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Abstract

The effects of thermonuclear alpha particles on thé stability of global-type shear
Alfvén waves in toroidal geometry in an ignition tokamak experiment are described.
The presence of finite toroidicity can lead to stabilization of the so-called global shear
Alfvén eigenmode. Howevér, toroidicity induces a new global shear Alfvén eigenmode,
which can be strongly destabilized via transit resonance with alpha particles. In the
proposed International Thermonuclear Experimental Reactor, due to its large size and

low density, this latter mode is found to be benign.




1 Introduction

Ignition tokamak experiments, several of which are being proposed for the near future, such
as the Compact Ignition Tokamak (CIT), the Fusion Ignition Experiment (IGNITEX), and
the International Thermonuclear Experimental Reactor (ITER), will contain alpha particles
produced by fusion reactions. These alpha particles will have very high energies and will not
be in thermodynamic equilibrium. Consequently, it may be possible for “thermonuclear”
drift-type instabilities to be excited in a burning plasma, with the alpha particle density
inhomogeneity as the free energy source. Typically, the alpha particle pressure gradient scale
length L, compared to the plasma minor radius a is estimated as Ly /a = |ad(In ne)/dr|™t S
0.4 for ignition parameters.

In the work described here, we will focus our attention on the destabilization of shear
Alfvén waves by alpha particles. For typical ignition parameters the alpha particle velocity
Ve = (6/M4)'? = 9 x 108 cm/sec for an energy of 3.5 MeV can be comparable in magnitude
to the Alfvén speed vy = B/(N;M;)?. Thus, it is possible that the circulating alpha
particles could destabilize shear Alfvén waves through inverse Landau damping at the w o~
kv« wave-particle resonance, when w is comparable to the shear Alfvén mode frequency
wa = kjva. Here, kj = (m —ngq) /qR is the parallel wavenumber for linearized waves that are
Fourier decomposed as expli(mf —ng —wt)], with (n,m) and (¢, #) the toroidal and poloidal
mode numbers and the toroidal and poloidal angles, respectively. Also, ¢(r) is the tokamak
safety factor, and R is the major radius.

Various types of shear Alfvén waves can exist in a tokamak plasma. The ideal MHD
equation of motion, written in cylindrical geometry, shows that the coefficient of the second
order radial derivative term vanishes at those radial locations where the shear Alfvén reso-

nance condition w? = k3v% holds. Frequencies w that satisfy min[w?(r)] < w? < max[w}(r
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then lie in the shear Alfvén continuum. This resonance leads to a singular mode structure;
however, if electron parallel dynamics and ion finite Larmor radius effects are included, one
obtains a nonsingular solution known as the kinetic Alfvén wave (KAW). Its mode structure
is fairly localized, and hence it experiences strong electron Landau damping.

In addition, there are two global types of shear Alfvén waves, which have radially extended
mode structure and low mode numbers n and m. The first type of global shear Alfvén wave
is a regular, spatially nonresonant mode whose frequency lies just below the minimum of the
continuum, i.e., w < kjvyg and & # 0. This mode is called the Global Alfvén Eigenmode
(GAE). The other type of global shear Alfvén mode exists only in toroidal geometry and is
called the Toroidicity-Induced Alfvén Eigenmode (TAE). Its frequency lies with “gaps” in
the shear Alfvén continuum, which are created due to toroidal coupling.

The destabilization of shear Alfvén waves was first studied qualitatively by Mikhailovskii,!
using a local dispersion relation. By including finite Larmor radius effects to discretize the

continuum, Rosenbluth and Rutherford? found that the Kinetic Alfvén Wave can be desta-

“bilized by alpha particles. Tsang et al.® .studAi‘ed the.details of the same problem numerically

and reached a similar conclusion. Li et al* found in cylindrical geometry that the Global
Alfvén Eigenmode could be destabilized in a similar manner by transit wave-particle reso-
nant interactions with super-Alfvénic alpha particles, although with weak growth rates. The
e#istence of the Toroidicity-Induced Alfvén Eigenmode was shown in the ideal MHD limit,
but without alpha particles.®

Our studies®” show that the Global Alfvén Eigenmode tends to become comi)letely stabi-
lized in toroidal geometry, since finite toroidicity couples GAE modes with different poloidal
mode numbers, thus enhancing the damping due to the sideband shear Alfvén Landau res-
onance. Moreover, electron damping due to the magnetic curvature drift is found to be
further stabilizing for the GAE mode. However, we find’~? that the Toroidicity-Induced

Alfvén Eigenmode, which is also destabilized by alpha particles through their transit (and




bounce) resonance, is a fairly strong instability, with kinetic effects modifying this unstable
behavior only slightly. Therefore, this latter mode appears to be important for the confine-
ment of alpha particles in an ignited tokamak device. However, for the specific parameters
that are being proposed for the ITER device, we find that the n = 1 TAE mode is, in fact,
stable.

Section 2 of this paper will discuss the GAE modes and how they are stabilized by finite
toroidicity and electron damping. Section 3 will describe alpha particle excitation of the
TAE global modes. Section 4 will present similar computational results for the TAE modes,
obtained from a two-dimensional nonvariational numerical code. Section 5 considers the
specific application of the theory for the TAE modes to the ITER tokamak. Concluding

. comments will be given in Section 6.

