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Abstract

An inward particle pinch appears necessary to explain experimental results in toka-

maks Neithér the neoclassical pinch effect, ;Nﬁich is too small, nor the oﬁ'—diagoﬂal
quasilinear term, which is usually outward in the trapped particle regime, can account
for the observations. A mechanism for an enhanced inward pinch is proposed, based on
results fo.r an asymmetric rﬁagnetic field bump [R.D. Hazeltine and M.N. Rosenbluth,
Pilys. Fluids 15, 2211 (1972)]. Because turbulent fluctuations also break toroidal sym-
metry, an enhanced inward pinch driven by the fluctuations an_d the Ohmic inductive

field, E is expected. To demonstrate this effect, an inward particle flux is calculated for

a model tokamak configuration that has an electrostatic potential bump ®o at toroidal -

angle ¢ = 2m. For the parameter regime r/R < e®q/T, < 1, the flux is found to be
T = —4.47K(q)(r/R)L(®0) (vie/ Rve)'/?cN E/ B, where r(R) is minor (major) radius,

B is the magnetic field strength, v, is the electron thermal speed, v, is the electron-ion
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collision frequency, g is the safety factor, and K(q) and L(®¢) are functions of ¢ and ®o
respectively. The results are also applicable to an asymmetric potential bump created

externally to enhance the inward pinch flux of high energy, collisionless particles.



I. Introduction

There appears to be strong evidence for the existence of an anamolous inward pinch in
{:okama,k particle confinement. It is known that an inward particle pinch is required to
explain the existence of peaked deﬁsity profiles in the core of edge-fueled Ohmic plasmas.’
Particle diffusivity inferred from sawtooth density pulse propagation and from oscillating
gas puff experiments is larger than that inferred from the steady state particle balance,
which implies the existence of an inward pinch.>* The magnitude of the required inward
pinch velocity is generally larger than that of the neoclassical pinch.® Even though the
combination of an anomalous diffusivity and the neoclassical pinch seems adequate to explain
the central density profile evolution after pellet injection in JET (Joint European Tokamak),
an anomalous pinch m.ay still be needed in the edge region.®

Theoretical understanding of the origin of the anomalous pinch is mainly based on quasi-
linear theoi‘y. In the plateau regime where vke = v.Rq/(v€¥/?) > 1, with v, the electron-
electron collision fféqué»ricy,‘ vte the thermal speed, R the major ré.dius , q, thé éafei-;y fac;;of,
and ¢, the inverse aspect ratio, there is an inward pinch term associated with the electron
temperature gradient for the jon mixing mode.” However, when vk < 1, the flux is usually
outward for veg = (ve/€) > wk., the electron diamagnetic drift frequency.® A recent calcu-
lation indicates that an inward —pa,rticl.e flux can exist if veg <>O.78w*e.9 Because such an
inward flux only exists for high temperature plasmas, one needs to consider an alternative
mechanism.

We propose here an enhanced inward pinch mechanism in the trapped particle regime
due to the asymmetric electrostatic potential. '. Because electrostatic potential fluctuations
are ubiquitous in tokamaks, and they break the toroidal symmetry; it is therefore interesting

‘to calculate the inward pinch in the presence of the symmetry breaking electrostatic potential

fluctuations. From a previous study on the enhanced trapped particle pinch velocity due




to the asymmetric magnetic bump,'® one expects the pinch velocity to be enhanced due
to the electrostatic fluctuations. To simplify the analysis, we calculate the pinch velocity
in a tokamak with an electrostatic potential bump located at the toroidal angle ( =
The model is therefore similar to that for the asymmetric magnetic bump. Even though
the frequency (vi/R) with which particle encounters the potential bump in the model is
different from the frequency (vi|m —ng|/Rq) in a realistic situation where the perturbation
has a poloidal mode number m and a toroidal mode number n, the model does describe the
crucial features of trapping and boun‘dary la&er formation required for an enhanced inward
pinch flux. Because the pinch flux calculated here is driven by the Ohmic inductive electric
field, it does not depend critically on the specific type of instability involved but the modc
frequency has to be lower than veg. The model can also be employed to describe the pinch
effect of electrostatic potential created by a poloidal hmlter or other means located at { = 0.
This paper is organized as follows. In Sec. II, we describe the model and the drift kinetic
equation to_be used. The solution of the kinetic equation and the inward particle flux are

given in Sec. III. The concluding remarks are given in Sec. V.

