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Abstract

Gradient-driven instabilities and the subsequent nonlinear evolution of generated:
vortices in sheared E x B flows are investigated for magnetized plasmas with and
without gravity (magnetic cﬁrvature) and magnetic shear by using theory and implicit
particle simulations. In the linear eigeﬁmbde analysis, the instabilities consi;iered are
the Kelvin-Helmholtz (K-H) instability and the resistive interchange instability. The
presence of the shear flow can stabilize these instabilities. The dynamics of the K-H
instability and the vortex dynamics can be uniformly described by the initial flow
pattern with a vorticity localization parameter . The observed growth of the K-H
modes is expdnential in time for linearly unstable modes, secular for marginal mode,
and absent until driven nonlinearly for linearly stable modes. The distance between
two vortex centers experiences rapid merging while the angle § between the axis of
vortices and the external shear flow increases. These vortices proceed toward their
overall coalescepce, while shedding small-scale vortices and waves. The main features of
vortex dynamics of the nonlinear coalescence and the tilt or the rotational instabilities
of vortices are shown to be given by using a low dimension Hamiltonian representation

for interacting vortex cores in the shear flow.




I. Introduction

The presence of shear in the flow of neutral fluids and plasmas gives rise not only to instability
of the sheared layer, i.e., the Kelvin-Helmholtz (K-H) instability, but also to stabilization
of other instabilities, the interchange mode [Rayleigh-Taylor (R-T) instability] for instance.
Resistive interchange driven turbulence has been proposed as a mechanism for the anomalous
thermal transport in stellarators and in edge plasmas of tokamaks. - Recent calculations
indicate that a strong nonuniform radial electric field can suppress the interchange and
resistive pressure-gradient-driven instabilities.? The fluid dynamics of shear flows under the
influence of gravity is also important for the problem of an imploding inertially confined
plasma. In the initial phase of implosion, short wavelength modes are stabilized by the
ablative flow and relatively long wavelength modes can grow on an ablation surface.>* Large-
scale vortices excited by the R-T instability are adiabatically compressed, and thus increase
in strength during the implosion. It appears that the shear flows associated with large
scale-length vortices suppress the short wavelength R-T mode in the stagnation phase that -
occurs during the final phase of the implosion. The presence of vortices can also influence the
nature of turbulence and associated transport. In the isotropic 2-D N a.vier-S.toke;s turbulence
the well-known Kolmogorov power spectrum of k=2 develops from space filling small-scale
eddies. However, we find that the turbulence power spectrum changes to a steeper power
law in k in the presence of vortical structure in the fluid in the wavenumber regime on the
scale of the vortices. Thus the presence and dynamics of the vortices may strongly affect the
macroscopic behavior of turbulence.

In this work, we extend the previous work® by investigating the shear flow eﬁ'ecfs on the
gravitational instability and the magnetic shear effects on the K-H and R-T instabilities.
Also, the detail analysis of the nonlinear evolution of large size vortices is presented here.

In magnetic confinement devices the shear flow occurs at the boundary between the

rotating core plasma and the stationary edge plasma. The magnitude and direction of
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the core rotation is determined by the strength of the nonambipolar loss rates leading to
the charge up of the plasma. The mirror or open field line confinement sysfem has an
intrinsically faster electron loss rate leading to the net positive potential of several times the
electron temperature. In the stellarator with strong electron cyclotron heating there is also
a dominant electron loss and positive charge to the plasma. In contrast, for stellarators with
neutral beam injection or ion cyclotron heating and in general for tokamaks, there is a net
radial ion loss rate from finite ion orbits size effects and the plasmas build up a substantial,
of order the ion temperature, negative potentials. The positive potential plasmas rotates in
the ion diamagnetic direction and the negative potential plasmas in the electron diémagnétic
direction. In typical stability analysis the assumption is made that the rotation is sufficiently
close to a solid body rotation and sufficiently slow that the only effect is to Doppler sI;ift the
wave frequencies from the values calculate in the absence of rotation. The conditions for the
limit of this approximation are given in Ref. 1 for the rotating cylindrical plasma,'ﬁvi‘i;.\ll.“:‘c;a*e
and w,; drift modes. In the preser_lcé of shea;' flow we can estimate the condition for ;stro‘ng
effect of the shear flow on a mode of growth rate ~;,, wavenumber £, and mode width Az
by the condition “

kyAzu’ > 7, .

Applying this condition to the values of &k, Az, v, for the interchange, rgsis’ﬁive g and the
drift wave gives a first estimate for the shear flow required to reduce the growth rat;ar Table I
shows the condition on %’ obtained from this criterion for several forms of plasma turbulence.

Since the sheared velocity flow contains a source of free energy one expects instability
to arise from the shear flow which it does above a critical strength. However, the forms of
the eigenmodes of the K-H are sufficiently different from those of the interchange-drift wave
type of instability that there is generally a substantial window between the stabilizing effect
of the shear flow on the interchange modes and the onset of the Kelvin-Helmholtz instability

as shown in some detail for the m =1 and 2 modes of the rotéting cylinder in Ref. 1.
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Recent experiments® in the DIII-D tokamak show that associated with L (low) to H (high)
confinement mode transition, there is a substantial increase in the perpendicular component
of the plasma flow velocity as measured by the spectroscopic shifts of helium line radiation.”
No such appreciable change is observed in the toroidal component of the plasma flow velocity.
Taylor et al.? also report no appreciable change in the toroidal velocity and a substantial
increase in the poloidal velocity with the onset of H-mode-like plasma conditions. The abrupt
change in the flow speed is interpreted to be due to a strengthening of the radial electric field
strength. Shaing and Crume® has interpreted this change in the radial field strength with
increased nonambipolar radial ion currents and a bifurcation to a new rotational equilibrium.

Shaing? notes that without considering the stability problem there may arise improved
confinement due to the shear flow layer. Biglari et al.’? also discuss that the shear flow in
itself may reduce the transport. A simple single mode description of the shear flow reduction

in transport is given by the convective cell island width formula’

o 1/2
Ar =2 er|dQ/dr|] ’

which traps plasma to form an insulating layer. Here Q is the poloidal rotation rate {2 =
(¢/rB)(d®/dr) and ¢ the amplitude of the vortex wave.

In the present work we consider how the shear flow may strongly modify the strength
of the growth rates of the underlying turbulence generation from the interchange and drift
wave types of instabilities. Theilhaber and Birdsall'! studied the K-H instability with finite
Larmor radius effects fully taken into account but without magnetic shear effect. Such a
treatment may be applicable when the shear flow region is very narrow and in the current
free region near the wall of the tokamak or stellarator.

A similar charge separation induced shear flow appears in the Barium ion injection in the
ionosphere.!? Other magnetospheric appearances'® and astrophysical ones such as jets™ of
the shear flow instability are noted. When the shear flow is sufficiently strong to dominate

the stabilizing effects of magnetic shear, the growth rate reaches a maximum for wavenumber
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k, =~ 1/2a where the maximum growth rate is Ymax ~ 0.2max |dv,/dz| ~ 0.2u/a. Since the
short wavelength modes with k,a > 1 are stable to exponential growth, vortices excited by
the K-H instability extend over all the shear flow region with Ay ~ A, > a. When the
shear flow dominates, the density and-temperature fields are passively convected with the
fluctuations characterized by ep/T, > én/n, 6T/T.

The fastest growing normal mode forms a perturbed vortical flow pattern with the axis
of the vortex tilted with respect to the flow direction, as shown by theory! and simulation.’
The tilting of the vortical flow produces a momentum flux = = (v,v,) across the shear
layer. The momentum flux takes energy out of the shear and puts it into the vortical flows.
Subsequently the vortices coalesce, with the dominant wavelength shifting to a multiple
of the original wavelength. This shifting to longer wavelengths is a configuration space
representation of the inverse cascade. Often the coalescing vortices or islands persistvafogznlong
times.

