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Abstract

The influence of convective motions on the evolution of the undular mode of
magnetic buoyancy (the Parker instability) of an isolated horizontal flux sheet in the
solar atmosphere is studied. The flux sheet is embedded in a two-temperature layer
atmosphere (solar photosphere/chromosphere and its overlying much hotter corona)
with a convection zone underneath. The atmosphere is assumed to be stratified
under a constant gravitational acceleration. Convective motions considered are hori-
zontal photospheric shear flows and vertical velocity fluctuations in the convectively
unstable layer below the photosphere. The evolution is numerically studied in a two-
dimensional space by using a 2.5-dimensional code of ideal magnetohydrodynamics.

Even if the initial magnetic flux sheet is stable to the Parker instability v > ~.,
where v is the gas constant, or not, the horizontal velocity shear causes destabilization
and drives the expansion of magnetic flux into the corona. As thé instability develops,
the gas slides down the expanding loop and the evacuated loop rises as a result of the
enhanced magnetic buoyancy, which is similar to the nonlinear evolution of a flux loop
that was originally linearly Parker unstable. Other signatures such as shock waves
in the downflow region, self-similar loop expansion, etc., are also similar. Vertical
velocity fluctuations in the underlying convection zone also lead to destabilization
as long as the initial flux is localized within or just above the convectively unstable
layer. If the initial flux is embedded in the higher layer, however, convective motions
are not able to excite the Parker instability. Application to active region prominence
is briefly discussed.

Subject headings: hydromagnetics - instabilities - plasmas - Sun: atmosphere - Sun:

chromosphere
I. Introduction

It is widely believed that much of the activity on the Sun such as flares, promi-
nences, corona and mass ejections are caused by strong magnetic fields. \Magnetic
buoyancy plays a major role in the occurrence of these various magnetic phenomena
because magnetic fields created by the dynamo action are transported from the solar
interior to the surface by the magnetic buoyancy.

The “Parker instability” (Parker 1966, 1969, 1979) is an ideal magnetohydrody-

namic instability driven by magnetic buoyancy. It is believed to be closely related to
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the formation of interstellar clouds (e.g. Shu 1974; Mouschovias, Shu and Woodward
1974; Zweibel and Kulsrud 1975; Elmegreen 1982), and radio lobes in disk galaxies
(e.g., Sofue, Fujimoto and Tosa 1976; Asséo et al. 1978; Duric et al. 1983), the
escape of magnetic flux from accretion disks (e.g., Shakura and Sunyaev 1973; Stella
and Rosner 1984; Kato and Horiuchi 1985, 1986), and the rise and emergence of
magnetic flux tubes in the Sun and stars (e.g., Acheson 1979; Schiissler 1980; Spruit
and van Ballegooijen 1982; Schmitt and Rosner 1983; Moreno-Insertis 1986; Hughes
and Proctor 1988).

Since the pioneering work by Parker(1966), many authors have studied the na-
ture of the instability under various aspects (Acheson 1979 Gilman 1970; Shu 1974)
Recently Horiuchi et al. (1988) analyzed linear stability of a magnetized gas disk
rotating around a gravitating center. The nonlinear time evolution of the Parker un-
stable modes for an isothermal magnetostatic gas layer in a nonuniform gravitational
field were studied by Matsumoto et al. (1988). Shibata et al. (1989a) examined the
nonlinear evolution of the instability in an isolated horizontal magnetic flux sheet.
* embedded in a two-temperature layer atmosphere by using a two-dimensional mag~
netohydrodynamic code. The relation to emerging magnetic flux in active regions:of
the solar atmosphere was discussed by Shibata et al. -(1989b). ,

All these numerical simulétions mentioned above have assumed a small gas adi-

abatic constant v (v = 1.05) in order to satisfy the linear Parker instability condition

1
Yy<Ye =14+ =
B

at the beginning of the computer run, where 3 is the plasma beta, the ratio of the
plasma pressure to the magnetic one. Th_é linear stability analysis (Parker 1966,
1979; Horiuchi et al., 1988) shows that the Parker instability is suppressed for larger
~. In fact, the isolated magnetic flux studied by Shibata et al. (1989a) is stable to the
Parker instability for 4 > 1.38. This raises the question whether and how emerging
flux in the upper photosphere and chromosphere, where v is likely to be about 5/3,
becomes unstable and is able to expand into the corona. ' ’

~ In the present investigation we study by numerical simulation the influence of
convective motions on the stability of a Parker stable magnetic flux sheet. The
- aim of this work is to study the general characteristics of the Parker instability
with convective motions in the nonlinear stage and to examine if a destabilization of
stable flux can be realized by either horizontal photospheric shearing motions and/or

by vertical convective flows.



