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Abstract

A simulétion model of the Lorentz collision operator has been develop‘ed for guiding-
center electron pl'ésmas. This model conserves the energy and magnetic rnornent. u of
the magnetized electrons. Tests of this model have been carried out for low frequency
electrostatic re‘sistive interchange modes in sheared slab g.eometry by using a 2 —% D
guiding-center particle code. Comparisons with linear theory results from a second

order shooting code give good agreement in growth rates and mode widths.



I. Introduction

In particle simulations of low frequency plasma instabilities, guiding-center electron plasma
models!? are used to eliminate unnecessary high frequency electron cyclotron oscillations.
This means that only the thermal velocity along the ambient magnetic field is kept for the
electrons in the simulation model, instead of the full three-directional thermal velocities as
is done in conventional particle codes. In guiding-center electron models, the perpendic-
ular electron velocities only come in as particle drift velocities, such as E x B, g x B or
diamagnetic drifts due to pressure gradients. These perpendicular electron velocities due to
" particle drifts are also much smaller than the electron thermal velocity for relevant simulation
parameters.

The guiding-center electron model uses the predictor-corrector method? to accurately
advance the electron velocities and positions in time. This is necessary since the electrons
respond instantaneously to the electric field in the perpendicular direction, while parallel
electron acceleration is retained. The ions are pushed using the standard leapfrog scheme
with full three-directional velocities and Lorentz force, thus allowing for finite ion gyro-radius
effects.

When collisionality is introduced in this guiding-center electron plasma model by adopt-
ing the Lorentz gas model for the collision operator,®* we face a mismatch between these
two models. The Lorentz collision operator allows the particles to do small pitch-angle
scattering in three-dimensional velocity space, conserving each particle’s energy but not it's
momentum. Each particle velocity vector changes its direction after each small pitch-angle
scattering process, all the while preserving its magnitude. The Lorentz collision model re-
quires three velocities which are the same order of magnitude to perform the right amount

of scattering. On the other hand, the guiding-center electron model only evolves the parallel



electron thermal velocity and neglects perpendicular thermal velocities which would generate
high frequency electron cyclotron waves.

Several consecutive pitch-angle scattering processes with only one significant velocity
component will cause a significant loss of its magnitude. Therefore the particle energy
conservation during the collisional process, which is the character of the Lorentz collision
operator, cannot be maintained in the guiding-center electron plasma model. As a cure for
this problem, we make use of the conservation of the magnetic moment x and introduce, dur-
ing the collisional process, two perpendicular pseudo-thermal electron velocity components
in addition to the parallel electron thermal velocity component. We, however, retain only
that same parallel electron thermal velocity after collision and the two perpendicular velocity
components due to particle drifts in the dynamical part of the simulation procedure. So do-
ing, we can achieve particle energy conservation for the collisional parallel electron dynamics
and retain the low frequency character of the guiding-center electron plasma model.

We have applied this collisional model to the case of low frequency electrostatic resistive

intercharige modes in sheared slab geometry. A 2 — % D electrostatic particle code with this

. particulai implementation of the Lorentz collision operator is used to simulate these modes.

Agreement between simulation and theory is good in terms of linear growth rates and linear

eigenmode widths.

II. Implementation of the Lorentz Collision
Operator in Guiding-Center Electron Plasma

.Models

The Lorentz collision operator, which conserves particle energy and number density, is defined
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where g, is the adiabatic part of the electron distribution function. Other definitions are :
f = cos™? (—-—L——) :  pitch angle
o\
Vei = 2mngetIn A/(m2v3,) :  collision frequency
It is clear that this collision operator cannot be implemented straightforwardly in the

guiding-center electron model which has only one electron thermal velocity component par-

r- xo) y) . The reason is due

L,
to the fact that the electron parallel velocity at ¢t = At after a small pitch-angle scattering

allel to the sheared equlibrium magnetic field Bq = B, <z + (

process will be

U”(At) = v)|(t = 0) X cos§ (2)

and then after n time steps (¢ = nAt), the electron parallel velocity begins to lose most of

its magnitude due to this scattering:
v(nAt) = v(t =0) x (cos )" < 1. (3)

Therefore if the Lorentz collision operator is implemented in a guiding-center particle
code without considering the conservation of particle energy, the parallel electron maxwellian
velocity distribution rapidly becomes a cold electron beam due to the scattering process
of Eq. (3) as shown in Fig. 1. The gains or losses in magnitude by the perpendicular
velocities are, however, not propagated by the dynamics, since these are recalculated from
the appropriate particle drifts at each time step.