The effect of fhe electron parallel motion on stabilization of the K-H mode is shown to
reduce the maximum growth rate. The elect;:on density ﬁuctuationé induced by the electron
pa,ra,llel.motion (V” . j“> balance with the ion density fluctuations generated by the ion

perpendicular motion (V. -ji). Namely, for charge neutral currents we have
Vi-jo+Vi-jy=0.

Since y" ~nE| = —ne*V¢/mvei, jL ~ —f;%iﬁ from the ion inertia current. The effect of

the electron parallel motion is significant when

kiv?
3 2
L’ Z/ k_l_ups.

Vei
Here v, is the electron thermal velo;:ity,, Ve; is the electron-ion collisiog frequency, ¢ the
fluctuation pﬁtential, wg the ion cyclotron frequency, p, the ion inertial gyroradius, and u
is the velocity spread in the E x B drift velocity. For a K-H mode with k. S 1/a the

critical tilt angle 8., as measured between the k vector and the ambient magnetic field, is
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given by 6, ~ £ (ieie) 1/2, where [, the mean free path of electrons. For 8 R 6., the K-H
instability will be stabilized. In the case of a sheared magnetic field, the tilt angle § ~ a/L,
is produced by the shearing of the magnetic field with L, being the shear length. Therefore,
the K-H mode is significantly stabilized when L, S (a%p;) (leve/ua)l/ 2, The ratio of the
parallel diffusion kjjv/ve; to the ion inertial acceleration k2% p2k,u is sometimes called R as
is given by R = k,v2Az* ve;up?L?. Both the resistive g and the K-H growth rates decrease
with increasing E.

When there exist a density gradient and a gravity force as shown in Fig. 1, the interchange
modes can be unstable. Here we use gravity to represent either the effective acceleration
from the VB curvature drift of the ions or the acceleration during implosion. The maximum
growth rate for the density gradient d—lgfﬂ = 1/L, and the gravity g ~ v?/R, where v; is the
ion thermal velocity and R the major radius of tokamak, is \/—gﬁ

When there is a shear flow with |dv,/dz| =~ u/a, the interchange mode can be stabilized.
Stabilization by the velocity shear occurs when u/a > \/JL_,L

Let us give two examples for the above instabilities. The first example is an edge plasma
of the TEXT tokamak.® The shear flow layer width a ~ 1 cm, the velocity u >~ 3 x 10%cm/sec
up to 10%cm/s, the electron temperature T, =~ 20eV, the density no >~ 2 x 10'%/cm?®, the
density scale length L,, ~ 3 cm and the magnetic field curvature R 2 1m. The electron mean
free path I, ~ 200 cm and the hybrid ion gyroradius p, 2 0.1 cm for the above parameters. If
the magnetic shear length L, R 25m, the K-H modes are unstable. In this case, the parallel
- wavelength is about 10 m. As for the interchange instability, the flute mode is stabilized by
the strong shear flow, since u/a ~ 3 x 10%/sec R m ~ 2 x 10% sec.

The second example is the Rayleigh-Taylor instability of the imploded laser plasma. A
typical acceleration rate gives g ~ c2/AR for the target shell thickness AR. The velocity
shear will be given by ac,/AR. Since the Rayleigh Taylor mode growth rate is Vkg, the



124

stability criteria is roughly given by

acs/ AR R 21/kc2/AR.

Therefore, the unstable modes are limited to short wavelengths where ¥ < o*/4AR, and
a 2 1 will strongly stabilize the Rayleigh Taylor instability.

The characteristic time scale of the Kelvin-Helmholtz or interchange processes do not
involve a characteristic oscillation frequency, such as the plasma, cyclotron or the ion acoustic
frequencies, in the center of mass frame of the plasma. The plasma flow is due to the £ x B
drift of the guiding centers and the characteristic time scales are those of hydrodynamic flows,
although the elementary process is that of a magnetized plasma with long range Coulomb
interactions. The effects of finite pressure density gradient and gravity, across the mégnetic
field and the shear flow layer, bring in the drift wave frequencies w,, and w,,;. Thus to study
the nonlinear evolution of shear flows and vortices associated with the magnetize&{i;izaigma
through numerical simulatioﬁ, time scales much longer than the plasma oécillation 'i;eriods
are required. We employ the implicit simulation technique!® which systématically rémoves
the éharacteristic time scales-and spatial length scales that are smaller than the tifne step
At and space scales Az chosen for the space-time grid. The filtering method has been shown
to preserve the accuracy for the low-frequency (wAt <« 1) dynamics.®

In the present article we investigate the nonlinear evolutions of the Kelvin-Helmholtz and
interchange instabilities as an initial value problem through particle simulation, in contrast
to the previous work® where the shear flow was externally fixed with an imposed driver, as
would arise from nonambipolar losses in the background plasma. The secular growth and
decay of the marginally stable normal modes are also studied. After the linear stage of
exponential growth of the primary normal modes, the growth of secondary modes can be
nonlinearly triggered.

- In order to systematically explore the parametric dependence of the development in the

nonlinear stage, we isolate the evolution of vortex coalescence and associated processes caused
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by vortex formation, which in turn is due to the K-H instability and its nonlinear evolution.
To investigate the second stage, the system is initiated from the secondary equilibrium of a
chain of finite amplitude vortices. The chain of vortices is unstable against the coalescence
mode and against the tilt or rotational mode. In this nonlinear regime the growth of co-
alescence and tilt modes are nonlinear instabilities showing the finite time singularity like
(t. — 1)~ for times t < ¢.

In Sec. II the equations for K-H and interchange instabilities, both for plasmas with
and without a magnetic field are derived. These equations include the effects of velocity
shear, magnetic shear, density gradients, gravity, and electron-ion collisions. The linear
dispersion relations derived from the equations for the two instabilities are also discussed in
two analytic limits. In Sec. III we study the initial value simulation of the shear flow K-H
instabilities, both in its linear and nonlinear stages. In Sec. IV the nonlinear evolution of
vortices, starting from the periodic chain of vortices, is examined and the coalescence and tilt
instabilities of vortices are studied via the particle simulation method. Theoretical modeling
of th.ese processes is presented in Sec. V and compared with the simulation experiments of
Sec. IV. In Sec. VI we summarize thé results and discuss the applications of the results to

fusion plasmas.

II. Vortex Equation in a Plasma with Velocity
Shear, Magnetic Shear, Gravity, and Density
Gradient: K-H and Interchange Stability

Analysis

We carry out linear theoretic analysis of plasma stability associated with shear flows. We
consider the effects of shear flows and gravity both in magnetized and unmagnetized plasmas.
In the case of a magnetized plasma, the static sheared magnetic field is given by By =

Bo (% + yz/L,), which is shown in Fig. 1. The initial ion density has a gradient of 1 /L, =



Olnng/0z between z = b and —b. The flow velocity is in the y-direction, and changes

according to
u zT>a
vo=1¢{ u(z/a) |z|<a
—U z < —a.

The geometry is schematically shown in Figs. 1a and b. Except for especially indicated —

we consider the above plasma geometry. Also, gravity is applied in the z-direction, which

destabilizes (stabilizes) the interchange mode for v = g/L, 20
In the case of low-frequency modes with relatively long wavelengths A > Ap., where Ap,

is the electron Debye length, the condition of charge neutrality can be assumed. Namely,
N; = Ne = N. (1)

From the electron equation of motion along B, we obtain the equation for the parallel)_ve;}_‘e;%turon
current j) | . .
(c’?t +vg- V) i = —ne*V|é + eVyp. — merve =0, ; (2)
where vg'is the E x B drift, ¢ is the electrostatic potential perturbat'ion, pe is the electron
pressure, and v,; is the effective electrpn collision frequency. Using the electron equation of

continuity and Eq. (2), we obtain

0 1 .
<8t+vE V_L> = EV” |
1
= — (—n06Vﬁ¢ + Vﬁpe> . (3)

Assuming T, constant and n. = no(z) (1 + 7.) Eq. (3) is rewritten as

0 . CsPs 8¢ -
<8t+vE V>ne= 5_y+u_mvll< ¢)a (4)

where ¢ = e¢/T., L, = ldInng/dz|™", ¢; = \/T./M;, and p, = c,/we;, where w,; is the ion
cyclotron frequency. In Eq. (4), nonlinearities other than the nonlinear polarization drift are

neglected.