In §II we describe the assumptions made for the numerical simulations, and the
basic equations. Section III presents the numerical results concerning the destabi-
lization of a magnetic flux sheet by the photospheric velocity shear. In §IV we study
the destabilization by convective motions. Finally, §V is devoted to the summary

and discussion.
II. Basic equations and numerical methods

a) Assumptions and Basic Equations
We made the following assumptions for our numerical simulations: (1) the
medium is an ideal gas, (2) the gas is a polytrope of index v, (3) the magnetic field
is frozen in the gas, (4) the gravitational acceleration is constant. Cartesian coordi-
nates (z,y, z) are édopted so that the z-direction is antiparallel to the gravitational
acceleration. It is assumed that the evolution is two-dimensional with 0/0y = 0, but

B, and V, not zero. Thus the basic equations are as follows:

dp O

| 5t -a—m'(sz)+§z'(sz) =0, (1)
Dtovr s Lo +pe B2+ B2 B+ 2 (v - B2 ) <0 @
%(pvy) + (% (pVyV, —~ Bf) + % (pVsz - Bj;?) =0, (3)
%(pvzwr 5‘%— {szV: —~ %%] + a% [sz2+p+ 8i7T(B£+B,,2 —Bz"‘)] +pg =0, (4)
o (VB - V.B.) =0, (5)
%Bzhr (%(Vsz —VyB=)+§;(Vsz—Vsz) —0, (6)
O VB, ~V.B.) =0, (7)

P e 1 -V - (B 4 B, < BY)
- Dt - eV -1 1) £ (LB - 1LB) - 2B, - 1 B
L ey - (1B V2B - TH(1LBy 1y Be)]
~pgl: =0, (8)



where g is the gravitational acceleration and other symbols have their usual meaning.

b) Initial conditions
We consider a two-temperature layered atmosphere which is regarded as a sim-
- plified abstraction of the Sun’s photosphere/chromosphere and its overlying much
hotter corona. Hereafter we call the hot layer the corona, the lower part of the
cold layer the photosphere and the higher part of the cold layer the chromosphere, -
but never specify the exact height of transition between the photosphere and the

chromosphere. The distribution of the initial temperature is assumed to be

Wep

T(z) = Tet + (Teor — Ter) - % [tdnh (Z—“L> + 1} : (9)

where Tior/Teh is the ratio of the ternperafure in the corona to that in the chromo-
sphere, Z.,- is the height of the base of the corona and w;, is the temperature sca.lé
height in the transition region. For all our calculations we assumed Teor/Tcn =. 25,
Zeor = 18H and wy, = 0.6H, where H is the pressure scale height of the chromo-
sphere.

We assume that the ‘magnetic field is initially parallel to the x-axis B =

(B(= A,.();O . The distribution of magnetic field strength B(z is given by
g .
B(z) = [8np(a)/B(=)'% (10)

where

B(z) = Bo/ f(2), | -y

flz) = % {tanh(z ;OZ") + 1} [—tanh(z ;121> + 1} : (12)

and where Og is the ratio of the gas pressure to magnetic pressure at the center of

the magnetic flux sheet, zo and z; = zo + D are the heights of the lower and upper
boundary of the magnetic flux sheet, D is the vertical thickness of the flux sheet, and
wy and w; are the scale heights of the magnetic flux sheet at the lower and uppef‘
boundary. (

The initial density and pressure distributions are -numerically calculated b\ using

equations (10) and (11) and the equation of magnetostatic equilibrium

ﬂ_‘]+pg:0. | (13)

(@]



c) Boundary conditions

We assume symmetric boundaries for ¢ = 0, ¢ = X, and z = 0, and a
free boundary for z = Z,,,z (see Shibata 1983). In order to check the effect of the
free boundary at z = Z,,4z, We also simulated the case with an absorbing layer
(Sato and Hayashi 1979) between z = Z,,,, and the numerically true boundary at
2 = Zmaz + 24. Wave reflection and unphysical inflow at the free boundary are
quickly damped out in the absorbing layer. This enables us to distinguish between
numerical and true physical effects.

