[ G(E — i Pmir — K Bmax)e('U”) - F;,M 6(E — K Bmax)e(’U”) + h,‘ H(E — M Bmax)ﬁ(v”)

w —w’ ¢:3(0)
— =

= —¢; Pmir First $(E — 8 Brnax)0(v))) + F. - (29)

where we have neglected z and the drift term is @y in Eq. (23).

We see that the ion .distribution functions both in the central cell and the expanders,
given by the forrmila_s (23), (28), and (29), do not depend on the boundary conditions at the
end walls. Electron losses, on the contrary, are very sensitive to these boundary conditions.
Below we consider in detail the case of perfectly conducting walls.

In this case, the potential at the wall is fixed and does not change in time. We can
then solve this problem iﬁ accordance with a method developed in Refs. 10 and 11. The
motion of electrons in a given magnetic field and wall potential determines a separatrix in

the phase space which bounds the confinement region. We are required to solve Eq. (12)

11



with f. vanishing on the separatrix. Since electrons are collisional the bulk of the distri-
bution function Fepr + f. (except near the separatrix) has to be Maxwellian with a density
no(l+ca) and a temperature T;(1+ /), where a and B are normalized density and temperature

perturbations. For f, that gives

Z_ )] Fore+ 67 (30)

fe= [a+ﬁ<Te 2

with 6 f <« a Fepr. Substituting this form in Eq. (12), and neglecting §f everywhere except

in the collision operator, we find

Tu(f.) = ~i(w —Ba) [a +8 (? - g)] Fopr +i %—”- (—wNFar=-Sg.  (31)

The solution to Eq. (31) can be expressed in terms of the Pastukhov problem!? which is

formulated as

Ce(f) = =S(v) . (32)

The particle loss rate v, and the energy loss rate vg, is defined by

szf-zé/d%s | Ve:/-ié/d%sv?. )
[i[rm " TE e

Taking the moments of Eq. (30), neglecting 6, we can solve for & and # in terms of v, and

ve. The calculations show that §/a ~ O(@ee/w, vp/w). Then neglecting B we obtain for the

density perturbation

o L) w—;)é" o L (?) <1_%2‘> (1+ﬁzﬁ_fﬁ) (34)

Te W — (Wye

where the angle brackets denote the averaging
d
/ Es / dav. Fe:\/f Wde
(wde) = dS . (35)
E n
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It is important to note that when 8 can be neglected, the problem posed by Eq. (31) is the
same as the equilibrium loss problem of electrons and then v, in Eq. (33) is equal to the
electron equilibrium loss rate, which is the same as the ion equilibrium loss rate given by
Eq. (6) (since the net current at the wall in equilibrium vanishes). With this observation,
Eq. (34) gives the solution to Eq. (31) in the ca;se of conducting Boundaries:. We emphasize
that the perturbed losses of electrons and ions, in general, are different producing an oscil-
lating current density to the wall, though the total current integrated over the azimuthal
angle is zero.

We note that if we had insulating boundary conditions, an additional potential structure
at -the wall would need to be considered to constrain the parallel current to vanish. One
can ‘gveneralize our method to take this case into account. However, the constraint of zero
parallel current d_ensity at the boundary allows for a simpler derivation for the response
which is given in the Appendix.

The eigenmode equation in our problem follows from the quasineutrality condition
> 47; =0, - (36)
- ' .

where 7i; is the perturbed density of the species j. With the distribution functions found in

the previous section we can now evaluate 7; using the formula

qm/dav +/d3 v ;. (37)

For ions in the central cell F; is Maxwellian and the perturbed distribution function is
given by Egs. (23) and (28). To integrate Eq. (37) over velocity space we convert energy
and pitch angle (A = E/ /.L) variables. To account for the £ and A dependence of Ty; and we

define a new variable &y which is a function of A only

©gi(A) = %waﬁ (B, p) - ' . (38)
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Now using the symmetry of the Green’s function G' and the normalization in Eq. (26) we

find

~ gi o BO d/\go
ic — B
e =T [ vty ( > / m

3 w) (B dpd) 3B w\ (8 d\gay
~2pB?[1 =L - — 39

4 ( w) 0 \/1—)\B (1 w)fo V1-2AB (39)

._ wf B ur;
+%(0) (7 B 1) WL Boa

where b = (cky /¢;B)*M; T;.

In the expander the distribution function is given by Eq. (29). For B &« Bpax the

integration yields

ﬁm=—7;°£" [1—(1——3—>1/2] [(p_@(o)(l_ﬁ)]Jr B(¢rmir — ) |

where n,4 is the local density in the expander.