2 Stability of Global Alfven Eigenmodes

In the cylindrical limit (a/R — 0), the GAE mode has been found to be destabilized by
inverse Landau resonance with transiting alpha particles.*!® The alpha particles are more
appropriately modeled with a slowing-down distribution than with a Maxwellian, and at
Lo/a = 0.4 the growth rate is 10~2 of the mode frequency. Recall that the inverse Landau
resonance in the alpha particle kinetic response is w = kl(]mil)v”a > k) - V44, since the
magnetic curvature drift velocity (v4a o cosf) introduces coupling to the m =+ 1 sidebands.
which then couple back to the main mode m.

When the effect of toroidal geometry is incorporated, however, we find the new result
that finite toroidicity can stabilize the GAE modes via coupling to electron Landau damped
sideband modes that resonate with the shear Alfvén continuum.®” Shown in Fig.‘ 1 are the
shear Alfvén continua in cylindrical geometry for toroidal mode number n = 1 and poloidal

mode numbers m = —1, =2, and —3. In particular, the eigenfrequency of the cylindrical GAE

with mode (n,m) = (1, —2) is located just below the minimum of the m = —2 continuum, as
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indicated by the dotted line. In toroidal tokamak geometry, the cylindrical (1, —2) mode will
be coupled to sidebands, especially the (1,—3) poloidal mode and the (1, —1) mode, as well
as other more distant poloidal modes. In particular, we observe that the sideband (1,-—1)
mode has an Alfvén resonance near the edge of the plasma. We will find that this Alfvén
resonance enhances the parallel electron Landau damping and has a stabilizing effect.
The theoretical description is contained in the following general wave equation:
2 2 |
VXVXE——EZ—Xf-Ezc—Z(Xk—i-XO,)-E, (1)
where the terms on the left-hand side correspond to the ideal MHD dynamics, and the terms
on the right-hand side represent the kinetic effects of both the bulk plasma and the alpha
particles. Here, E is the perturbed electric field, and the susceptibility tensor X has been
separated into three parts: X; = (c/va)*(I - bb) for the plasma fluid response; Xy for the
core plasma kinetic response (including ion FLR and parallel electron dynamics, bﬁt in the
low frequency limit w/wy; < 1); and X, for the drift-kinetic alpha particle response.. In
toroidal geometry, all the'tem.ls in Eq. (1) contain some mode coupling. Here we keep only
the coupling from the left-hand side of Eq. (1) and neglect the toroidicity effects contained
in the kinetic response from the cold component and alpha particles. This approximation
may be justified for the following reasons. The mode coupling from the alpha particles is
small because of the ordering 8, < 1. Also, the kinetic term Xj is small except near the
shear- Alfvén resonance, so we can neglect the toroidicity contribution from Xy, at least away
from the Alfvén resonance. Furthermore, we find that near the resonance the kinetic mode
coupling can also be neglected, since the O(e¢) mode éoﬁpling contributions due to the w?/v3
‘and lzﬁ terms combine and therefore are larger thaﬁ the corresponding kinetic mode coupling A_
contribution. Hence, we may use the cylindrical form of X; in Eq. (1).
To simplify the mode coupling due to the operator term V x Vx and the X; term,

we assume concentric circular flux surfaces and use the following toroidal coordinates: = =




Rcos(—y), y = Rsin(—y), z =rsind, R = Ryo+rcosf. In terms of this toroidal coordinate
system and with the representation E = (E,,E,, E}j) for the electric field, we find the

components of V x V x E to be
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with § = r/qR. It is straightforward to show that the infinite aspect ratio limit of Egs. (2)

(3)

and (3), i.e., with R replaced by Ry, reduces to exactly the same equations as were derived
by Ross et alll for cyindrical geometry. Following Ref. 11, we shall not make use of the
parallel component of Ampere’s law; instead, as before, Ej| can be eliminated in terms of E,
and F, by means of V-J =0:

B

By=—y- (B°B-V)" (R*V-(X-E).) . (4)



Notice that the operator R?B -V = RyBy(d/d¢ + 8/q0¢) contains no toroidicity, and hence
we can invert it algebraically. In any case, we will neglect the toroidicity due to FEj terms
since these are kinetic terms.

Next, Eq. (1) can be expanded straightforwardly, with the inverse aspect ratio € = a /R

as a small parameter:

L=Iy+e¢ 2(2 cosOLg +2isinfLy) . (5)

Here Lo is the cylindrical matrix operator whose components are given by

) .
_ g My, d3, 1 d
L"_vi B — kL 8 b1kl+dr8b1rdrr
d _;,vild '
+k”E:k” de d'r 'UA Srr_Qm—l'—Qm-*-l,- N (6)

L. =i LT —Mﬂb-i'r+di—biki

3
rdr r 8 dr r 8

- d . ’ ‘
ot k= ke kL — i8Sy + Qmay — Qman| T (7
dr o

w? d1ld d1l,14d 3
L = —_— - 2 — e — —_—b - — ‘——bik2
T2 k”+dr r drr+dr g irdr 8t

—do k3 +S11 — Q-1 — Qmﬂ , (8)

I 4, d11 1d
LJ-T——Z[‘WL“EW““ st hagh g
2 2 '
vl d w _
+k¢de;2';d—r7‘g"25¢r Qm— 1+Qm+1] . ' (9)