Equations (1) - (8) are nondimensionalized by using the following normalizing
constants: H the scale height of the chromosphere, C, the sound velocity in the
photosphere, and pg the density at the base of the atmosphere (z=0). Equations (1)
- (8) are solved numerically by using a modified Lax-Wendroff scheme (Rubin and
Burstein 1967) with an artificial viscosity according to Richtmyer and Morton (1967).
The tests and accuracy of such a MHD code have been described by Shibata (1983),
Shibata and Uchida (1985), Matsumoto et al. (1988), Umemura it et al. (1988), and
Tajima (1989). The mesh sizes are Az = 0.15 for z < Zcor and slowly increasing
for 2 > Z.or, Az = Xma,_./(N,, — 1), where N, is the number of mesh points in the
x-direction. The total number of mesh points is (N x N;) = (101 x 172), the total
‘area is (Xmaz X Zmaz) = (80 X 35) in a typical model in units of the pressure scale

height.
III. Nonlinear destabilization by horizontal velocity shear

We assume that the magnetic field is initially localized in the chromosphere with

zo = 4H, D = 4H and wo = w; = 0.5H. Small velocity perturbations of the form

21(z — Xmaz/2)

V. = Af(z)sin 3

(14)

are initially imposed on the magnetic flux sheet (z0 < z < z;) within the finite
horizontal domain (Xmer/2 — A/2 < 2 < Xmaz/2 — A/2). where A is the horizontal
wavelength of the velocity perturbations, X,z is the horizontal size of the computa-
tional domain, and A is the amplitude of the initial perturbation. In our calculations
we assume X maz - 80/ and A = 20H. This perturbation is not exactly an unstable

eigenfunction of the Parker instahility (Horiuchi et al. 1988). but the growth rate of



the perturbation in the linear regime agrees well with that obtained from the exact
linear analysis (Shibata et al. 1989a).
Furthermore, we assume shearing motions in the photosphere (z < Z.,,) of the

form

V,(z) = V,q - tanh <w> (15)

Wgh
where V¢ is the amplitude of the shear flow and w,; is the horizontal width of the
shearing region. Note that we assume the shearing motion as an initial condition
and that we solve the equation of motion in y-direction. Hence the shear flow is
decelerated by the magnetic torque as time proceeds, so that the kinetic energy

decreases with time as shown in Fig. 4.

a) Effect of shearing motions on the Parker instability

In this subsection, we describe the influence of photospheric shearing motions
on the overall evolution of the Parker instability. The parameters of this mOd‘?l:_;?é
as follows: v = 1.05, Bp = 1.0 and A = 0.05. These parameters are identical Wlth
model 3 of Shibata et al. (1989a) and provide the Parker mode linearly unstable eveﬁ‘
without shear motions. The addltlonal shear ﬂow is characterized by Vo = 0.9C; and:
wep, = 8H (Eq. 15). Compared to observations (Brants and Steenbeck 1985; Zwaan
1985), which show shearing motions up to 0.6km/s, the magnitude of the shear ﬁow-
is too large to be realistic. However, simulations with different Vo show that the
amplitude of the shear flow does not qualitatively affect the overall evolution. Its
quantitative effect is: the smaller Vj is, the larger is the computatibonal time. Hencé,
this value of V¢ is chosen simply for computational convenience. |