II. Model and Drift Kinetic Equation

We assume that there there is a zero-width electrostatic potential bump located at ¢ = 0
with height ® in a tokamak magnetic geometry. The potential is assumed to be static in
time. It could therefore be used either to simulate the low frequency fluctuations with mode
frequency w < Ve, or to describe a poloidal limiter. To simplify the analysis, we employ the
ordering 1 > e®o/T, > ¢ with e the electric charge and T, the electron temperature. To the
lowest order in €T,/e®, < 1, trapped particles are trapped in the potential bump. Whether
a particle will be trapped in the potential bump depends on its pitch angle parameter which
is defined as A\ = p/w, where p is the magnetic moment, w = v?/2, and v the particle

speed. If A > A\, = [(w — wo)/w], the particle is trapped, otherwise it is not. Here we use
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wo = e®o/M with M the mass of the particle as the normalized potential height.
To calculate the inward pinch flux, we must solve the linearized drift kinetic equation for

the particle distribution function f

d
i Vf = O(f) = Vi B~ Lo fur )

where 7 = B/B, B is the magnetic field, B = B, o = £1 is the sign of the parallel (to
B) velocity y)7i, u = |||, E is the Ohmic inductive electric field, and fas is the Maxwellian

distribution.!* The radial drift velocity V. can be expressed as

Mc U
. = —_——— . p— . 2
Vir eBuBXVT V<B>,0<C<2ﬂ' (2)
For simplicity, we employ the Lorentz operator
u 0 af
Clh)=voayuray (3)

where v is the combined electron-electron and electron-ion collision frequency. For this

- simple model, we can iinpose exact boundary conditions. For circulating particles, f must

be continuous across the potential bump

i

(=0 = folC=21), A< A, )

The o dependence in f is denoted by the subscrii)t. For trapped particles, f must satisfy

the reflection boundary condition:

FlC=0)=F(C=0) fu(¢=2r)= f_(g =2r), for > A (5)
III. Boundary Layer

In this section we solve Eq. (1) approximately, for small collision frequency. For simplicity

we consider only the driving term proportional to E. -



Because of the consistency (Dreicer) condition E = O(v), the lowest order version of (1)
requires n - Vf° = 0. Thus, in view of Egs. (4) and (5), f° must be independent of angle in
the untrapped region:

f°=G(r,v) , A< A
In the trapped region, on the other hand, a solution of the form
fe="H(r,q¢ - 6,v) , A> A,

is permissible. Notice that the function H extends across the entire trapped region. For
this reason, and because of its §-dependence, H importantly affects the radial particle flux.
Indeed we will find that the asymmetrical pinch effect results entirely from H.

Proceeding to next order we find

o9 -+(2) (8) (55 =~ () -

After averaging this equation over the lowest order trajectory, we obtain the solubility con-

() () () e 2

in the untrapped region, and

ditions,

OH _

5‘;‘—0 y A> A

in the trapped region, since the Ohmic field has no bounce average. Here the angular brackets
denote a flux-surface average whose explicit form is given in Section IV. In summary, the

lowest order solution is given by

@@L

f=H(7')q<_0aw) ’ }‘>/\c- (7)



I

Here we have simplfied the f-averages in a conventional way, keeping the f-dependence in w,
which contributes in order (r/R)'/?, but neglecting (r/R)-corrections in B and E.

It is clear that (6) and (7) specify a function that is discontinuous across the trapped-

~ untrapped boundary. Thus there arises a velocity-space boundary layer, in which sharp A-

variation defeats the nominal banana-regime ordering. The function H, while not localized

to the layer, is nonetheless determined by boundary layer physics. Because of the importance

. of H, we proceed next to analyze the boundary layer.

In the interior of the boundary layer, A = A, Eq. (1) is approximated by

of (1) 8f] [wRy @ [urof] _
|E+ () B - & -0

where g is the safety factor and terms of order » have been neglected. From the definition

of A, we see that the boundary layer occurs on a surface of constant

.,xshwﬁ%>A.

" Thus the essential variation of fis givén by

f(/\rw, eaC) =~ f()‘/a 97() )

whence

B &[5~ @) w2 5= 6) =] 7

with

, uc. =u(A = A) ~ 2wy + 26(w — wo)(1 + cos§)]/? ) | (8)

- and

I

AL Biax ~ (%) (1—¢). | | (9)

Here ¢ = r/Rq denotes the inverse aspect ratio.
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Note that the layer at A’ = A, occurs only for w > wq. For simplicity we assume ew < wy,

or

T>8, (10)

in order to expand

Uy R [2wo]'/? [1 +e (M) (1 + cos 9)] :

2’LUO

Then the collision term can be simplified, neglecting terms smaller than O(e), with the result