From the ion equation of motion, we obtain v;y, the ion drift velocity perpendicular to

the magnetic field

Vi = VE + Vg + Vi + Vyp, (5)
where
zxV +
vp = DXTtd), ©)
Vg = Z‘g—'ya (7)
_ Z X Vp;
Ve = 'I'LCBO (8)
and
] V1 (¢o + )
Vp, = —I:gt--*-(VE-i-Vg)vL]——%— (9)

Here ¢ is a background plasma potential. The ion equation of continuity and Eq. (5) imply

{%+(VE+V9)~VL}TH—P§V_L-{n; [%+(VE+V5])-VJ_] Vi (q~$+<5o)} =0. (10)

Setting n; = no(z) (1 + #;), using Vg = zxv¢c and deﬁmng'
c ¢ , g
= L% 9 11
Vo Bo ax wci’ ( )

which is the ambient ion flow velocity, Eq. (10) yields

(9 //8 cs sa s Ia
(55+(VE+V!]) V_]_) (n, —-——psv_l_ nOquﬁ) ﬁ 06¢ P aj P Oa¢ (12)

where the prime indicates d/dz. Equations (4), (12) and the charge neutrality condition of
Eq. (1) are our basic equations. Note that only the dominant nonlinearity is retained in
Eq. (12), as in Eq. (4). |
In the absence of the gravitational drift velocity and for a uniform vz the coupled Egs. (4)
and (12) reduce to the well-known Hasegawa-Wakatani equations'” describing the collisional

drift wave. In the low collisionality-strong shear limit k”v > v, |wy| the density is forced to

10



be close to the local Boltzmann distribution and the equations reduce to the single dissipative
equation'® often used to study driftwave turbulence. Including the gravitational accelera-
tion g/L, gives the resistive ¢ mode for the collision dominated plasma and an additional
stabilizing or destabilizing effect to the drift wave in the weak collisionality regime.

Let us look at a linearized wave equation for a mode which varies as
exp (—iwt + tky + ik”(:v)z)'where kj(z) = kz/L,. Eliminating ## = 7i; = #. from Eqs.. (4)

and (12), we obtain

1 2 d d + 21.2 p?k (’Ug + vé)/Ln) kvg + Zk|2|‘D” szCs
—pPs5-To _¢ = psk - .19 I
ng °dz dz w — kvg (w — kvg) (w — kvgy + Zk”D”) n
ik Dy ; s
w — kvgy + ’iklle” ’

where D) = v? /v, is the parallel electron diffusion coefficient and vgo = cdpo/Boz.

We derive dispersion relations for the following two cases. Case 1) discontinuous density
step: b — 0, ng = nq, for z > 0, ng = ny fér z < 0 and U/a = constant as a — oo. Case; 2)
smooth density change: a = b and no(z) = noexp (z/L,) for |z| < b.

Case 1. Discontinuous density step.

Setting vy =0, a solution of Eq. (13) is written as follows:
$ = Ae*, 23>0,
and
qg = De*, z < 0.
The jump conditions at z = 0 are

A=D (14)

and

= k(n2 —m) 'U(,)PE(E + psk*vgcs (1 — n2)$ (15)
z=-0 w (w — kvy,)

2 — — ——
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Using Egs. (14) and (15), the dispersion relation is written as
w(w — kvy) — a% (w — kvg) + akg = 0, (16)

which yields

1 ou 1 au\?
w=g (kvg - 7) + —2-\/(101)9 - —a—> —4akg, (17)

where o = (ny — ny) / (n1 + n2) is the Attwood number. The interchange mode is unstable
when 2/akg > |% — kvg‘. Hence, the interchange process is stabilized by the shear flow
when
Vag 2k (18)
Case 2. Smooth density change.
Here a = b and no(z) = noexp (z/L,) for |z| < a and k) = kz/L, as shown in Fig. 1.

The eigenmode is

Aexp [f7 /_cld:c], for z>a
é=1{ Bexp[fJ kidz]+ Cexp [ffah:zd:c] , for |z|<a (19)
D exp [ffa iigd.’.t.‘] , for =<0,
where the WKB approximation has been used in writing Eq. (19). The validity of the
approximation is discussed later. In Eq. (19), #1 = —g7= — ¢, k2 = —5i-+4¢
. . 2 1/2
o(z) = BN LR kv/L,a (kvy + iv) ke, . i/ p? . . (20)
- 412 w—kvy (w—kvo) (w— kvgo + ) Lnp, w — kvgo +1v
v = kﬁD” and we assume Rek; < 0 and Rexy > 0. The jump conditions are
A= B+ Ce¥
(21)
D=Be " +(C
and
k! (a)A — k(a)B — ky(a)Ce? = _ kufa 4
1 w — ku — kv,
#1(—a)Be™! + ky(—a)C — ky(—a)D ——I-CM— . (22)
2 w + ku — kv,
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Here 95 = [2, #12(z)dz. Equations (21) and (22) yield the dispersion relation
, ku/a , ku/a
{““)'“” w—kw+%J%*ﬁ”—““”+w+km—%J

- [ 1(a) — k2(a) — ——-MMJ [ml(—a) — k4y(—a) + ;%J e~ 1+

=0, (23)

This dispersion relation in-

where £}(a) = £1(a) ‘1/L,,=o and ’ﬁlz("a)_ = k(= ‘ /Ln=0"

cludes both the K-H instability and the interchange or the resistive pressure-gradient driven

'

instability.
[Case 2-a] First of all, we look at the magnetic shear stabilization of the K-H instability.

The density gradient 1/L,, and v, are set zero in Eq. (23) to obtain

(ku/a)? [__ e - ] " kufa _ kufa \ _
T g OXP 2 . g-dz| + 2q++ " 2q- - =0, (24)

where ¢. and ¢; are a reé,l and irﬁaginary part of g, respectively, and ¢+ = q(i'a). As for the
growing mode, we assume w= 27 is pure ifnaginary. This assurﬁption is justified since the
imaginary part of the left-hand side of Eq. (24) is proportional to the real part of w which
can be set zero. Equation (24) is rewritten by keeping in mind ¢, = ¢* = ¢.(a) + t¢;(a) as
follows:

 bugi(a) ! ku)’ -2 : rde
TN (7 (1-tag, (@) — 2o 4 402 (24 @2) ) =0, (25)

which yields

' i 1/2
y <2 L 2L ) 4P (P st g P aga 1)}, (26)
u o gt T 2]l |

where

o@ = [@+8)" 44" /2 1)
(o) = —[(32-}-75 M2 ]1/2/f (28)
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and

2. vwENE . Ve
2=k (v +7)? + k?u? =F (29)
2 2
t VkU/Ps ~ Vku/ps (30)

(v +7)2+ k22~ v? + k2

Since ¢;(a) in Eq. (26) is negative, the K-H mode is unstable when
=2 aardn _ (2¢,(a)a — 1)* — 4¢?(a)a® > 0. (31)
Roughly speaking, the maximum growth rate is at ¢-(a)a =~ ka =~ 1/2 and the threshold

with respect to the parallel wavenumber is

1 2

2v/€ \ velea’

When the shear scale length L, is shorter than.

ak“(a) <

Vele@ 1/2
L, = a\/E ) (33)

up;
all of the K-H mode will be stabilized. As we show later, when the magnetic field tilting
angle 6 = ky/k is greater than 0.02, the K-H modes is not seen to grow in the simulation.
This angle is much greater than that of Eq. (32) for the present simulation parameters.
[Case 2-b] Without shear flow and magnetic shear, the dispersion relation (24) gives

the growth rate of the interchange instability for a finite density gradient. Equation (23)

reduces to
2kq
tanh(Zaq) = —m, (34)
where we assume kL, =~ L,/p, > 1 and approximate
k1,2 = iqa
1/2
Q/Ln
= k{l4+ —— . 35
0 = e ) %9)