Figure 1 shows the time variations of the magnetic field lines (B, B:), the
velocity field (Vz, V,), and the density distribution (log p). As the instability develops,
the magnetic flux bows out of the photosphere and forms a loop. The magnetic loop
quickly expands into the corona, increasing its effective wavelength with time. The
initially unperturbed part of the magnetic flux sheet is also disturbed by the influence
of the instability in the perturbed part (Xm”//2 -2 <z < Xnae/2+A/2). Thus
magnetic Aux in the initially unperturbed part also expands because of the Parker
instability and forms two minor side Ioops seen in Fig. 1. The gas slides down the
expanding loop and the evacuated loop rises as a result of the enhanced magnetic
buovancy. Dense regions are created in the valleys of the undulating field lines,

whereas rarefied regions are formed around the top of the magnetic loop. Shock



waves are produced in the downflow near the footpoints of the loop when the downflow
velocity exceeds the local speed of sound. These characteristics are the same as in
the nonlinear simulations of Matsumoto et al. (1988) in the case of an isothermal
atmosphere under a nonuniform gravitational field, and as in the calculations of
Shibata et al. (1989a).

Figure 2 shows the one-dimensional z-distribution of the vertical velocity (V.),
the local Alfvén speed (V,), the magnetic field strength (log B;) and (log By), the
density (logp), and the ratio of the magnetic pressure to the gas pressure (= the
inverse of the local plasma 3) at £ = X,z /2 (middle of the magnetic loop). In the
nonlinear regime, both the rise velocity of the loop and the local Alfvén speed at
the top of the loop increase linearly with height and show a self similar behaviour
with height, as noted recently by Shibata et al. (1989a). As the loop rises, the local
Alfvén speed increases as a result of the evacuation by the downflow along the loop,
and hence the local § decreases significantly. The z-distribution of the density p
and the magnetic field strength B, below the top of the loop tend to a steady state
distribution, with

poc Az™? - (16)

and
B, x Az, (17)

where Az = z — zy and zg = 4.0. This magnetic field distribution corresponds to that
of a current-free (force-free) one and is essentially the same as that found in previous
papers (Shibata et al. 1989a,b).

Compared to the simulations of Shibata et al. (1989a), the present results show
that the inclusion of photospheric shearing motions does not drastically modify the
overall characteristics of the Parker instability and that it quantitatively influences
the time scale of the evolution and the length of the loop. That is, the time scale
is shortened and the spatial scale is enlarged in the present case. At time ¢t = 43
the velocity of the rising loop is about 1.15 in units of the initial sound speed in the
chromosphere. while it was about 0.6 in the case without shearing motions (Shibata
et al. 1989a). The level of (log B = —2.0) reaches a height of z = 30H at time
t = 43 compared to z — 20H, and the maximum downflow velocity at ¢ = 47 1s
5.8 compared to 3.8 at t = 51 in the case without photospheric shear flows. The
distance between the footpoints of the magnetic field amounts to 50H at ¢t = 40 in

the x,z-plane, which corresponds to a real distance of 87H in three dimensions due to
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the amplitude of 0.9C, of the shear flow, compared to a distance of 30H at t = 51.4 :
in the simulations of Shibata et al. (1989a) without shear flow. The maximum value
of V, in the upper chromosphere is 3.7C;, at ¢ = 55.

At the same time, the results show that shear flows do not significantly increase
the stored magnetic field energy when the Parker instability is permitted. Even when
the shear flow is applied, the induced magnetic buoyancy instability takes place more
quickly and thus the energy release is faster. This should be compared with the case
of Steinolfson and Tajima (1987), in which the stored magnetic energy kept increas-
ing, as no instability was permitted because of geometry. In the case of Zaidman
and Tajima (1989), instead of the Parker instability, the twist-kink instability was
permitted as the magnetic energy was being stored through shear flows. In this case

the stored magnetic energy did not significantly increase, similar to the present case.

b) Effect of shearing motions on Parker stable flux sheet _

We now study the case where the magnetic flux sheet is linearly stable with.
respect to the Parker (undular) mode because of larger v (= 1.5), where v. = 1+ % is
1.38 and v > «.. However, we shall show that the Parker mode becomes nonlinearly
‘unstable due to shearing motions we appl;v. We assume A = 0. Other parameters -
are the same as in subsection IIla.