. N
Here b; = (w?/v})p? and d. = (kyps)? [1 +(w/k||ve)Z(w/k”ve)] , with p? = 2T}/m;w?
the ion Larmor radius, p? = T,/mw?, ws the ion cyclotron frequency, w the frequency
of the perturbed field, and v, the electron thermal velocity. The wave numbers are given

approkimately by ki = m/r and kj = (n —m/q)/R, where n and m are the toroidal mode
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number and the poloidal mode number, respectively, and R is the major radius. The terms
Syry Sei, Si1, and Sy, which arise from the equilibrium current and the shear of the
magnetic field, are given in Ref. 11, and the term Qm4; is the alpha particle contribution

given in Ref. 4 as follows:

. o w am
Qm:i:l = -1 '2'_I_B'R'5 (Pm:i:l - : Rmil) 3 (10)
Pﬂ:E/d%(vZ/erw)z _q, 9w 8(w — kyvy) (11)
m i L I *5F ¥ »
=T [ gy (02 2)? £06(w — k 12
Bm1 = — v (vL/2+v||) faob(w — kyvy) - (12)

Here, B, = 87noT,/B? and v2 = 2T,/m4, with Ty, na, Ba, and v, being the temperature.
density, beta value, and thermal velocity of the alpha particles, respectively. Also, fao 13 the
alpha particle equilibrium distribution function.

The toroidal terms Lg and L4 are given by

~ 1 92

(Ls)er = _Eg (9_(,02 ) (13)
Foo L 00, 100 &
(LS)'I‘J_ - 23 50 67,7' 50 RO B(P or /—'—1 +5(2) ’ (14)

(Ls) L 2_3_3_0__’"_._4___1__21_8_ 262
ST 9 |9 v or 1+6 r 1+620rror °
1 _3_ r _ 50 _8_ 50




oy 1+5g_37r?97—\/7753 RZ\dp " q 06
(La)r =5 (.% , (17)
(La)or = —2i (i 2 VITT by rzag) , (18)
(La)1r =0, (19)
(Fa)s = —Jﬁ (% +% %) . | - (20)

Under Fourier transformation and keeping only nearest-neighbor sideband coupling, we

find that Eq. (1) then becomes an infinite set of coupled equations:

&(Ls + EA)m—qu-l + (fo)mE’m +&Ls— zA)m+1Em+1 =0, (21)

where £ = er/a and E = ( gT ) In the limit of ¢ — 0, Eq. (21) reduces to the cylindrical
L

form, i.e., LomFm = 0. For nonzero &, we have an infinite series of coupled equations. To

‘truncate this infinite series, we consider only three poloidal modes. This is consistent with

expanding only to first order in . Thus, we finally obtain the following six-by-six matrix of

coupled second-order differential equations to be solved numerically:

(Lo)m-1 - &(Ls —La)m 0 Em_1
&ls+L)ms  To)m &Ls=La)mn || Em | =0. (22)
0 é‘(f,s + zA)m (ZO)m+1 : E’m+1

We consider the numerical solution of Eq. (22) for the (1, —2) mode as a typical GAE
mode with n # 0, for CIT-like parameters: R=14m,a = 067m, Bo = 10T, n.(0) =

102 m™3, ny(0) = 2 x 10°m~3, and T,, = 30keV= T;,. The p.roﬁles were taken to be:
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n=mno[l —r?/(a+d)?], To; = Toe: [l — (r/a)?], and ¢ = 1+ 2(r/a)?, where the value of d is
chosen such that the plasma density at the edge is 10% of its central value: n(a)/n(0) = 0.1.
The alpha particle density profile is taken to be n,(r) = nq(0) exp(—r?/L%), where L, is the
alpha particle density gradient scale length. Notice that the value of the edge density is not
zero, in order to have the Alfvén frequency be finite at the edge. Also we choose the edge
density value to be small enough for a sideband resonance to exist. For the sake of comparison
and of numerical calculation, we use ¢ as an independent variable in Eq. (22). Thus, for ¢ = 0,
our calculation will recover the cylindrical eigenvalues. The known cylindrical eigenvalues
will then provide us with very good guesses for the corresponding toroidal eigenvalues, which
can be traced as the value of € is increased.

Shown in Fig. 2 is the radial electric field for the main poloidal mode (1,—2) and its
two sidebands (1,—1) and (1,-3), for ¢ = 0.1. Figure 3 shows the sideband (1,-1) for
various values of the toroidicity parameter . Figure 4 shows both the Landau damping
rate obtained without alpha particles, as well as the growth rate induced by alpha particles,
with Ly/a = 0.25. This value for the alpha particle densi-ty scale length L, corresponds
to the maximum growth rate in the cylindrical limit. The real frequency of the mode is
w, = T7.95 x 10%s™1.

We find that the structure of the sideband (1,—1) near its Alfvén resonance has two
distinctive types of behavior depending on the value of . For small values (viz., ¢ < 0.3),
the sideband (1,—1) is like an Airy function and the mode propagates toward the center of
the plasma. In fact, Stix'? has shown that for 5. /(me/m;) > 1 at theresonance, the essential
evanescent compressional wave at the edge of the plasma will convert to a kinetic Alfvén
wave, which propagates toward the high density region. Our results confirm this physical
process. Furthermore, as € increases, we observe that the sideband resonance shifts toward
the edge of the plasma. As a result, the value of 8./(m./m;) at the resonance decreases

and eventually becomes less than unity, at which point the KAW becomes the so-called
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cold surface Alfvén wave.''!? Notice that the toroidal coupling will lower the (1, —1) Alfvén
continuum, and therefore its resonance moves toward the outside as ¢ increases. Finally,
for & = 0.48, which corresponds to our ignition parameters, the (1, —1) singularity simply
disappears. |

More or less related to these observations, we also find that there are three distinct stages
for the Landau damping rate 4z and the total growth rate v including the alpha particles.
For small values of € < 0.1, we find the scalings 71, €% and 7 eé; for intermediate values
of €, 0.1 < & < 0.2, we find that both scale linearly, 77, & ¢ and v  ¢; for still larger values,
e > 0.25, v, eventually saturates and begins to decrease, while the trend for 7 is exactly the
opposite.