14



Setting ¢ = ¢z, Eq. (34) becomes

2kz

oy (39)

f(2z) = tan(2az) =

Solutions of the dispersion relation correspond to the cross points of Fig. 2. As seen in Fig. 2,

the solutions of |z/k| < 1 are approximately given by

2a 1;-1, I=41,42,... (37)
which yields the frequency
kv, i | R/L, ba
W= E 2J By (38)

Therefore, the mode is unstable when
a*w? /gL, > k*a® + (w1/2)%.
Since g =~ c?/R for the magnetic field curvature R and R R L,, the mode is unstable up to
kR 1/ps.
[Case 2-c] Finally, we briefly discuss the velocity shear effects on the interchange insta-
bility in a finite density gradient. By a process similar to the derivation of Eq. (36) from

Eq. (23), we rewrite Eq. (23) without any approximation to obtain

tan (—z' /a q(w)dw) =1T/8S, : - (39)

-a
where

1
1 ku k4 — 37

1
S = ¢rg- 1 (“- + 5};:) <“+ - m) T e w v, +hu

ku Ko — g k*u?¥ a* |
aw—kvy—ku (w-—kv,)’ — k22’

(40)

_ 1 1 ku 9+ ku q-
T <2Ln T IL) w“ <&+ Bl 2Ln> =" w— kv, + ku LT kv, — ku’ (41)
ke = {kz + v/ p? (weku + 2'1/)}1/2 , ' (42)
1
K12 = _2Ln *q, (43)
and
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gz = g(%a). (44)

Since the dispersion relation of Eq. (39) is similar to Eq. (36), the solution of Eq. (39) is

approximately given by

/“ de)da=iZl+8,  (I=0,%1,%2,...) (45)

a

which corresponds to Eq. (37). The WKB approximation which was used to derive Eq. (19)

is valid when the integer [ is sufficiently large. Assuming kL, >> 1, g(z) is approximated by

. : 1/2
2 (kvg + iv) kcs/Lnps w/p}
= 4
9(2) [k + (w — kvo) (w — kvgo +1v)  w — kvge + w (46)
There are two resonances in Eq. (44), which are located at
w — kg

T = ku a
and

g = Y +w

r2 - ku a.

When |v| < kvy, i.e., the magnetic shear is small enough, the distance between the two

resonance points is av,/v. Evaluating ¢(z) at the center of the two resonances, namely,

4g 1. 1/2
_ ~E[] =2
g (—vga/2u) (1 L, k2v? — 4w2> ’
the growth rate obtained from Eq. (46) is roughly evaluated to be

2T, 2
]k]vg\J 4ga? Lyu 1 (47

2 -
2 \ TP+ ka0l [u?

Imw =

Therefore, if

a T
£ <7l (48)

the interchange mode is stabilized by the shear flow.
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In unmagnetized plasmas the linearized equation, including equilibrium shear flow and
gravity, is derived from the inviscid and incompressible fluid equations. The result is

2 " [
1d ( dvz) ={k2+g(7€/>o//)o 4+ kv +kv°p°/p0}vx. (49)

p_oga—:_ pod—w w — kv0)2 w — k’UO w — k’Uo

As for the shear flow stabilization of the Rayleigh-Taylor instability, the stabilization con-
dition for the configuration of Case 1 is exactly the same as that given by Eq. (18). The

criterion of Eq. (48) for Case 2 is also applicable to Eq. (49).

ITII. Initial Value Simulation of Shear Flow
Instabilities

The static uniform magnetic field By is now in the z-direction only. The initial ion density is
uniform n; = ng in the x—y plane. The plasma is encased in a metallic box in the z-direction
and periodic in the y-direction for most of the computer experiments we present, unless

otherwise specified. We load the electrons with a density given by

' Ang

[ e ,t = 0 = T 1277 N
ne(@ ) mot cosh? (ko)

(50)

where typically Ang = 0.1ng and k; = 1/a, with a being the shear layer width of the E x B
flow produced by the charge separation p, = e (n.(co) — ng). The initial flow of the plasma

produced by the charge or vorticity layer given in Eq. (50) is

4dmngec (Ano) tanh (koz)

vy(:c) - koBo Mg

= wvotanh <§> . (51)

Although we vary parameters over a wide range, the typical set of parameters are as follows:
the numbers of the grid points in the z- and y-directions L, = L, = 64, the numbers
of particles in the z- and y-directions N, = N, = 192, the electron cyclotron frequency

Wee = 80wpe With w,. being the electron plasma frequency, the ion-to-electron mass ratio
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M/m = 1600, the shear width a = kg 1 — A with A being the unit grid separation,
the electron and ion Debye lengths perpendicular to the external magnetic field direction
Ape = Ap; = 0, the electron and ion Larmor radii p. = p; = 0, and the simulation time
step At = 200(.0;81. (Note that the shear width is input as a = 5, which gives rise to the
effective shear width of 6 due to the finite size particle effect.) The technique of loading
electrons nonuniformly is different from the conventional technique. Instead of assigning a
uniform weight of unity to an individual particle, the weight of the particle is determined by
the fraction ne(z)/no dependent upon its initial location. The weight of the particle in the
simulation is not changed throughout the run, although the code does allow for a change of
weight as a function of time.!® For example, the number of particles can be changed due to
the creation (source) and the annihilation (sink) of particles; in a formulation of splitting
“particles” into the background and perturbed distributions, the perturbed distribution can
change their weight in time. In the reference simulations we choose Ang/ne = 0.1, the size
of particles a; = a, = 3/, and the decentering parameter!® v; = . =0.1. -

The linear theory!®® for the hyperbolic target profile of Eq. (51) gives that the Kelvin-

Helmholtz mode is unstable for the wavenumbers k, satisfying
kya < 1, (52)

where k, = 2rm/L,A and m is the mode number in the y-direction. Figure 3 shows the
electric potential |®|? as a function of time for each mode (m = 1 —4). Notice that because
of the lack of noise in the implicit particle code, a large number of decades of exponential
growth of the instability is observable. After a short period of time modes with m = 1
and 2 grow exponentially in time, while modes m = 3 and 4 do not grow until well into
the nonlinear stage ¢t ~ 5 x 10%w;.} = 31a/vo. Here recall that the threshold mode number
me = Ly/a = 64/5 and m = 1, 2 are supposed to be linearly unstable and m > 3 are
stable. This is in agreement with simulation in Fig. 3. For these simulation parameters

o = v, (z = Ly) At/A is equal to 0.75. The m = 2 mode shows a slight oscillatory feature
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as seen near t = 8 x 10%w,.! = 50a/vo. The modes with larger mode numbers are triggered
unstable after the amplitude of the linearly unstable modes becomes high enough and the
vortices of these modes begin to interfere or overlap around ¢ ~ 5 x 10%w;!.

Figure 4 exhibits a typical particle plot and the corresponding electrostatic potential
contours. For clarity, only particles with initial velocity v, > 0 on the left half att =0
are shown. Figure 4 is at ¢ = 1 x 10%w;! = 62.5a/v. In Fig. 5 we show the measured and
theoretical growth rates of the modes. Figure 5 also shows the measured growth rate for the
case Whén the magnetic field By is tilted toward the y-direction from the z-direction by angle
6 = 0.010 radian. Note that this is less than the critical angle (me/]\/fi)l/2 = 0.025 radian. In
-this case the flow is still unstable although the magnitude of the growth rate is reduced by a
factor of one order of magnitude and the unstable wavenumber increases, as is characteriétic
of drift wave-like modes. On the other hand, when We‘ tilt the magnetic field away_.fgg;ggvfche
z-axis by § = 3 x 1072, the system is stable. The electron thermal speed vy, is take;;yto be
0.05w,eA in the tilted B field runs where eleétrons can move along the magnetic field line,
while the thermal velocity perpendicular to B.remains zero. Thus kjv:,, = 9.8 X 10~ *mw,,
for the 8 = 102 case, where m is tl.le mode number in the y-direction. Thus Ymax < ‘fc”vth,.
where Ymay = 1.25 x 10~4w,, = 0.20v0/a for the K-H mode (in Fig. 5). For § = 3 x 1072,
kyvs > v8H. The measured maximum growth rate for 6 = 1072 is 0.26 x 107wy, about a
fifth of the 6 = 0 case. When the normal mode is marginally stable, we find that the growth
of the mode becomes secular as seen in Fig. 6. The eléctric potential due to the marginally
unstable mode increases linearly with time.