For electrons the perturbed density is

.= —nq;,—‘P +an = qu?" [—ga-{- () (1 “:) (1 + <“’:‘*> %)J . (41)

Proceeding now to the solution of Eq. (36), we first note that since we assume, b < 1,

3t

wq/w < 1 and v,/w < 1, we can to lowest order neglect these terms in Egs. (39), (40), and
(41). Substituting the remaining terms in Eq. (36), allows for a lowest order flute solution
of the form

= (p) = o . (42)
Thus the potential is constant along a field line corresponding to a flute mode. In the next

approximation we put ¢ = ¢g + 6, where §p < g, and use the ‘quasineutrality equation

@no, wi\  gfno Wi\ B dA6z()) .
s Sttt ) (1= )+ [ 32 128 [
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+E s [% — 2661 + 54(0) (1 - %*)] (s — L) =0, (43)

where L ¢g is

* / . 2 * -1
geno (1w [(wae) iy Zino| 3, paf, _wi) [P Adipo
Lo= 22 <1 w>< ” w)¢o+ = [ 0B (1-7 /0 SV

w*)

3B <1 - —L -1

w By d/\&}d,‘ ¢0 .o w?‘ B VT

L— I o) T %el0) (TJ - 1) L B (44

The dispersion relation can be obtained from Eq. (43) by dividing'by B and averaging in s
which annihilates all but the Lo term in Eq. (43), yielding (L¢o) = 0.
For what follows it is convenient to divide the averaging over the full length of the machine

into two parts: averaging over the central cell and a,veraging over the expanders,

e ([ 5 fovruams) (], )"
item ([, & o) ([, 2)”

With this definition

(o) = L2l T A ) i) (49

d ds\ ! |
where, € = (/ Ei) (no/ -—S> , is of the order of magnitude ¢ ~ La/RL. < 1. In
L, B L. B .

Eq. (45) we neglect € (wq.), because the curvature in the expanders is much larger than the
curvature in the central cell as the gas dynamic trap is designed so that (wee) 4 > (wae), .

Using (L@q) = 0 and the identity -
d) By ' ds\ ™"
4/c /\/1—/\15" waile (/,79'>
and Eq. (45) with T; (wae), = —T. (wa;), one finds the following dispersion relation

Aw*+Cw+D=0 (46)

where
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T; . I T
C = —(b), w?‘—si <wde>,4+2yp§-.: (1+(9 <f>> (47)
D = 0 (wa) + ¥ ()

The first term in Eq. (46) is due to plasma inertia. The third one gives the conventional
driving force for the flute instability. We emphasize that in this coeflicient the ion drift
frequency is only averaged over the central cell, which means that ions in the expanders do
not contribute to stability. This prediction is in contrast with the results of the MHD theory
developed in Ref. 2 for insulating end walls. In Appendix A we present a short derivation
of the dispersion relation for the insulating boundary case. In Appendix B we explain the
mechanism that allows the two cases to give different results.

As is seen from Eq. (47) the electron drift frequency is averaged over the whole machine
including the expanders regions. Hence we conclude that the stability in GDT is provided
only by electrons. Note that even in the case T, ~ T; the electron pressure in the expanders is
several times smaller than the ion one because ions are accelerated by an ambipolar potential.

The linear term in Eq. (46) includes FLR effect to which a charge uncovering term (the
second term in the coefficient C) is added. The imaginary part of C is due to the electron
losses to the walls. It describes the line-tying effect through the Debye sheath at the walls.®
Note that in the case D > 0 a real C can stabilize the flutes (if C? > 4AD), but with a

complex C instability remains but with a reduced growth rate proportional to .

V. Conclusion

We have analyzed the stability of the GDT in two extreme limits, that of insulating boundary
conditions and conducting boundary conditions. In addition our analysis was limited to low

beta, T, /T; < 1 so that ions are unaffected by equilibrium electric fields, long mean free path
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coméa.red to the system length (though the mean free path was short enough that the ion
distribution is still near Maxwellian in the high mirror ratio central cell), and we assumed
that electrons were Maxwellian at a single temperature over the entire device including
the expander. These two limiting cases give dramatically different stability criteria. In
- particular, with.insulating boundary conditions the outflow of the ions can contribute to
the stabilization of the syétem, as is assumed in the design of GDT, while with conducting
boundary conditions the outflow of ions does not contribute to the stabilization. With
conducting boundary conditions the electron pressure in the expander does contribute to
the stabilization, but in practice, this pressure is several times less than the equivalent
pressure due to the ion outflow. Thus if conducting boundary conditions are appropriate,
the stability of the GDT may be considerably weaker than originally envisaged.!?