To resolve the problems caused by this parallel guiding-center electron velocity loss in
_the Lorentz collision model, two pseudo-thermal perpendicular electron velocities, which are
randomly generated from a Maxwellian (at ¢ = 0), are introduced to conserve electron energy
E,

EF= -;-mevﬁ + uBy + edy
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and electron magnetic moment p, which is the adiabatic invariant of the guiding-center

electron,
mevl

2B,

These two electron pseudo-thermal perpendicular velocities are used only in the scattering

process and do not propagate into the perpendicular electron dynamics. By performing the
collisional procedure in the manner detailed next, the conservation of parallel guiding-center

electron energy during the collision is recovered (Fig. 2).
Att=0
Guiding-center electrons having
1 2
FE = Eme v + By + e®g = const. ,
2 —

p = mevi /2By = const.

are loaded and three thermal electron velocities

<U|[, Vi1, U.Lz)

; S 2 — 2 2
are defined with v{ = v{; + vi,.

Scattering by Lorentz Collision Operator

3 1/2
UTe
AHJ = ""4:1/32'. ((vﬁ +'U_2L)1/2) At ].Il(]. —71])
r; = (0,1) \; ~ random number At; time step.

At t = At:

The Velocity gains or losses generated by the collisional process are

(A’U”, Av“, A"U_u) .
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These velocity increments are added to the old velocity set before scattering and updated
as a new velocity set which will be used as input for the electron thermal velocities at the

next time step.

new old

’U” = 'U” + A'U“
new old

VT = v + Avyy
new old

vJ.Z —UJ_2+AU_L2.

The Av’s used are explicitly given in the Appendix.

III. Application: Electrostatic Resistive Interchange
Modes in Sheared Slab Geometry

We have applied the Lorentz collision model to simulate electrostatic resistive interchange
modes in sheared slab geometry.® In this model, the centrifugal force due to magnetic curva-
ture is represented by T,/ L. for electrons and 7T;/L, for ions respectively. One should note
1 T;
that the ratio of curvature drift between electrons e 2 and ions ——t — depends on
_ eBy L, eBy L.

T,/T; rather than m./m; as in the case of a gravitational interchange instability.

A resistive interchange mode driven by the pressure gradient is localized at the resonant
surface (k = kyz/L, = 0.0). The plasma is decoupled from the field lines there and can

become unstable with a small amount of resistivity. We are looking for this mode in the

near fluid regime for which

2 1/3 2/3
Re(w) < wy and ~= (—ﬁz—é——) [w Wde (1 + 1>] ) (4)

T kZ p? vi,
yet retain kinetic ingredients such as finite ion larmor radius and w} effects. The growth
rate expression in Eq. (4) is obtained from the following analysis.
Linear analysis is carried out by solving the linear eigenmode equation derived from

kinetic theory to obtain plausible parameters for the simulations. Since the number conserv-
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ing Krook collision operator and the Lorentz collision operator produce equivalent results

for interchange modes,® we use this number conserving Krook operator in linear theory

calculations for simplicity.

The linear eigenmode equation for electrostatic resistive interchange modes is derived

from the linearized drift-kinetic equation for the guiding-center electrons

(60 — e — kyoye)ge — i Clge) = — (%) FM(w—w)3
where

wFE o oD
and

FM
C(ge) = Ve ,:ge - == /dsvge]

o
is the number conserving Krook colliéion operator® with perturbed electron distribution
function
fo= Ti SFM +g. .

The linearized gyro-kinetic equation describes the behavior of the ions with finite Larmor

radius p;

(© —wai — byoge)gs = (U) FM(w — ) ok Lp)

T;
=

Wgi = —Wge [T, w¥ = —w:/r, r="T./T; .

with

%) OFM + gie™, L =kypicose
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Averaging f. and f; over the velocity space yields n, and n;. By invoking quasi-neutrality,



ne ~ n;, we obtain the eigenmode equation for the perturbed electrostatic potential ®

TW + w* dPo 62
o (2250 4 - o 2
\/Q-k“vT'i 0 db 8:02

(t)a (ool o

W — Wie + Z.Vei

Ze = Tl be = — i

W — Wy;

Zi= Zi(&), 6 = ——2,  To=eIo(b), b=k p} .
(&),¢ ahmon o=¢"" Io(b) 1P

By expanding electron and ion Z-functions in the large argument limit we recover the ex-
pression for the growth rate of Eq. (4).