As has been shown in the earlier driven simuiations,5 the stage at which the nonlinear
triggering of other mode numbers sets in is coincident with the development of a vortex
chain. In order fo better control the study of the nonlinear problem of vortex evolution, our
approach here is to separate the linear and nonlinear stages. We idealize the problem by

starting from the secondary equilibrium of a vortex chain.
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IV. Nonlinear Evolution of Vortices

In this section we initialize the simulation near the Stuart-Kelvin cat’s eye equilibrium.?®!

In the plasma context this amounts to the following initial electron density:

ATLO (1 - 62)

[cosh (ko) + € cos (koy)]*” (53)

ne(m, y) = no+

where 0 < € < 1. The ion density is taken to be uniform n; = no. The electrostatic potential

resulting from these charge densities is

Hz,y) = (%) In (cosh (koz) + € cos (koy)] - (54)

Thus, the secondary equilibrium flow is given by

€vo sin (koy)
cosh (koz) + €cos (koy)

Vy —

vo sinh (koz)

cosh (ko) + € cos (kyo)”

Uy

For ¢ = 0, Eq. (53) reduces to Eq. (50). As € is increased, the island structure of the
equidensity contours becomes wider in the z-direction. We load electrons of nonuniform
weight!® to describe the nonuniform density distribution, and the parameters are the same
as in Sec. III. With these parameters fixed, we vary ¢ from zero to the following set of
values: 0.08, 0.3, 0.5, 0.6, 0.7, 0.85, and 0.95. The unit of frequency wye is measured where
ne = ng, Ly/a = 64.5, and the hydrodynamic unit of time a/vy at z = 0 or L, is given by
afvo ~ 1.6 x 10%w; .

Figure 7 shows snapshots of particles with z, y coordinates and the corresponding electric
potentials at various times for the case of € = 0.08. The instability is triggered by noise due
to numerical truncation that results upon loading the particles, as there is no noise associ-
ated with the particle motion perpendicular to B with the initialization and the subsequent
decentering algorithm.’® At ¢ = 4.2 x 10%w;.! = 26a/v, the contour lines show a reconnection

of the flow lines, reminiscent of the tearing instability of magnetic islands, that yields vortices
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(islands) with smaller wavelengths (m = 4). Note the original vortices had mode number
m = 2. At a later time the smaller induced islands (m = 4) are absorbed by the original
islands (m = 2). In Fig. 7(c) and (f) at time ¢ = 6.6 x 10%w;.} = 41a/vo we observe that the
larger original vortices coalesce into one vortex with m =1 in the direction of the exterior
flow. We also see the vortex tilts in the clockwise sense due to the ambient extel;nal flow,
which is downward on the right side of the vortex and upward on the left side.

~ During the coalescence process the perturbed electrostatic potential energy grows expo-
nentially in time as shown in Fig. S(a). Figure 8 summarizes the growth of the electrostatic
energy for cases with various values of ¢. The saturation of this energy in Fig. 8(a) happens
shortly after a complete coalescence.

As we raisé the value of ¢ and other parameters being fixed as before, the growth rate
of the electrostatic energy increases as shown in Fig. 9. This figure will be further discussed
in Sec. V. In frames (b)—(d) of Fig. 8 we also observe that a slight bump develops in
the middle of the otherwise exponential growth phase. In particular Fig. 8(d) shows a
faster than exponential growth in the early stage, while settling into a nearly exponeﬁtial
gr_oﬁth lé,ter. This indicates a transient growth that is faster than exponential growth for
€> €ait 2 0.5. Another feature to be noticed in Fig. 8 is the amplitude oscillations after the
coalescence. These are associated 'With the ringing of the vortex shaéé. ‘This is reminiscent
of .the coalescence process of magnetic islands, although any parallelism of the coalescence of
vortices in the present investigation with that of the magnetic island coalescence is pefhaps
fortuitous since the dynamical equations are rather different. Some conspicuous differences in
the governing physics include: (i) the vortex dynamics is described by the single field ¢, while
the magnetic island dynamics requires at least two fields ¢ and the z-component of vector
potential A,; (ii) consequently there exists a magnetic repulsive force upon magnetic island
coalescence, while in the vortex dynamics there is none; (iii) the magnetic flux conservation

inhibits the reconnection of the magnetic flow lines. On the other hand the presence of the
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Kelvin-Helmholtz instability and the coalescence instability for the vortex dynamics is similar
to the presence of the tearing instability and the magnetic coalescence instability except for
the frozen flux constraint that di/dt = nV?p — 0. The importance of the flux conservation
constraint is easily seen in the formulas for the linear growth rates where K H kb, Avy but
4 k§/3773/5-

In light of the above the actual dynamics of the tearing mode is in principle different
from that for vortex coalescence dynamics. Ideas used to study the tearing, however, can be
used to measure the vortex dynamics observed here. One measure is the vorticity difference
between the original O-point and the innermost X-point (e.g., between A and B in Fig. 7
and Fig. 12), and another measure is the vorticity difference between the original O-point
and the outermost X-point (e.g., between A and C in Fig. 7 and Fig. 12). The former
measure of vorticity is indicated by circles and the latter measure by crosses in Fig. 10,
for various € cases. By definition of the former measure of vorticity vénishes when the two
vortices complete their coalescence. See Fig. 10 and compare it with Fig. 8. On the other
hand, the latter measure of vorticity may or may not vanish. In small ¢ runs [Figs. 10(a)
and (b)] we see that it decreases until a certain point (¢ ~ 5 X 104(..07;1 = 38.6a/vp) and then
begins to increase. This manifests itself in a larger vortex at ¢ = 6.6 x 10%w,.! = 5la/vo
[e.g., Fig. 7(c)] than the original vortex. In largerl ¢ experiments [Figs. 10(c) and (d)] the
two measures depart, but both measures decrease, or at least not increase, even well after
the coalescence.

Let us further examine the cases with € = 0.3 and € = 0.6, which are shown in Fig. 11 and
Fig. 12, respectively. Figure 11(c) shows skewness of each vortex, as well as the tilt of the
axis of two vortex centers measure in the negative direction. This is similar to the prediction
by Horton et al.! and one found in the simulation.’ More pronounced tilt may be seen in
Fig. 12. The rotation of the axis continues even after the completion of the coalescence.

We thus find that the chain of vortices is unstable against the tilt or rotational instability.
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In Figs. 12(a)-(d) we observe the rotation of axis that connects the two O-points as they
approach each other. Even after the coalescence the rotation continues. At the same time the
overshooting oscillation (squashing of the droplet) continues. In this particular case, where
e = 0.6, during the course of these droplet vibrations, fission of the vortex happens, as seen
in Fig. 12(d). Observe in Fig. 12 that as the m = 2 vortices coalesce into an m=1 vortex,
much smaller scale vortices spring up. As the energy inversely cascades from the m = 2
vortices to the m = 1 vortex, the enstrqphy cascades from m = 2 to higher m’s, since both
the overall enstrophy and energy are conserved. From the distribution of particles in plots
in Figs. 7, 11, and 12, we note that even when the potential contours show fairly coherent
patterns, the parti<.:1es are strongly mixing in complex structures.