Recall that the electron Landau damping rate for the localized KAW mode i§ much
higher than that for the GAE modes. Thus the toroidal GAE mode, which is & mixture
of the cylindrical GAE mode and a sideband KAW mode, has a greater damping rate. On
the other hand, the KAW sideband should contribute little to the alpha particle destabi-
lization siﬁce it is localized near the edge of the plasma where fev&; alpha particles reside.
Therefore, as € increases, the electron Landau damping is enhanced and the total growth
rate decreases. For ¢ = 0.1, the mode is stabilized. However, as the value of ¢ is raised
further, the Landau damping begins to saturate and, eventually, to decrease; consequently,
the stabilization through toroidal coupling is weakened. The reason for the reduction in the
Landau damping is the shifting of the (1, —1) resonance toward the edge of the plasma as ¢
increases; corresﬁondingly, the coupling between the GAE mode and the KAW sideband is
reduced. For the ignition value of € = 0.48, the GAE mode is still stabilized. Moreover, the
inclusion of the additional sideband (1,0) is expected to shift the (1, —1) resonance toward
the center of the plasma, as opposed to the (1, —2) mode. Thus we expect.the stabilizing
effect to be furthe_f enhanced. |

We are able to reproduce the scaling of the frequency shift and the sideband amplitude
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due to finite toroidicity if we make an analogy with quantum mechanical perturbation theory.
Equation (22) can be viewed as an eigenvalue equation, with the diagonal elements as the
unperturbed operators and the off-diagonal elements as the perturbation. In the limit of ¢ —
0 or zero perturbation, the eigenvalue of our system reduces to the unpefturbed spectrum
or the cylindrical spectrum. For small €, the unperturbed spectrum is non-degenerate;
consequently the amplitude of the perturbed sideband is proportional to ¢ and the frequency
shift 6w has the scaling 6w o €. As € is increased, the spectrum becomes degenerate and we
must invoke the method of degenerate perturbation theory. In this case, we have the linear
scaling 6w o €. These analytical scalings agree well with our numerical results for ¢ < 0.2.

The GAE modes with n = 0 cannot be treated with this theory, because two sidebands
are no longer a;lequate to describe the toroidal coupling. These modes have been investigated
with another numerical code, and the results will be described in Section 4.

Finally, we examine the effect of electron damping due to the curvature drift. This
damping occurs even when toroidicity is not included, and so for the sake of simplicity we
examine this effect in cylindrical geometry (a/R — 0). Previous work?~*° only consi;iered
the contribution of the fusion alpha particles to the perturbed current that is due to the
alpha particle magnetic curvature drift, which is destabilizing through the inverse Landau
damping process. Similar terms for the electrons and ions were ignored since their drift
velocities are much smaller than that of the alpha particles and their thermal velocities are
very different from the Alfvén phase velocity. Nonetheless, we find that for GAE modes
the electron contribution to the drift current term can indeed be comparable in magnitude
to the alpha particle contribution. The reason is simply that the electron density is much
higher than that of the alpha particles, especially away from the plasma center, although
the electron temperature is much lower than the alpha particle temperature and the electron

thermal velocity is much larger than the Alfvén phase velocity. Notice that this electron

curvature drift term is always stabilizing since ws./wa < 1, where wx. is the electron
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diamagnetic drift frequency. The ion contribution can still be neglected, sin_ce its thermal
velocity is much smaller than the Alfvén phase velocity. Shown in Fig. 5 for typical ignition
parameters is the growth rate of the GAE (0, —2) mode (solid line) with the effect of the
electron curvature drift term included; for comparison, the growth rate without the electron
drift term (dashed line) is also shown. We observe that for these parameters the electron
drift term overcorneé the alpha particle term and stabilizes the GAE mode.

To gain a quantitative understanding of the electron drift effect, we consider the local

dispersion relation, including both the alpha particle and electron magnetic drift terms:

ﬁa Wiy 1 VA 27-).4
T/ea = 2T R? (_" B §> el <_>

Vg

B P4 (424 12) 24 e

2k”R2 Ve Ve o

where F(u) = (1 + 2u® + 4u*) exp(—u?). The first term represents the effect of the alpha
particles (modeled with a slowing-down dlstnbutlon) and is destabilizing if wx, >“¢g. The
‘second term on the right-hand side of Eq. (23) arises from the electron curvature dﬁft, and
the third term is the usual electron Landau damping due to parallel electron motioﬁ. No.te'
that the Landau damping is proportional to (k2 + k2 )p2, so that for a global mode like GAE
mode, the damping is very weak, whereas for the radially localized KAW modes with their
large k,, Landau damping can be quite large. Also note that the third term is smaller by a
factor of w? 4 /w% <« 1 compared to the second term, where wgy4 is the compressional Alfvén

frequency. Thus we can estimate the overall electron damping rate as

Be - :
Yelwa & I A= -1.0x107° (24)

for the GAE (0, —2) mode with ignition parameters. Numerically we obtain v./ws = —1.7 X
10~3 and a maximum alpha particle-induced growth rate of v,/ws = 1.3 x 1073 at Ly/a =
0.45. Therefore the GAE (0, —2) mode is stabilized by the electron damping due to their

magnetic curvature drift, even without the stabilizing effect of finite toroidicity.
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3 Stability of Toroidicity-Induced Alfvén Eigenmodes