Figure 3 shows the magnetic field configuration (B, B;) of our simulations.
Significantly, we still witness the buoyant loop expansion in spite of its linear Parker
stability. The morphology of this case in Fig. 3 is similar to that of the Parker
unstable case in Fig. 1, besides the fact that no minor side loops are formed. This
is because the present magnetic flux sheet is stable to the Parker instability. The
expansion of the loop is caused by the increase of magnetic pressure as a 1“esult of the
shearing of the magnefic field lines. In this case the increased storage of magnetic field
energy by shearing motions is similar to the cases of Steinolfson and Tajima (1987)
and Zaidman and Tajima (1989). The self-similar and exponential time evolution of
expanding loop is again observed. This then should be called nonlinear destabilization
of the undular mode by shear flow. The size of the loop and the risc velocitics arc
somewhat smaller than those of the linearly unstable case studied in section Illa.
The maximum value of 1} in the upper chromosphere is 3.7C’s at ¢ = 55.

Figure 4 shows the time variation of magnetic, gravitational. thermal and kinetic
energies in the system. It should be noted that AE = E(t) — E(0) and that the

magnetic energy (En) is normalized to its initial value. The magnetic (Em) and
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gravitational (AE,) energies slightly increase within the first 30 timescales, while
the kinetic (AE%) and thermal (AE;;) energies decrease. The increase in magnetic
energy is due to the amplification of the magnetic field by the photospheric shear
flow and the decrease in kinetic energy mainly due to the deceleration of the shearing
motions. After this first period (¢ =~ 30) the magnetic field quickly expands upward
and reduces its energy. Most of the released energy is converted into thermal energy
through compressional and shock heating. The total energy in the simulation is

conserved within 1% of its initial value.

c) Dependence of horizontal wavelength

The dependence of the evolution of an isolated magnetic flux sheet on the hor-
izontal wavelength of the velocity shear is investigated. The initial flux is assumed
to be stable to the Parker instability. We used the following parameters: v = 1.5,
X maz = 160H (twice the previous cases) and Vyo = 3.6C,, w,, = 32H to ensure the
same shear rate as in our previous models (I1la and IIIb).

The numerical results are displayed in Fig. 5. The expansion of the flux is quite
different from the former cases discussed in section IIIb. As the instability devel-
ops, the horizontal size of the loop remains nearly constant in the vertical direction,
without exhibiting self-similarity anymore. The flow pattern is characterized by the
mainly horizqnta.l velocities. No shock waves are produced at the footpoints. In Fig.
6 we display the one-dimensional distribution of the vertical velocity (V;), the local
Alfvén speed (V,), the magnetic field strength (log B, log By) and the density (log p)
at (z = Xpmaz/2). Figure 6 shows that in this case the top of the loop is only slightly
evacuated, thereby keeping the Alfvén speed and the rise velocity low and nearly
constant as the flux sheet expands into the corona. Note the significant differences
between Figs. 2b and 6b and also differences between Figs. 2d and 6c.

We see from Figs. 6c and 6d that the magnetic field strength B, and the density
p decrease exponentially with height. The approximate relations in the numerical

results, showr by the dashed lines in Figs. 6¢c and 6d, are
By x exp(—z/Hn), (18)

p xexp( -z/H,), ' (19)

with H,, = 8.0H and H, = 4.6 . Furthermore, we see from Fig. 6b that the Alfven

speed 1, is nearly constant. Since B, < B,, this requires that B,/,/p = const.

10



or H, = 2H,, which agrees roughly with our numerical results. The value of H,
can be made plausible if we assume hydrostatic equilibrium in the vertical direction
(remember that V, < 0.3C,). Under the assumption that V, = const., we find from
equation (13) H, = (1 + 1/B)H, which gives for a typical value of B (1/8 = 4.0, see
Fig. 2f) H, = 5H, in agreement with our numerical results. This shows that in the
case of long Wavelength perturbations the magnetic flux sheet expands under nearly
hydrostatic equilibrium into the corona. This is in contrast to the expansion with

approximate current-free equilibrium in the case of short wavelength (Figs. 1 and 2).
IV Nonlinear destabilization by convective motions

In contrast to the simulations of section III in which the flow was horizontal
(in the y-direction) we now allow a convectively unstable region beneath the pho-

tosphere/chromosphere as a model of the solar convection zone. This allows more

- self-consistent and dynamical coupling between the convection zone and the solar

atmosphere.'