Several unanswered questions still need to be addressed in considering the stability of
CDT. The first is to note that metallic end-plates, which would give a response close to
conducting boundary conditions, is a fairly natural experimental situation. Using real insu-
Ia;ting énd-pla,tes as an end condition would likely lead to the problem of maintaining the
materials’s insulation integrity due to electrical breakdown under the flux of high energy
‘particles. Perhaps effective insulation boundary conditions can be established by radially
slotted plates, which can then effectively serve as insulators for low mode numBers, if electri-
cal breakdown does not occur in the slot gaps. Experimental studies may be able to address-
this problem. | |

The other important issue is whether the plasmé model used with the conducting bound-
ary condition theory gives results that are too pessimistic or difficult to verify under condi-
tions of the present GDT experiment. It should be noted that under present experimental
conditibns of GDT,'® the mean free path of electrons is short in the expander, which prevents
direct comparison of our theory with existing expefiment. However, it is the experimental

goal to increase the electron temperature, so that the long mean free path assumption for

17



electrons should be appropriate for a high temperature GDT. In addition, in a high temper-
ature GDT it is predicted® that the electron temperature will significantly decrease close to
the expander walls due to the plasma outflow in a highly diverging expander. This change
has not been taken into account in our theory. This may lead to even less stabilization from
electrons. |

Probably the most important neglect in our theory is the effect of plasma beta, which
can conceivably decouple the dependence of the plasma from the boundary condition, and
perhaps yield the more optimistic prediction in accordance to the original MHD analysis."2
This result is predicted in Ref. 2 when the outflow speed exceeds the local Alfvén speed.

We have also neglected the effect of line tying in the expander. This amounts to neglecting
the stabilizing line bending energy term in MHD theory. At low beta such neglect can be
justified using the theory of trapped particles modes in tandem mirrors.® Additional terms
due to the non-flute nature of ¢ near the walls are negligible in the dispersion relation
(Eq. (46)) if T: B Aoy 72/ Brax Le 7% Te < 1, where Ay, is the electron Debye length at the
wall, B, the magnetic field in the; central cell, and r1, the ion Larmor radius in the central
cell. However, the low beta assumption near the walls, where the magnetic field is low, may
be violated in experiment. A theory allowing for beta effects may force line bending terms
to enter the theory, thereby leading to a synchronization to a stabilizing MHD response
insensitive to boundary conditions. Further theory needs to be developed to address these

issues and to determine if there are critical beta parameters.
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Appendix A: Derivation of Dispersion Relation with
Insulating Boundary Conditions

We start from Eq. (8) for f; for each species, and we assume ¢ is a Alute mode so that it is
independent of s. We now multiply by ¢;/ B, integrate over velocity space and a field line

and sum over species. Using the relations

/ v C(f;)=0  (the particle conservation property of the collision operator)

/dva—nJ+QJ¢/d3 aE]’

gefe+ ¢ =0,
; q; /d3v U % =B % G/ B) ; (7)) is the parallel current)
Z%/ds 81(13713—0
" we find | ‘
2ij)g/Be = XJ: [Qj/ %ﬁfjwdj +qf¢/ % /dsvz (W%% + % %%)] (A-1)

where j)z and Bg is the current density and magnetic field of the boundary s = +(La+L,.).
‘We now need only apply our constraint condition jjz = 0 and determine f; to lowest
order (here we assume wy, < 1/7;, where 7; is the transit time of species j across the system).

In the text it was found that for a flute mode f;, to lowest order, is given by
(A-2)

Now substituting Eq. (A-2) into (A-1), and using the quasi-neutrality of the equilibrium,

gives the usual pa,raxia,l flute dispersion with finite Larmor radius effects,

2
/Bsn,m, <___+ 232Li>_UJCk0mi d_sip <k L2 sz2>

gi B3 oy
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ds
B2y

' +k3 K 5%- (PL+PF)=0 (A-3)
where P, and P are the perpendicular and parallfal “pressures” which includes the directed
ion flow velocity.