The TAE mode is a shear Alfvén wave that can exist only in toroidal geometry. For exam-
ple, if the cylindrical geometry Alfvén continua corresponding to modes with toroidal and
poloidal mode numbers (n,m) and (n,m+1) intersect at r = ro, where g(ro) = (m+1/2)/n,
then toroidicity resolves this degeneracy with a “gap” in the coupled toroidal continuum.
Frequencies within this gap are forbidden (analogous to Brillouin zones for the motion of
electrons in a periodic lattice potential), except for a certain discrete frequency, which con-
stitutes the TAE mode. In as much as this is a global mode (i.e., low mode number and
radially non-localized), its stability can be a significant issue.

Cheng et al. were the first to show the existence of both low-mode-number® and high-
mode-number!® TAE modes. Those theories were developed in the MHD limit, without
alpha particles. Here, we describe how the presence of highly energetic alpha particles, as in
an ignited tokamak plasma, can strongly excite the TAE mode.® This result is relevant to
plasma confinement in proposed ignition experiments.

The theory to describe this physics becomes analytically tractable by adopting a low
beta, large aspect ratio, circular flux surface tokamak equilibriﬁﬁ. Following Rosenbluth
and Rutherford,? we describe the dynamics of the shear Alfvén wave with alpha particles by
the linearized drift kinetic equation, using ¢, the electrostatic potential and Aj; the parallel
vector potential to represent the perturbed electromagnetic fields (this implies that By =0
where By is the parallel magnetic field). We integrate the linearized drift kinetic equation
over all velocities, multiply it by the charge e,, and sum over all species (indexed by “s”),

thus obtaining a moment equation for the perturbed current density:

iwc?
2
dmvg

b - V]H1 +b1 . V]H +263/d3vvd8 . Vfls = -V - [ V_L¢1} (25)

where the subscript “1” denotes perturbed quantities, b is the unit vector along the mag-

netic field, i is the plasma parallel current, e, is the particle charge, f1s is the perturbed
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distribution function, B is the magnetic field strength, va = B/(47n; m;)*/? is the Alfvén
speed, and vy, = [msc(pB + vﬁ)/(esBz)]b x VB is the magnetic curvature drift velocity (in
the low beta limit) with u = v2 /2B the ma.grietic moment. The alpha particle contribution
to the polarization current has been neglected, owing to the orderings n, < n; and 8, < f;.
However, the perturbed alpha current caused by the drift velocity v4, due to the gradient
and curvature of the equilibrium magnetic field is retained, because of the very high energy
of the alpha particles. The perturbed electron drift current will also be retained, whereas
that of the plasma ions may be neglected because v; < v4 where v; = (2T;/m;)'/? is the ion
thermal speed. With the help of Ampére’s law and using the quasi-neutrality condition to

eliminate A1 in term of ¢y, one can rewrite Eq. (25) as follows:

b.V 2
b vvib.vg - XYV g (T 9. v
C 'UA
- 224;“’ e, / Povy, -V, (26)

s

For sirhplicity, we assume concentric magnetic flux surfaces. Expanding the toroidicity
effect to first order in the inverse aspect ratio a/R < 1 and retaining only the two dominant
poloidal modes for the TAE mode, we then arrive at the following two coupled second-order

eigenmode equations for the poloidal electrical field E o ¢1/r:
d o f(w? ., . d W, -
[;{;T (;if = Hifm + 2 As,m) z —m =Dl oz K 2 Asm

d wir* d
— — e 2
E+[drvAad}Em+1 0 v (27)

w2 !
+ <—§—> r’+> mB;,r

VA

dr

d w? d 2 |
[—— rd (U—f — Ffmp1 + D As,m+1) ar ((m +1)" - 1) r ("2' Kfimer1 + Z 4s m*‘l)
A s . . V4

28
drvAadr (28)

2 .4

2 /
+ (%) r’+> (m+1)B,, .
A s
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where € = 3a/2R, the prime denotes radial differentiation, and the subscripts m and m +1
are the two dominant poloidal mode number. Also, kyn = (n —m/q) /R is the parallel
wavenumber, with R the major radius and ¢ the safety factor. The quantities A,, =
Qosm-1 + Qsm+1 and By = Qom-1 — Qs,m.,.l represent the kinetic response arising from
the curvature drift of species s with poloidal mode number m, with the quantities Qs m1
defined in Egs. (10)—(12). The forms for A, and B,, can be derived by solving the
linearized drift kinetic equation.* These two quantities originate from the drift current due
to the perturbed electrical field with toroidal and poloidal mode number (n,m), when only
the resonant part of the response is retained. The two contributions to A, and Bgm,
from the sideband resonances w = kjjm+1v), result from the poloidal variation of the particle
drift velocity. Because of this, the resonant part of the perturbed particle distribution has
poloidal variation exp[i(m % 1)] in response to the perturbed field Ey, exp(imf), although
the perturbed drift current has the poloidal variation exp(imf), at least to lowest order in
the inverse aspect ratio. Finally, we remark that the mode coupling due to this drift current
is small by the ordering 8, < 1. -