Figure 13 measures the negative of the rotational angle of the vortex-vortex axis as a
function of time. As € is increased, so is the growth of the angle. The rate of increase of
the angle before § = 180° is found to be faster than exponential. Following the terminology
of magnetic coa,léscence this growth is called explosive growth. This explosive increase of
9 saturates at or near § = 180°. In some cases 8 stays around 180° after it reaches this
position. In other cases after a bfief pause at § = 180° the angle again increases. The
higher the value of 4, the stronger is this tendency for continued rotation. Figure 14 displays
the distance between the two O-points as a function of time. Once again this distance
ér(t) = \/m also grows faste'r than exponential during the coalescence, indicating
the explosive nature of the transients in the coalescence process. Note that different from
f in Fig. 13, the dependence of ér as a function of e‘is not monotonically increasing. Also
noted is that the increase of dr as a function of time is sometimes not monotonic. |

Figure 15 shows the potential ¢ at ¢ = 0 and a later time at which point a nearly /2
rotation of the axis of a pair of vortices is realized for ¢ = 0.3 and € = 0.7 cases. The

evolution will be later compared with the theoretical model in Sec. V.
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V. Localized Vortex Model

Now we present techniques for analytically modelling vortex simulation results, such as those
presented in Secs. III and IV, by simple few degree-of-freedom Hamiltonian systems. This is
a plausible goal as the system is nearly dissipationless and low wavenumber modes dominate
the dynamics. The purpose here is two-fold: firstly, techniques are discussed in a manner
that is quite general, more general than the present application. Secondly, the specific
application of these techniques to the near cat’s eye simulations are considered. The goal
here being to elucidate the dynamical mechanism that are active during the coalescence or
tilt instabilities.

The simulation results suggest that there is a large temporal regime where the two lo-
calizéd vortices of the initial condition remain isolated and maintain their integrity while
moving. This suggests a few degree-of-freedom model for the flow, composed of localized
interacting vortices, perhaps subject toA an external field.

Since the computational studies of this paper are periodic in the y-direction, but not the
z-direction, these boundary conditions must be incorporated into a model of the dynamics.
The z boundary condition is straightforward, since to a large degree the motion of the lo-
calized vortices is far enough removed from the boundaries for us to assume —oco < z < 0.
More generally one can satisfy finite metallic boundary conditions by appropriate config-
urations of image vortices. This is not pursued here for the z-direction, but the periodic
y boundary condition does require images. These boundary conditions are perhaps a bit
confusing since the simulations have a periodicity length of 4m/ko, while the initial condi-
tions of interest are nearly 27 /ko periodic. This latter near periodicity is not a constraint of
the dynamics; thus unlike the 47 /ko periodicity should not be built into the vortex model.

Begin by supposing that there are two vortices in the simulation domain, one denoted by
“0” and the other by “1”. Periodicity in the y-direction requires that each of these vortices

be tracked by an infinite chain of equal strength vorticities. Vortices that track vortex 0 will
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be denoted by an even subscript, while those that track vortex 1 by an odd subscript. The
periodicity requirement thus demands the following constraints:

4mn
Yon (t) = yo(t) + k—
v 0

41n
ymp1(t) = n(t)+ T
~ 0

Zon(t) = zo(t)
T (t) = (), (55)

where n = £1, £2, 3, ....
In general suppose that the velocity at vortex n located at x, = (zn,¥s), due to vortex
m located at x,, is given by

Vam = A% (xn - xm) [ | (56)

Upon superposing, the total velocity at the location of vortex 0 is given by

Vg = Z V (%0 — Xm) - . (57)
iy '
- Similarly, for vortex 1
vi = Y. V(X1 —Xn). : (58)
TmAL | ‘

Suppose that V is derivable from ‘a stream function, defined by
V(z,y) = £ x Vi(z,y), (59)
where 1 is even in both of its arguments
$(@4) = $(~2,9) = $(z, ~) | (60)

Making use of these symmetry conditions and the periodicity constraints of Eq. (55) yields
the following for Egs. (57) and (58)

)
Vg = Z

m=—co

n 4d7m
ZXV¢($0—$1,yo—y1— 7 >
0
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(61)

vy =
m

. dm
2 x V¢ (371_3707:91_'!!0— ko )

NgE

-0
We ignore the self-interaction of the vortices and assume they move with the local flow. This

yields the following Hamiltonian equations of motion:

0H o0H
P ] 7. = —— ) — 2
mt ayz y‘l 6$z ? 0’ 1 ) (6 )
where
i 4mm
H(zo— 21,9 —91) = Z ¢(wo—$1,yo—y1——k;—)- (63)

m=—00

The form of the Hamiltonian of Eq. (63) suggests the introduction of the “center-of-mass”

coordinates defined by

f = Zo—T1 n=%Y — 4
X = o1+ 2o Y = y1 + Yo. (64)

The coordinates (X, ) remain fixed in time while (¢, 7) satisfy

0H

. OH
= —577(6,71) N = -5?(5,?7)- (65)

In order to effect the modelling, it remains to determine the function H({,n). This can
be achieved in two ways: first, a model H can be obtained directly by tracking the relative
motion of the vortices. Since for this system physical space (£, 7) is the phase space, and since
trajectories lie on curves of constant H, one can attempt to fit H to the simulation output.
Alternatively the vortex-vortex interaction 1 can be postulated, perhaps, by examination of
the vortex shape. Knowing 1, the sum of Eq. (63) must be evaluated in order to determine
the dynamics.

Sometimes the sum of Eq. (63) can be evaluated in closed form; for example, in the case

of point vortices where

$(€,1) = toln (6 +n?), (66)
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.this is the case. Defining z = & (n + 1¢), it is evident that

OH OH _ koo 1

J = - = .
an ' o¢ 2 m=z_°° z—mm (67)
The sum of Eq. (67) is the Mittag-Leffler expansion for cot z, which implies
J kotbo [sin %2 — z'sinh:"’E (68)
2 | cosh= —€ cos 2%
and thus from the first equality of (67) we obtain to, within an additive constant,
k k
H(¢,m) =1 In [cosh %ﬁ — cos —;ﬂ-} . (69)

The summation performed above is related to the solved classical problem of obtaining
the velocity field due to an infinite chain of point vortices,?? but here the context is different
in that H determines the dynamics subject to the constraints (55). H is not the stream
function. Below we will construct the stream function as a function of time.

Now consider the inverse problem where H is assumed to be known and it is desired to

* construct %. The Poisson sum formula implies

CHm) = m_E_:w v (6,77 + 20
~ m_z_w (e, m)e™E, (70)
where v and ¥ are Fourier fransforrn pairs, i.e.,
Y(éq) = /_o; e F (€, m)dn (71)
wem) = o [ U g (72)
The function 9 evaluated on integer values is determined by H(¢,n) according to
Bem) = g [0 e E RGNl (13)

If one continues Eq. (73) for integer m to the entire real line, 7,5(5 ,q), ¢ € R, then Eq. (72)

“can be used to obtain 9(¢,7). Our goal of obtaining the vortex-vortex interaction potential is
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then achieved. There is, however, a difficulty in this prescription because one must construct
the continuation, which is not unique. A natural way to do this is to transform (73) to a
contour integral around the unit circle in the complex plane. But, when m is not an integer a
branch point occurs at the origin. A method of finishing the continuation involves the excising
of a branch cut from the origin to infinity along the negative real axis of the complex plane
and a deformation of the unit circle contour so as to skirt the cut. Further details of this
method will not be presented here since for our specific purpose an artifice will be éufficient.

We propose the following form for H in the case where ¢ can differ from unity:

H(¢,m;€) =toln [\/:;- (6+coshl~::o.£)—\/Ecosk(%7 : (74)

Arguments in favor of this seemingly obscure choice will shortly be given, but first consider
the inverse problem for obtaining ¥(£,n;¢). Suppose % has the form of the point vortex

interaction, except isotropy is broken by warping the = dependence of the interaction, i.e.,

¥(€,m;€) = voln [f2(€) + 77, (75)

where the function f(£) is yet to be determined. Substitution of f for { in our treatment of

the point vortex case yields

OH _ kotho sin &2

= 7
dn 2 cosh k_%[ — Cos 1“’7" (76)
0H koo sinh k—gi e
of 2 coshk—gi—cosk—gﬂ'
Equations (76) and (77) imply
H(&,m;€) = o ln |cosh %—Ji — cos fc;_n -+ const. (78)
Choosing the function f as follows:
_ . .,
cosh (k‘of) = E cosh (k‘oé) ( 19)
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results in, apart from an unimportant additive constant, the H given by Eq. (74).