<§) o [uAaf} z[2wo]1/2RoBo‘2{1+5 (w_‘fﬂ) +a(w)£-:cos€} . [( w } 82 f

B/ 8\ | 0X 2wo w—wp)| ON?
where
_(w+ 3wo)
a(w) = owe

Here the second, f-independent term in curly brackets gi\'/es only a small correction to the
f-averaged f; we will see that such corrections do not affect the particle flux. Thus, without

significant loss of accuracy, the boundary-layer equation can be expressed as

af (1) o 6 |
O_C +<E) a—g =o(1 +eacos€)a—w]: , (11)

where z is the boundary layer variable,

w — 1wy 1/2
o= { B | 0. (12

Equation (11) is to be solved subject to the asymptotic boundary conditions given by (6)
and (7). In terms of the variable z, these are “half-space conditions,” in the sense of having
distinct forms for z > 0 and z < 0. Problems involving half-space boundary conditions,
although usually amenable to the Wiener-Hopf technique, are rarely straightforward. The
present case is further complicated by explicit, and essential, f-dependence — a dependence
that turns out to be crucial to the pinch effect under investigation. Fortunately Eq. (11) has

the same form as that derived previously for the case of magnetic asymmetry.’® Thus the
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previous solution can be adapted to the present case, taking into account differences in the
coefficient of cos and in the structure of the boundary layer. We thus find that (11), (6) and

(7) together imply

H= (%) [h(r,e, ¢, w;q) €% + h(r,0,¢,w;—q) e_m/q] (13)

where the z-independent function A is given by

h = —a(w)e/?|q|sin (—;—) N(q) <e§R) fur yfor w > wp

h=10 , w < wp . - (14)

with 12
)= | o]

.The function N(q) is quite complicated, but slowly varying and of order unity.'

" IV. Particle Flux
Here we use Eqs. (13) and (14) to compute the radial particle lux. The calculation is

straightforward in principle, involving nothing more than substitution into the definition
r=</d3vazir>', ' (15)

where the drift velocity is given by Eq. (2). However the sources of §-dependence in the
integrand are sufficiently numerous to justify a relatively detailed account. In particular we
shall note some minor errors in Ref. 10.

To begin we expresé the flux surface average as

=SS TA
 [$do§ d¢ /7]




where ,/g is the spatial Jacobian,

qX’(T)

V9=
Here X’ = Ry By ~ rBy/q is the radial derivative of the poloidal flux, while I(r) measures
the symmetric toroidal field according to Br = I(r)/R. The key feature of the average is its
annihilation property: V

(B-VF)=0,

any single-valued function F. For the drift we use the identity
Bx Vr= -;— (IB-R"‘Bzvc) .

and Eq. (2) to conclude
, Iu U B?u [ 0 u
XV‘“‘(Q)B V(B) 0 (’5&')(?)‘

/d3v:27r;/dwd)\%,

Then, since

we have

oo famire (B)5[(B)2-5(2) -2 (D) B)])

We evaluate both terms in this expression by partial integration. It is then seen that the

first term can only contribute O(v) to I, since
B-Vf=0({). (16)
Thus, keeping to zeroth order in v, we have

<27r2/dwd/\w< )%’?( )(—;—)> . (17)

Here we used large aspect ratio to write B & Br = Bo(1 — e cos ), an approximation that

makes B?,/g a flux function. Equations (6) and (7) show that only the trapped region
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contributes to T, and (16) shows that we can replace 0f/9¢ by (=1/¢)(0f/08); thus (17)

()T e R () o

where the ¢-subscript reminds us to integrate only over the trapped region (in which u = uc),

becomes

and where we have recalled X' = rBy/q.
Next we recall that f© = H is independent of A in the trapped region. It follows that the

A-integration gives simply

[oe ()= @b @ee] .

Here, as in (11), we have neglected O(e)-corrections when they appear without §-dependeunce;

only the 9-depeﬁdent terms can afféct the flux. A factor analogous to (19) was apparently
omitted in Ref. 10.
We substitute (19) into (18), take into account the f-variation of B as well as that implicit

. in the surface average, and find. tha,t -

o () farfacs o [—H

(i) () f e ot (52) S ne.