First, let us consider the MHD limit of Egs. (27) and (28), dropping the kinetic terms .
A, and B, temporarily. In cylindrical geometry (¢ = 0), the two poloidal modes E, and
Emyy are decoupled. Then Egs. (27) and (28) are singular at w} = kf 03 and wi = ki, v,
respectively, which give the two cylindrical shear Alfvén continua. In tokamak geometry,
Egs. (27) and (28) are coupled due to the finite toroidicity, and the poloidal mode numbers are
no longer good “quantum” numbers. The toroidal shear Alfvén continuum can be obtained

by setting the determinant of the coefficients of the second-order derivative terms equal to

zero, which yields the following two branches:

2
2 .2 4 1.2 2 2 .2 _ L2 2 2,202 22 1.2 2
kimva + Kjms1va £ \/(knva k||m+1”A) + 4ea?kf VA kjnaVa

2(1 — 222) (29)

Wi =
where z = r/a is the normalized radius. In particular, at the crossing point of the two
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cylindrical continua where kjjm = —kjjm41, or ¢ = (2m + 1)/2n, a gap appears whose width
is given by

Aw=wy —w_ = 2z (|k”mv,41)q_(2m+1)/2n .

Figure 6 shows the toroidal continuum (solid curves) given by Eq. (29) for n = —1,m = -2,
and € = 0.375 with a constant density profile and ¢(r) = 1+ (r/a)?; the cylindrical continua
(dashed curves) are also shown in Fig. 6. The corresponding TAE mode structure is shown
in Fig. T; its eigenfrequency w = 0.93 (|k||va Dq=1-.5 lies inside the continuum gap. The
eigenmode was obtained by numerically solving Eqgs. (27) and (28) with the shooting method.
Note that the mode is peaked at the location of the gap, i.e., near the crossover point of the
cylindrical continua.

Next we consider the kinetic effects of alpha particles and electrons on the TAE modes.
The resonant contributions of these fast particles can be included perturbatively by a,ssumlng
that the imaginary part of the frequency is small compared to the real part. To begin with,
we expaﬁd the .solution of Egs. (27) and (28) as E,, = Eqm +.6En, 'aﬁdw = wqy + &J, where
Ey,m and wp are the MHD eigenfunction and eigenfrequency, respectively. We expand the
coupled equations to first order in §, (assuming 3, < ¢). Exploiting the self-adjointness of

the coupled equations, we obtain the change in frequency due to the kinetic terms as follows:
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ow Vi

wWo 2w

Zm,s <T3E(I)2,mAs,m + [(m2 - 1)7'A8.m - T2A;,m - mrzB:},m] Eg,m> /30)
X
(5 [(P]%) B + (m? — 1) (/%) Bl — (1/52) 12 B ] + 246 (r*/a%) B Boymsn)

where ¥, is the Alfvén velocity normalized to its value at the center of the plasma. Using
Eq. (30), we calculate the growth rate for the TAE mode of Fig. 7. Figure 8 shows the
growth rate (normalized to the real frequency) as a function of the alpha particle density
scale length Ly, for the typical ignition tokamak parameters of a/R = 1/4, pao/a = 0.05,
Voo = 2v4, B.(0) = 6%, and B,(0) = 3%, for the profiles B, = Bx(0) exp(—r?/L2) and
B. = B.(0)(1 — r%/a?)®. A maximum growth rate of (y/wo)max = 2.5 X 107% is obtained at
L, = 0.5a. For L, < 0.87a, the TAE mode is unstable.

In the limit of large aspect ratio, the TAE mode is highly peaked around the ¢ = (2m +
1)/2n surface. Then a simple analytical form for the growth rate of the TAE mode can be
obtained by evaluating A, at this surface:

v = 3 (6. (222~ 2) F - 5.2 (31)

where the function F is defined as F(z) = z(1 + 2z + 2z%)e™®". The first term in the
square bracket on the right-hand side of Eq. (31) comes from the alpha particles and is
destabilizing if wiq/wo > 1, whereas the second term is due to electron Landau damping
and is always stabilizing since |wx . /wo| < 1. Thus we have two conditions for the TAE modes
to be unstable. The first condition requires wskq/wo > 1, i.e., that the alpha density scale
length is small enough. The second condition requires that the alpha particle destabilization
overcomes the electron damping effect. We can balance these two terms by determining the

value of L, that maximizes the growth rate. Calculating 32_& (-J—o) = 0 with the radial profile
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for 8,(r) given above, for which wx, = mpyve/L2, we find

L, 26y* 1/2
<T>m - (25 E yz) = 0.59 - (32)

where y = 1/+/2 is the value of 7/a at the point where ¢(r) = 1.5 and § = (La/a)?(wke/wo) =
0.55. Then we first can calculate the threshold f, value by setting the maximized growth

rate equal to zero:

Be (%) exp(ay/La)? .
(“;) play/Le)” 39, (33)

(_*g - %) F .

wo

ﬁa,crit(o) -

since F' = 1.67 for va/v, = 1 v/3.5. Next, we calculate the growth rate well above threshbld,
at B4(0) = 3.0% and Lu/a = 0.59 (corresponding to the parameters in Fig. 8) and-obtain

v/wo = 2.6 x 1072, which agrees with the numerical result very closely.