There are several favorable attributes that lead one to choose the H of Eq. (74). To
begin with, it is a continuous deformation away from the case where ¢ = 1, a case where
the model exactly agrees with the simulation [c.f., Eq. (69)]. Thus at least near ¢ = 1 we
expect reasonable agreement. Inspection of Eq. (79) reveals that for € # 1 the logarithmic
singularity at £ = n = 0 has been eliminated. Any distributed vorticity arrangement will
have this feature. Also, the anisotropy introduced is in agreement with that observed in
the simulation (c.f., Fig. 16). In particular 9y /0¢ ‘n=0 dominates % _,- A convincing
argument in favor of the choice of Eq. (74) is that it leads to a ¢(z,y,t) that as we shall
see, looks like the simulation. We emphasize however that this choice is not unique and only
~qualitative agreement is sought. .

The construction of ¢(z,y,t) requires that the contributions from the double infinity of
vortices be summéd at each moment of time. We conclude that

ad drm dm

M%%ﬂ= z:[¢Ghﬂmy—m—"zf>+¢<w—ﬁw—yr—ko>y - (80)

m=—0Q

Without loss of generality the arbitrary constant can be dropped. Assuming

X=Y=0
Zo = %f I = —'21‘5
1 ,
Yo = %n Y=g, (81)
yields
¢@wdw)=ﬂ<w—§?ﬂr—%?w)+H<w+%?w+ggLﬁ-' (82)

At time ¢t = 0 Eq. (82) should represent the cat’s eye initial condition. Using {(t = 0) = 0,

n(t = 0) = 27 /ko, Eq. (74) implies
#(z,y,0;€) = g In [cosh kox + € cos koy], (83)
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b(z,y,t;€) = %ln{z (\% € + cosh kg (w—g(;))- scos%@_%t)))

x (\% :e—{-coshko <m+i2t)) E cos 2 <y+ (t))) } (84)

Now consider the comparison of the linear theory of the localized vortex model with the

the equilibrium state desired. At later times

simulation. As noted above ¢ = 0 and 7 = 27/k, correspond to the cat’s eye equilibrium,
but also these correspond to dynamical equilibrium of the localized vortex model. This is
evident upon differentiating Eq. (74). Moreover, expanding H to second order yields the

following Hamiltonian for the linearized dynamics:

DN k31po/2 /2662
h(5€,5n,6)—8(m+\/2_6)[ Vet + Y2, (55)

Thus the linear growth rate based on this model, normalized by k210 /4, is given by

03/4.1/4

(Lo (Vite+V2)

For ¢ = 1, 4 = 1/2, the classical result for the maximum growth rate of a row of point

(86)

4=

vortices. The localized vortex model selects the maximum because this is the only motion
allowed by the periodicity constraints of Eqs. (55). Examination of Fig. 17 reveals that the
simulation is in agreement in this limit. As ¢ — 0, 4 ~ 2¥%'/%, This vanishing growth
rate is in disagreement with the simulation, a not surprising result since the assumption
of localization of the vortices breaks down. Because of €'/* behavior this disagreement is
confined to 0 < ¢ < .2. The theory is in reasonable agreement for a large range of ¢ away
f.rom unity. On Fig. 17 we have also plotted the results of Ref. 21, where the linear eigenvalue
problem for the ca,tss eye equilibrium was solved numerically. Observe that for ¢ ~ 0.3 there
appears to be a transition from localized vortex behavior to what we refer to as K-H behavior,

i.e., sustainment of 4. This is further evidenced in Fig. 10. On the other hand the theory
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by Pierrehumbert and Windall is correct at € = 0 and agrees reasonably with simulation for
€ < 0.3 but unable to converge beyond.

Now consider the nonlinear behavior. Since H is conserved, one can obtain the orbits
in physical space by simply plotting surfaces of constant H. In Fig. 18 we have done so
for different values of ¢. This figure shows that the energy surface decreases in width as €
decrea.sés from 1 to zero. In the simulation it was observed that for small values of ¢ the
instability that occurs is of the pairing or coalescence type, as shown in Fig. 10. For values
of € near unity the instability that occurs is of the tilt or rotational type. Figure 18 explairs
this tendency with €. For all finite values of € the vortices approach each other and move
transverse to each other. For small € the later motion decreases with the width of the energy
‘surface and we observe the predominant coalescence.

In Fig. 19(b) we show the results of integrating Eqs. (65). 8(t) and ér(t) = r(0) —r(t) for
-various values of € are given. Many features of the corresponding quantities for the simulation
Figs. 13 and 14 are reproduced as seen in Fig. 19(a). The initial conditions here WereA chosen
near the se-paratrix, either just inside or just outside. In the case where the initial condition
is'just inside, 8 can increase beyond 180°. This behavior is seen in Fig. 19(a) for the case
where € = .95 and in Fig. 19(b) for the case with € =?. When the initial condition'is outside
the separatrix, in the localized vortex model, # can only approach 1>8.0°. This behavior is
indicated in Fig. 19(a) by the flat spot near § = 180° and shown in Fig. 19(b) for the case
where ¢ =?. Similarly Figs. 14 and 19 for ér(¢) show qualitative comparison.

Given the results of the orbit integration we can plot the stream function as a function
of time by making use of Eq. (82). We have done so in Fig. 20(a) for the point vortex case
where € = 1 and ¢t = 0, while Fig. 20(b) shows ¢ for € = 1 and t = £, a later time chosen so
that § ~ . Similarly in Figs. 20(c) and 20(d) we plot ¢ for the case where ¢ = .6 and ¢t = 0
and ¢t = 1, respectively (? is chosen again so that § ~ ). Figure 20 should be compared to

Fig. 15.
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In summary we see that there is qualitative agreement between the simulation and the

localized vortex model with increasingly better agreement for larger e.

VI. Summary and Conclusions

We have derived linear theoretical stability conditions and growth rates for a plasma with
shear flows taking into account gravity and magnetic shear. We analyze the stability problem
With. a discontinuous background density and with a smooth density. The dispersion relation
shows the presence of E x B shear flows can stabilize the interchange and other related
instabilities. The linear analysis of the gravitational instability shows that the interchange
(R-T) mode is stabilized by the shear flow when the velocity shear ufa > kg or \/gTL:
(see Eqs. (18) and (48)). In the case of interchange mode, much shorter wavelength modes
(much higher azimuthal modés) are destabilized. The mode is strongly localized near the
mode rational surface. The interchange mode can be stabilized when u/a 2 (g/ L)',
Nonlinear evolution of shear flow instability is on targeted special cases studied using the
particle simulation method.

Implicit particle simulation results of the shear flow (K-H) instability due to £ x B drift
in a magnetized plasma show good agreement with the linear theory. The maximum growth
(0.2u/a) and the threshold wavenumber (1/a) agree well with the observed growth rate and
threshold. The linear K-H instability with & = 0 has a sharp boundary between the stable
and unstable wavenumbers, with the marginally stable modes having a local secular (~ t)
growth arising perhaps from a ballistic resonance. In contrast, 3-D modes with ky/k < 6.
have a reduced growth rates. In the simulation, if the tilt angle 0 Z 0.02, the modes
become rather drift wave-like and the growth rate is greatly reduced, while the unstable
wavelength band expands. In the K-H instability, vortices that grow to a sufficient size
trigger a secondary nonlinear instability with smaller, subharmonic wavenumbers.