The numerical coefficient in (20) corrects the corresponding expression in Ref. 10 [Eq. (74)].
with regard to both the factor of (19) and an additional omission, in Ref. 10, of V2.
Finally we substitute from Egs. (13) and (14) for H. The f-integral is elementary and

yields the g-dependent factor

K(9) =33/N(0) <%)zsin (%”) sin (g) .

which is graphed in Ref. 10. Its key features are clear: K changes sign at ¢ = 2, being

positive for ¢ > 2. It is of order unity for ¢ = 2.
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The energy integral in Eq. (20), which differs markedly from the version in Ref. 10, yields

a wo-dependent factor

L{wo) = (%) /x . dze™® (—x-) o (z — z0)"? (E—J;—@) (z + 3zo) , (21)

Zo

where zo = mwy/T = e®o/T. L is most conveniently evaluated numerically, with the result
sketched in Fig. 1. Note that L is quite large, L ~ 10, for .e@o/T of order unity. Indeed, L
is easily seen to diverge as zy 3/4 for 5 — 0, although Eq. (10) makes this limit unphysical.
On the other hand it decays exponentially for large ®;. The point here is that the boundary
Jayer at A = A, exists only for particles with w > wo; particles with w < wo, electrostatically
trapped for all A, do not see a boundary layer and do not contribute to the enhanced pinch.
Thus, because of the Maxwellian nature of fo, the number of contributing particles becomes
small for large ®.

Hence the particle flux is éxpressed as

I = —4.47 K (g) L(®o) (%) (”“]L%Te)m cng (22)

where 7. = 1/v, is the electron-ion collision time of Braginskii, and vy = (2T, /m.)Y? is
the electron thermal speed. Because of the nature of the function K, this flux is inward for

q > 2; it is outward but relatively small for ¢ < 2, vanishing again at ¢ = 1.

V. Conclusions and Discussion

We have found that the induced toroidal electric field in a tokamak can interact with asym-
metric electrostatic perturbations to drive rapid inward motion of the trapped particles. The
resulting flux, given by Eq. (22), depends sensitively on the perturbation amplitude and on
the safety factor, but can be stronger than the conventional (axisymmetric) Ware pinch,

I'w = —1.46e"Y2gcnE/B. Indeed, Eq. (22) can be expressed as

63/2 1/2
I' ~ 3 K(q) L(wo) ( ) |

qV%e
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Here the factor (£%/2/qus.)!/? will not be far from unity, even well into the banana regime;
similarly 3K can be presumed close to one. However, as we have observed, the factor L is
large at moderate amplitude, e®o/T'<1. Hence, for small v« and ¢ = 3, an inward pinch of
seve.ra,l times the neoclassical® value can be reasonably estimated.

The physical origin of the asymmetric pinch is very different from that of the conventional
trapped particle pinch effect.® It will be recalled that the latter, while modified by collisions,
has it roots in the axisymmetic kinematics of trapped, collisionless particles. Equation (22)
on the other hand, is a fundamentally collisional eﬁ'éct, reflecting collisional entrainment of
trapped particles by untrapped ones. While trapped particles cannot contribute to Ohmic
current, they are driven radially by collisional friction with the transiting, Ohmically ac-
celerated particles. That the two types of pinch — symmetric and asymmetric — reflect
quite different physics is clear from the fact that only the former is necessarily inwards. The
direction of the asymmetfic flux depends upon the safety factor, changing sign at ¢ = 2.

" Trapping in the potential bump will also drive outward fluxes, proportional to the density

and temperature gradients. These contributions, however, will be diffusive in nature, and

therefore in competition with neoclassical and turbulent diffusion. We have concentrated on
the non-diffusive, inward flux because of its apparent role in the experimental observations,
as discussed in Sec. 1.

As a partiél explanation of the observed pinching in tokamak experiments, our result has
manifest defects. In particular, not all the observations are made in the low-collisionality
regime we have assumed. Most importantly, our- model for the spatial structure of the
perturbation is obviously idealized; a realisfic model would have numerous bumps, with
appropriate f-dependence. Particle-trapping effects in such a géometry would probably
require numgrical treatment. |

Nqnetheléss, we believe the model caftures crucial features of physical, small mode-

number perturbations. Thus the observed frequencies of such fluctuations are typically well
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less than the bounce frequency, and at least marginally less than the collision frequency, so
our use of a steady state model is reasonable. With regard to the geometrical simplifications,
it would appear that the crucial features of trapping and boundary layer formation would
be preserved, as noted in Sec. I, by any perturbation whose parallel wave number does not
vanish.

Finally we note that electrostatic symmetry breaking might result from external manipu-
Jation, rather than plasma instability. For example, toroidally localized fueling schemes (such
as gas puffing) can lead to é transient electrostatic “bump,” similar to that in our model.
Since the introduced gas is relatively cold, it would not disperse along field lines until mauy
transit and collision times of the ambient plasma had passed. Our model would roughly
describe the intervening time period, and predict that trapped, banana-regime particles in

the radial vicinity of the bump would drift inwards.
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Figure Caption

The function L of Eq. (24). The abscissa measures the bump amplitude, e®o/T.
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