4 Study of Toroidicity-Induced Alfvén Eigemhddes
with the NOVA Code

In Section 3, the alpha particle destabilization of the TAE mode was described by mesns
of model equilibrium profiles. The same eigenmodes were also self-consisteﬁtly investigated®
with the use of numerically computed finite § equilibria with noncircular flux surfaces
through the use of a nonvariational kinetic-MHD hybrid code (NOVA-K). Details concerning
this code have been described by Cheng.!*15

In this approach, the ideal MHD fluid description is adopted for the core plasma (labeled
c), with a drift kinetic description for the alpha particles, which are assumed to have low
beta but be highly energetic: B, < ,6;, but T, > T.. The alpha particles interact with the

core plasma through their perturbed pressﬁre tensor 6P, in the momentum balance equation

for the fluid displacement &:

Wlp€ =VEP. +V -(6P,)+éB xJ+B x 48T, (34)
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where §B and 6J are the perturbed magnetic field and current. The alpha particle pressure
§P, is obtained from the solution for the alpha particle perturbed distribution function,
which incorporates both transit and bounce resonance effects. Core plasma kinetic effects
on this mode are neglected here.

The resulting integro-differential eigenmode equations were solved in a general toroidal
flux coordinate system for realistic numerical equilibria by means of the NOVA-K code. The
alpha particle equilibrium distribution function, Fo,, was taken to be isotropic in pitch angle
A and slowing down in energy ¢, as follows:

c()e?  for e < gq

FOoz = { . (35)

0 for € < g4

Here ¢, is the alpha particle birth energy, and c(¢) is proportional to the alpha particle
density, which was taken to be functionally related as c(%) [P(1)]"/? to the total plasma
pressure P(1).

Figure 9 shows the growth rate for the n = 1 fixed boundary TAE mode as a func-
tion of the alpha particle diamagnetic drift frequency wsx, (evaluated at y'/? = 0.5 and for
m = 1) normalized to ws = V4(0)/g(a)R, for a numerical equilibrium with a circular plasma
boundary. The pressure profile is P(y) o (1 —y?)?, with y = 1/ A% the normalized poloidal
flux. The other parameters for Fig. 9 are ¢(0) = 1.05, ¢(a) = 2.3, R/a = 4, (Biota) = 1.89%,
and (B,) = 0.4%. The real frequency of the mode is w./wy = 0.705, which lies within the
continuum gap formed by the toroidal coupling of the m =1 and m = 2 modes at ¢ = 1.5.
The wave functions for the m = 1 and m = 2 modes show that these modes peak near
y1/2 = (.5; hence wx, is a good measure of the alpha particle free energy that can be ac-
cessed through inverse Landau damping. Figure 9 shows that wss/wa 2 1.5 and that beyond
this threshold the growth rate v is approximately linearly proportional to ws,. From these
results we find that for typical ignition parameters, the growth rate of the n = 1 TAE mode

can be of the order of 10~2 of the real frequency. This is roughly one order of magnitude
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larger than the GAE mode growth rates (evaluated at small a/R).
The numerical results concerning the global shear Alfvén waves can be interpreted as

follows. From the eigenmode equations [cf. Eq. (34)], one can construct the quadratic form
WK = §W; + §W, . (36)

Here, 6K is the inertial energy, W} is the fluid-like potential energy, and §W,, is the potential

energy of the kinetic alpha particles (including their transit and bounce resonances). lf‘or the

mode frequency, we write w = w, +47 and assume that the growth rate is small (|y] < |w,|).

Then Eq. (36) yields |
e el ()]

e (37)

where G p = Fin(A,0)exp {z[(m ~ng)d —(p — nq)wtﬂ}, Fu(A,0) depends on the'pitch an-
gle, the equilibrium 6-variation, and the mode amplitude; t is the time-like variable measuring
alpha particle position along a field line; w, and 7, are the alf)haupafticle transit frequency
and transit time, respectively; and (G p) is the transit average of Gmp. The transit har-
monic number is p, where p values close to m contribute the most. We define w,(*ma) = MWka,
where, wx, is the diamagnetic frequency for m = 1.

Equation (37) shows that the instability condition is w,(,‘";) 2 w,; here the alpha particle
free energy drive overcomes usual Landau damping. This marginal stability condition agrees
with the numerical result, shown in Fig. 9, for which ws,/wa =~ 1.5 is marginal. Above this
threshold, Eq. (37) indicates that the growth rate v will tend to scale linearly with wy,,
which again agrees with Fig. 9.

Incidentally, the form of Eq. (37) also shows why the n = 0 GAE mode is stable in
toroidal geometry. Since the the alpha particle effects are perturbatively small, to a good

approximation the mode structure is given by the ideal MHD toroidal wavefunctions. Being

self-adjoint, these wavefunctions have the symmetry property |Gmy|? = |Gem,—p|* for n = 0.
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Thus, the alpha particle excitation terms w,‘,’Z) and w,(;am) are seen to tend to cancel in
Eq. (37), so that the n = 0 GAE mode is stable.

More precisely, Ross!® has pointed out that this result for the n = 0 mode holds when the
toroidicity is not too small. After all, in the cylindrical limit, the n = 0 mode with single m
can be destabilized by transiting alpha particles. Moreover, strictly speaking, the symmetry
between the =m mode amplitudes is broken by the presence of the wx, terms. A simple zero-
dimensional mode coupling argument allows an estimate of how large the toroidicity should
be to give the stable result that is observed numerically. In general, this estimate indicates
that the n = 0 mode could be unstable only if (Ym/wm) > O({e)™"), where wy, and 7y, are
the real frequency and the cylindrical growth rate due to the alpha particle contribution for
the mode (0,m), and (¢) measures the effect of inverse aspect ratio. However, this condition
is not satisfied for the typical ignition parameters used in the numerical studies of this paper.
In particular, for m = 1 and m = 2, which are the most unstable modes in the cylindrical

limit, we have ¥, /wn S 1072, whereas (¢) = 0.25. Therefore the result for the n =0 GAE

mode being stable in toroidal geometry is indeed valid.