The nonlinear instability is analyzed using a periodic chain of localized vortex structures,

32



using a periodic chain of localized vortex structure as an equilibrium (the Kelvin-Stuart cat’s
eye solutions). This eqﬁilibrium is observed to be unstable against the coalescence and tilt
modes. The electrostatic energy increase of a lower wavenumber mode (m = 1) (the growth
rate of m = 1 mode) is in reasonable agreement with the theory by P‘ierrehumbert and
Windall?! and the analysis of Sec. V. In a small amplitude regime, the tilt and coalescence
vinstability and shear flow instability coexist. Even after the completion of coalescence, the
shear flow instability continues. In the case of large amplitude, the tilt and coalescence
instabilities dominate the shear flow instability. Upon overshoot of the tilt and coalescence,
the coalesced vortices can again separate into two.

The growth rate of the tilt angle is in good agreement with the coalescence instability
of a point vortices dynamic model in an appropriate range. The angle 6 increases faster
than the exponential function of time. The angle 8 approaches 7 and stays for a long;time.
The point vortex model can accurately predict the time profile of the rotation angle of the
vortices. The time scale prediction of the relative rotation of two vortices also provides a
good explanation éf the simulation.

The results for the stability of the transitional layer of a resistive plasma with a substantial
change in density and perpendicular E X B flow velocity is given in terms of transcendental
dispersion relation in Sec. II. The roots of the dispersion relations in the absence of shear
flow describe the resistive g instability and the collisional drift wave instability with their
different dependence on collisionality and magnetic shear. In the presenée of a sheared flow
the growth rates are strongly affected when the condition k,Azu’ > «; is satisfied where
ky, Az, and -k, are the parameters of the instability in the absence of the shear flow. The
critical shear flow u’ obtained from this condition is shown in Table I. -

For the shear flows reported in TEXT tokamak plasma with the new higher resolution
probe measurements the condition given above is marginally satisfied so that we conclude

that shear flow may have an influence on the edge turbulence even if it is not sufficiently

33




strong to excite the K-H instability in that experiment.

There are two effects of the sheared E x B flow on the edge turbulence. Here, as in Ref. 1,
we consider the direct effect of the shear flow on the wave dispersion relation showing that the
growth rate of the mode present in the absence of shear flow can be strongly reduced. The
second aspect is that even for a given fixed level of background waves the transport across
the magnetic field is reduced by the shear flow. This decorrelation effect of the t;ransport
has been calculated by Shaing and Crume® and Biglari et al.l? using the ideas of relative
diffusion or clump turbulence theory. A simpler estimate of the reduction of the transport
comes from considering the single particle motion of test particles in a dominant fluctuation
of mode number k and strength ¢ the radial excursion size is reduced from the distance
7/ k, between nodes of the radial modes to the size Ar = (cgzk /Bv ) M2 given by the strength
of the shear flow u’ and the amplitude of the potential fluctuation. Taylor et al.,®> Shaing
and Crume,® Biglari et al.,'® and Taylor et al. and Burrell et al.” argue that the reduction
in the plasma transport associated with L to H mode transition occurs either (1) due to the
increased strength of the radial electric field or (2) due to the increased sheared flow velocity
due to the deepening of the negative electrostatic potential well of the toroidal system. We
show here that the increased strength of the shear flow changes the stability conditions of
the plasma.

Sufficiently strong shear flow drives the plasma unstable to the K-H instability. We
consider the unstable sheared flow regime with implicit particle simulations and describe the
resulting vortex dynamics by the motions of the vortex cores. To make an analytic treatment
of the vortex core dynamics, we idealize to the case of point vortex dynamics including the
vortex-vortex interactions and the vortex-shear flow dynamics. The appears to give a good
description of the principle processes of mutual rotations and coalescence of the vortices.
Comparison with the simulations shows that a lowest order description of the turbulence

follows by the vortex core dynamics and perhaps treating the density and pressure fields
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as passively convected. The possibility of describing the relationship of the density and
potential fluctuations vmeasured in TEXT with the density being passively convected in the
E x B flows given by the potential fluctuations has been previously suggested by Bengtson
and Rhodes.?

Previous attempts to explain edge turbulence in TEXT by resistive hydrodynamic modes
and by collisional modes have not been completely successful. The theoretical formulas
used have neglected the effects of shear flow assuming that the background velocity simply
Doppler shifted the frequencies of these instabilities. In view of the present theory and new
meaéurements of Ritz et al.?* reporting dvg/dr < 10%/sec a re-examination of the comparison
between fluctuation theory and experiment may be necessary taking into account the finite
value of dvg/dr. |

The theory developed here may be relevant to the present ideas of the mechanisms:oper-
ating in the L to H confinement mode transition as envisioned by the Shaing theory®® which
explains the transition as a change in the radial electric field due to bifurcation in the torque

balance equation resulting from the nonlinear form of the radial ion current losses.
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Figure Captions

1.

(a) Slab geometry showing coordinates used to describe the sheared magnetic field

B(z) and sheared flow velocity vy(z) along with the directions of Vng and g.
(b) The piece-wise continuous profiles of the sheared flow velocity v,(z) and the den-
sity no(z).
Graphical location of roots of the eigenvalue problem given by intersection of F'(z) =

tan(2az) and the right side of Eq. (37).

Evolution of the electric potential ®2 (¢) for modes m = 1,2,3,4 for the reference

parameters in Sec. III.

(a) Contour plot of the electrostatic potential at the critical time shown in part (b).

(b) Position of particles in x-y plane with initial fluid velocities v, < 0 at a critical

stage of dynamics just before wave breaking.

Comparison of the measured growth rates with theoretical growth rate for the colli-
sionless piece-wise linear slab flow. For the * data the tilt angle § of the magnetic field

is zero and for the A data the tilt angle is § = 0.010 radians.

‘Secular growth of the potential with a linear increase in time for a marginally stable

mode.

(a)—(c) Contours of the electrostatic potential for the period doubling coalescence from
the m = 2, ¢ = 0.08 island chain.

(d)—(f) Particles starting with v, < 0 at later stages of the coalescence instability
evolving from the period island chain of strength e = 0.08.

Evolution of the electrostatic potential energy from the nonlinear island chain as a

function of increasing vortex strength e.
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10.

11.

12.

13.

14.

15.

16.

17.

Plot of normalized linear growth rate 4 versus e: x represents a data point extracted
from the simulation results, ® is a data point where it is difficult to ascertain the growth
rate because the growth is faster than exponential; the dashed curve is the linear theory

of Ref. 21; the solid curve is that derived form the localized vortex model.

Measure of the vorticity in the trapped coherent structures. The vorticity difference
between the original O-point to the innermost X-point is given by the circles o and
vorticity difference between the original O-point and the outermost X-point is given

by the crosses Xx.

Potential contours (a)—(c) and particle plots (d)—(f) for the period doubling coalescence

of the m = 2, e = 0.30 island chain. Skewness of each vortex as the axis between two

vortex centers rotates during coalescence.

As in Fig. 11 but a case of ¢ = 0.6 with stronger tilting where the rotation continues

after coalescence.

Simulation measurements for the rotation angle as a function of time 8(t) for labelled

values of €.

Distance between two O-points as a function of time ér(¢) as measured in the simulation

for the labelled values of e.

Equipotential contours obtained from the simulation: (a) e = .95,¢ = 0; (b) ¢ = .95

at a later time; (c) € = 0.7, t = 0; (d) € = 0.7 at a later time.

Contours of the vortex-vortex interaction potential 1 given by Eqgs. (75) and (79), for
the cases (a) € = .05, (b) € = .30, (c) e = .70, and (d) e = 1.0.

Contours of constant interaction Hamiltonian, H, for (a) € = .05, (b) e = .30, (¢) e =

.70, and (d) e = 1.0.
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18. Nonlinear results of localized vortex model. (a) 6(¢) for e = .05, .30, .70, and 1.0.
(b) ér(t) for the same e values. (c) Plots of 8(t) that show trajectories with initial
conditions on the two sides of the separatrix. (d) ér(t) for two initial conditions. One

just inside the other just outside the separatrix.

19. The stream function for the cases: (a) é(z,y,0;1), (b) ¢ (x,y,f; 1), (c) é(z,y,0;0.6),
and (d) ¢ (z,y,%;0.6). £ and f are chosen so that the rotation is approximately 180°.
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