This eigenmode equation Eq. (5), normalized such that z = z/p; and w = w/ w¥, is solved
with a 2nd-order shooting code. Results of such linear calculations are shown in Fig. 3 and
Fig. 4. The parameters used are T,/T; = l.O, m;/m, = 400, k, p; = 0.098, L;/L, = 14,
L,/L. = 0.134, w: = 3.436 X 10™* wy and we; = 0.05wpe. The collision frequency ve; 1s varied
from 0 to values for which mode width and growth rate are nearly saturated (Fig. 3).

157

A 2 — 1D bounded, electrostatic, guiding-center electron particle model®’ is used for

the simulations. The configuration for this model is shown in Fig. 5. The single mode
rational surface is located at z, in the middle of the sheared slab which is extended in
the (z,y)-plane with conducting wall boundaries in the z-direction and periodic boundaries
in the y-direction. Interchange parity, in which electrostatic potential ® has even parity,
is imposed at the mode rational surface. The metho‘d—II reflecting boundary scheme of
Naitou et al® is used to handle the particles at the walls. Simulations are carried out to
measure the growth rate and mode width for comparison with the linear theory results. The
simulation parameters used are the same as for the linear theory calculation with system sizes

Lg = 64A, L, = 128A, particle sizes a, = a, = 1.5A, p; = 24, no = 16/A?, with unit grid

8



spacing A, p;/L, = 0.14, p;/L. = 1.876 x 10~? and run time (nAt) = 4000 x 4 = 800w ;.
The collision frequency ve; is varied from 0 to 160wX, which puts the growth rate in the
v o~ 7:/ % scaling range as shown in Fig. 4. As resistivity increases, quasilinear flattening
of the density gradient commensurate with the broader mode width is observed (Fig. 6).
The global electrostatic energy and its saturation level also increase more with increasing
resistivity as shown in Fig. 7. Comparisons of growth rates and mode widths between
simulation and theory are illustrated in Figs. 8 and 9. Although simulation and theory use
different collision operators, the Lorentz collisién operator and the number conserving Krook
collision operator respectively, the degree of agreement is well inside the error bars.‘ It is also

well within what can be expected from the (shearless) linear theory results of Ref. 6 over the

range of ve;/ kjvre values used in the case of interchange modes.

IV. Summary

A Lorentz collision operator, which conserves particle energy and ‘magnetic moment in mag-
netized plasmas, has correctly beeﬁ implemented in the guiding-center electron particle sim-
ulation model, which is used to investigate low frequency plasma instabilities. This model
has been applied to the electrostatic resistive interchange mode. It has reproduced the main
features of this mode such as the v ~ 1/;/ ? growth rate scaling which prevails in the fluid limit
and the typical mode structures which are observed in the linear eigenmode analysis. Further

detailed study of resistive interchange mode in both electrostatic and electromagnetic limits

using this collision model will be reported in future work.
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Appendix —Implementation of the Lorentz collision

operator in particle codes

The Lorentz collision operator is implemented by considering each velocity component before

and after collision. Let us define the velocity v = (vz,v,,v;) in terms of angles P and T

shown in Fig. A-1.

Fig. A-1

In this figure, velocities are defined as

vy = vsinT cos P
vy = vsinT sin P

v, =vcosT .
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After scattering With pitch angle @, the scattered velocity v/ will be located at the ar-
bitrary point A on the circle centered at O’ with radius R = vsin ¢, as shown in Fig. A-2.
Now v/ = CA is separated into O’A and CO’, which is perpendicular and parallel to v
respectively. On the circle centered at O’ with radius R we can define another velocity set
(vjjs v'L1, Vo) with respect to the semicircle 1-2-3, passing through the center of circle O’ in

Fig. A-3. Thus the scattered velocity v’ is expressed in the frame of v as

v/ = (vcos ¢, vsin ¢ cosh, vsin ¢ sinp) .

By transforming (vj, v11,v1,) into (vz, vy, v;) we can calculate the velocity gain or loss for

the scattered velocities in z,y, z coordinate p i.e.,

vV o

- — c— P
/ I
.
. D)
. .o

—_ — —
ICOl = |cAl = v
|0'Al = v sin ¢ =R
|co'l= v cos ¢

Fig. A-2
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V), =V cos ¢
Vi, = Vsin ¢ cos y
Vi, = Vsin ¢ siny

(Top view of the cone)

|
|
[
|
|
3

Fig. A-3

!
Av, = v, — Vg
!
Avy = v, — vy
Av, = v, —v, .

The projection of UI/I’ v/ ,,v, onto the z,y, z coordinates is shown with diagrams in Fig. A-
4. From the diagrams in Fig. A-4 we can derive the contribution from (vy, vl 3, v]) to

(Vi V4

v Vz). The projection of v’ onto v, (Fig. A-5) is

[vﬁ]x = v cos ¢ sin T cos P
[Vi1]x = vsin ¢sin¢sin P

[V a]x = —vsin ¢ costp cos T cos P .