5 Stability of TAE Modes in ITER

Thus far in our discussion of the destabilizing effect of thermonuclear alpha particles on
global-type shear Alfvén modes, we have concluded that the toroidicity-induced Alfvén eigen-
modes pose a potential threat to confinement. It is of interest, therefore, to consider what
our theory of these modes would predict for the proposed ITER ignition plasma.

We apply the theoretical description of Section 3, assuming the same radial profiles. Also,
we take the central value for the alpha particle density to be é% of the corresponding value
for the ion or electron density.

The results for the growth rate 4 (including the electron damping contribution) as a
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function of the alpha particle density scale length L, for the n = 1 TAE mode are shown
in Fig. 10, normalized to the real frequency. We repeated this calculation twice for the two
phases of ITER. Thus, the solid curve in Fig. 10 corresponds to the ITER Physics Phase,
for which the parameters are R = 5.8m, ¢ = 2.2m, B = 5T, and n, = 6 x 10" m™2. The
dashed curve in Fig. 10, on the other hand, corresponds to the ITER Technical Phase, for
which the parameters are R = 5.5m, ¢ = 1.8m, B = 5.3 T, and n, = 6.7 x 10"°m™3. The
real frequency (normalized to the Alfvén frequency at ¢ = 1.5) is 0.90 for the Physics Phase

“and 0.91 for the Technical Phase.
The interesting result is the n = 1 TAE mode is stable for both ITER phases. This can

be understood if we note that

()3 62) - ®
wa a a/ \vy g
Computing the relevant quantities, we find that R/a = 2.6, pao/a = 0.024, vao/va-= 1.5,
Be(0) = 2.9%, and B,(0) = 1.9% for the ITER Physics Phase. Corresp_o_ndingly, for the
ITER Techﬁical Phase, we have R/a = 3.1, pao/a = 0.028, vao/va = 1.5, B(0) = 3.2%, and
B«(0) = 2.1%. A comparison with the parameters used in Section 3 (which correspond to
the parameters for an early version of the CIT device)l shows that the TAE modes are stable

in ITER because of its relatively large size and also its low density.

6 Conclusion

The results described here in seem to indicate that the gibbal Alfvén eigenmodes (GAE) will
not be problematic in ignition tokamaks. Toroidicity (and also electron damping through
the curvature drift) tends to stabilize the n # 0 GAE modes for a/R > 0.1, and the n = 0
'GAE mode is stable when the £m mode coupling cancellati;)n effect is taken into account.

' Therefore, primary attention — especially in experiments — should be focused on the

toroidicity-induced shear Alfvén eigenmodes (TAE), which can be strongly destabilized by
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alpha particles. Specifically for ITER parameters, however, we find the fortunate result that
the n = 1 TAE mode is stable, due to the relatively large size and low density of this device.
It should be noted that if the edge plasma density value is reduced, the toroidicity-induced
mode may possibly resonate with the shear Alfvén continuum near the plasma periphery, an
effect which could be stabilizing and should be investigated. Also, we note that a theory for

the nonlinear saturation of linearly unstable TAE modes has recently been developed.!”
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Figure Captions

1.

Cylindrical shear Alfvén continua for mode numbers n = 1 and m = —1, -2, and —3.

Numerical eigenfunctions for the toroidal GAE mode (1, —2) and the sidebands(1, —1)

and (1, —3), with CIT-like ignition parameters, for the inverse aspect ratio ¢ = 0.1.

Numerical eigenfunctions for the sideband (1, —1) of the toroidal GAE mode (1, —2),
with ignition parameters, for the inverse aspect ratio values of € = 0.05, 0.20, 0.30, and

0.48.

Electron Landau damping rate v, and the total growth rate v (with alpha particles),
as functions of the inverse aspect ratio ¢ for the toroidal GAE (1, —2) mode coupled

to the sidebands (1, —1) and (1, -3).

Growth rate « for the cylindrical GAE mode (0, —2), both with the electron curvature
drift term (solid curve) and also without this term (dashed curve), as a function of the

alpha particle density scale length L, for CIT-like ignition parameters.

Toroidal shear Alfvén continuous spectrum ‘with gap, for safety factor profile ¢ =
1 + (r/a)? and a constant density profile; the cylindrical spectra (dashed curves) for

m = —1 and m = =2, with n = —1, cross at the flux surface where ¢ = 1.5.

Radial profiles of the dominant poloidal harmonics for the n = —1 TAE mode as a

function of the alpha particle density gradient scale length.

. Growth rate (normalized to the real frequency w,) for the n = —1 TAE mode as

a function of the alpha particle density gradient scale length for CIT-like ignition

parameters.
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9.

10.

Growth rate v for the n = 1 toroidicity-induced shear Alfvén eigenmode as a function
of the alpha particle diamagnetic drift frequency wx, (normalized to the shear Alfvén

frequency wy), as obtained with the NOVA-K code.

Growth rate (normalized to the real frequency w,) for the n = —1 TAE mode as
a function of the alpha particle density gradient scale length for ITER parameters
corresponding to the ITER Physics Phase (solid curve) and Technical Phase (dashed

curve). -
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