For the GDT the contribution from the expander is only important in the last term
where P; =~ 0 and Pj; arises from the outflow ions flow out of the system. It is assumed

0

% (PL+P) < 0, and the positive value of the curvature, &, in the anchor region is designed
to dominate the third integral. We also note that the middle term, linear in w, is the finite
Larmdr radius term. In a non-eikonal approximation, where the finite Larmor radius of the
system is significant, it is well known that this term will vanish for a displacement mode.

The overall stability is then basically determined by the sign of the last term, which for the

GDT is designed to be negative due to the ion outflow.
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Appendix B: EXplanation of Passive Feedback
Mechanism for Insulating Boundary Conditions

The dispérsion relation for the insulating boundary condition can also be derived from the
quasineutrality condition A

;/dsngﬁ:O. | (B-1)
The perturbed ion density is the same as derived in the text for the conducting boundary
condition. The perturbed electron density will be of the form fi, = M., + fext, Where 7., |
is the perturbed electron density derived in the teﬁt using conducting boundary conditions
where the end potential vanishes, while 7i.y; is the extra perturbed electron density directly
induced from the regulation of the electron outflow by end potentials. This potential variation
constrains the total end current, due to the outflow of both electrons and ions, to be zero on

each field line. Now 7.y, satisfies the continuity relation

. 0 [ Jllex
— W (e Text + B N <Jﬂ?t) =0 v (B-2)

where jjjex¢ is the additional parallel current density carried by electrons which responds to

the end potential perturbations such as to ensure that
Illext,E + Jjjec,5+ + Jjjie =0 (B-3)

where jje. is the parallel current carried by electrons with zero perturbation of the end
potentials and jj; is the current carried by ions which is quite insensitive to end potentials
and the subscript £ denotes evaluation at the end wall. Hence if we integrate Eq. (B-2) over

the plasma length, use Eq. (B-3) and substitute in Eq. (B-1) we have

ds - - 2t . | .
_B" [Qe Nec + % ni] = —; (JHec,E + ]Ilz,E) /BE . (B“L)

The electron end current in the absence of end potentials is readily evaluated (sée dis-
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cussion between Eqé. (30)—(3.4)) as
2j||ecE 2 ¥ / TL(S *
_— = — [ ds 1-—=. B-5
Bs e T (B-5)
The ion end current can be found starting from Eq. (8). This equation is divided by v,

then integrated from just inside the peak of the mirror to the end walls, yielding

Le+La d3

e vll

[(w wai) fi + Gip (wg—’;+ *§)+C(f)}

(B-8)
where L = L4(1 — ¢) where ¢ < 1. For f;4 we use Eq. (29). Upon substitution we find for

fils=La+Lo)=fils =L7)+i [

the ion end current (note that the current from the “adiabatic” ion term is zero),

*
2]”‘E % =2 [dBdp fi(s = Lo+ L.) = 4 novr: (1—‘”—*)so

T; Brax w
k2 Le+La ds P
o; M0%¥ Li
T WP”' (HO(Pnt))
Le+La ds OF;
2 - 3 Lt -
—f—22q,go/Lc B/ded,aE . (B-7)

Now the left-hand side of Eq. (B-4) is the plasma density response without an oscillating
end potential and it is equal to the left-hand side of Eq. (46) multiplied by the factor
- (W T)™! / dsn;/B. Now we substitute Eqs. (B-5) and (B-7) into the right-hand side of
Eq. (B-4), using the relationships

vTi
5= yp/dsn/B ,

F; . i 2
qiz/dsvaig—E;—qukG K,grA = g-,—e/dsvwdeFe

* *
2 newe 9 N W;
)

b~ T. T

=0,

we find that Eq. (B-6) reduces to the dispersion relation with insulating boundaries, Eq. (A-

3). We interpret the right-hand side of Eq. (B-4) as the induced perturbed electron density
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produced by the passive feedback arising from the oscillating end potentials that regulates

the electron flow. We see from Eq. (B-7) that it contains the MHD stabilization term
proportional to the outgoing ion momentum flux Bj; = nm; 5? as well as terms that annihilate

the charge uncovering and dissibative terms in Eqs. (46) and (47).

A discussion quite similar to the above one is given in Ref. 14.
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Figure Caption

1. Schematic of a gas dynamic trap. The top figure shows magnetic ﬁéld lines. The
bottom figure is the variation of the magnetic field along the axis. The central region
has a length L., and the expanders length is L4, L4 < L,. The minimum -ma,gneti'c

- fleld in the central cell is By, the maximum magnetic field is Bupax, and the field at the

walls is B,,. Plasma flowing from the central cell is absorbed by the end walls.
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