12



(on X~Y plane)

| (on semicircle 1-2-3 plane)

Z
o V-l-z /P
A
2 —y
T
]
V.L| P 3
' 1
/ 0
A
X
Fig. A-4-b
Fig. A-4-a .

(on semicircle 1-2-3)

2}

Fig. A~4-c

Fig. A-4
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Thus, the total contribution in the z-direction is
[v']; = v[cos #sin T cos P + sin ¢sin 1 sin P — sin ¢ cos ¢ cos T cos P]

and therefore

Av, = v, — vy = v[—sin ¢ cos 1 cos T cos P + sin ¢ sin 3 sin P — 2sin®(¢/2) sin T cos P] .

(on X-Y plane)

X 3

Fig. A-5
By a similar projection procedure for v;, and v, we obtain
[v'ly = [vjly + [Vi1ly + [Vi2]y = v[cos #sin T'sin P + sin ¢sin ¢ cos P — sin ¢ cos 9 cos T'sin P]

and

Av, = v[—sin ¢ cos 3 cos T'sin P — sin ¢ sin 1 cos P — 2 sin’(4/2) sin T sin P]
[v']z = [Vjlz + [ViL2]z = v[cos ¢ cos T' + sin ¢ cos ¢ sin T)

Av, = v[sin ¢ cos P sin T — 2sin*(¢/2) cos T .

14



By defining ¢ = —(7/2+ ;) we arrive at the formulas used for the calculation of Av in the

particle code,
Av, = v[sin ¢ sin 1, cos T' cos P — sin ¢ cos 1, sin P — 2 sin®(¢/2) sin T cos P]
Av, = v[sin ¢ sin 1, cos T sin P + sin ¢ cos 1), cos P — 2 sin?(4/2) sin T'sin P]

Av, = v[—sin ¢sinth, sin T — 2sin?(¢/2) cos T} .

15



References

1. C.Z. Cheng and H. Okuda, J. Comp. Phys. 25, 133 (1977).

2. W.W. Lee and H. Okuda, J. Comp. Phys. 26, 139 (1978).

3. R. Shanny, J.M. Dawson, and J.M. Greene, Phys. Fluids 10, 1281 (1967).
4. J.F. Federici, W.W. Lee, and W.M. Tang, Phys. Fluids 30, 425 (1987).

5. R.D. Sydora et al., Phys. Fluids 28, 255 (1985).

6. G. Rewoldt, W.M. Tang, and R.J. Hastie, Phys. Fluids 29, 2893 (1986).

7. R.D. Sydora Ph.D. Thesis, Department of Physics, The University of Texas at Austin
(1985); also Institute for Fusion Studies Report No. 178, The University of Texas at

Austin (1985).

8. H. Naitou, S. Tokuda, and T. Kamimura, J. Comp. Phys. 38, 265 (1980).

16



[Svg

Figure Captions

1.

Parallel velocity distribution of guiding-center electrons in case of ill-performed Lorentz
collision operator. Ion velocity distributions remain essentially unchanged (ve; = 218w*

and taken at t = 80w;").

Parallel electron and ion velocity distributions with implemented collisional procedure

same parameters as those of Fig. 1).-
p g

Linear growth rate and real frequency of electrostatic resistive interchange mode for
each m mode versus collision frequency. Note growth rate and collision frequency are

normalized to the diamagnetic drift frequency w¥ for mode m = 1.

Comparison of the measured simulation growth rate for the resistive interchange mode

with the linear theory result v ~ 1/:1-/ s,

Bounded 2 — 1 D sheared slab model for simulation. Density gradient is in the negative
z-direction and centrifugal force mg is in the positive z-direction in sheared slab. The

mode rational surface is located in the middle of the system at zq = L,/2.

Electron and ion density profiles in the saturated state for the cases with v,; = 0,.80

and 160wX.

. Global electrostatic energy, |Er|* = ¥ k2|®x|* normalized by electron kinetic energy -

4d7ngy T, versus time for the same cases as in Fig. 6.

Comparison of linear growth rate between simulation and theory for the m =3 mode,
which is the most dominant mode in simulation.  Higher wave numbers above m = 3

are affected by finite size particle effects and are less dominant.

Mode structure comparison between simulation and theory. Both simulation and the-

ory grids extend up to 16 p; from the mode rational surface.
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Real Frequency vs. Vg
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Mode Structure Comparision

Simulation Theory
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