The initial temperature distribution in the convection zone is assumed to be
T(z) = Tep — az|dT/dz|eq (20)

for zz < z < 0, where z is the height measured from the base of the photosphere,
z. is the base height of the convection zone, |dT/dz|s,a = [(v — 1)/7](Tcrn/H) is
" the adiabatic temperature gradient and @ is a numerical constant of the order of
' unity. For numerical reasons, we adopt z. = —5H and a =2. Although these
values are not realistic for actual solar convection zone (e.g., Spruit 1974), these are
sufficient to study the fundamental nonlinear interaction between the magnetic field
and convection just below the photosphere (Shibata et al. 1989c).

In order to start the instability in the convectively unstable layer, small vertical
velocity perturbations (with an amplitude of 0.01 in units of the speed of sound)
are imposed initially on the magnetic flux sheet within the finite horizontal domain
(Xmaz/2-2/4 <z < Xmaz/2+A/4), where A = 141 (=~ 3000km). This perturbation
is not exactly an unstable eigenfunction. However, the growth rate of the perturba-
tion in the linear regime agrees well with that obtained from the exact linear analysis
(see Fig. 8 below).

The magnetic field is initially horizontal and is localized in zp < = < z9 - D (see

Egs. (11) and (12)). The distribution of the magnetic field strength is given by Eq.
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(10), where we take By = 4.0 and D = 2H for the vertical thickness of the flux sheet.
We study three different locations of the initial magnetic flux: within the convection
zone just below the photosphere (zg = —2H), on top of the convection zone (zp = 0)
and within the chromosphere (zo = 5H). The parameters are as follows: v = 5/3,
Zmaz = 42H, Z.or = 13H. As in the case of the previous section IIIb, the magnetic
flux with zo > 0 is stable against the Parker mode because of large v(= 5/3).

a) The nature of convective motions

We carry out linear analysis of the convective instability with and without mag-
netic flux. Figure 7 shows the linear growth rates of the convective instability as
a function of the horizontal wavenumber for different plasma 3 (see Nozawa et al.
1989, for details on the linear stability analysis for the system of Egs. (1) - (12) and
(20)). We study two cases. In the first case (Fig. 7a) the magnetic flux sheet is
located in the convection zone (zp = —2H, when 2¢ is defined in Eq. (12)). In the
second case (Fig. 7b) the magnetic flux sheet is above the convection zone (2o = 0).
We call the first case as a partially magnetized convection zone and the second as
an unmagnetized convection zone. In the latter case the growth rates increase with
wavenumber k; independently of 3, while in the former case a magnetic field within
the convection zone stabilizes convection by magnetic tension for small wavelengths
(k; > 0.3) This stabilization is stronger for smaller 8. For § — co the growth rates
converge toward the case with 2z = 0. For long wavelengths (k, < 0.3) the magnetic
field has destabilizing effect due to the onset of the Parker instability.

In Fig. 8 we show the time evolution of the horizontal convective velocity at
(z,z) = (44.8,1.9) for the case with zp = —2H. This point (44.8,1.9) is not in
the convectively unstable layer (—5 < z < 0). However, the eigenfunction of the
convective instability has such a broad distribution extending beyond z = 0, so
that it can be said that this point is actually in the convection zone. The dashed
line represents the result of the linear analysis of the convective instablility, and
corresponds to the growth rate of the most unstable eigenmode. The solid line shows
the evolution of the convective instability in our numerical simulation. In the period
between ¢t = 10 and ¢t = 30 the numerical calculations fit the linear hehavior well.
Nonlinear saturation sets in at about ¢ =~ 50. The strong increase within the first
5 timescales is due to the fact that the convective instability is initiated by vertical

velocity perturbations.
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b) Overall evolution

First we discuss the case with zy = _2H: The magnetic flux sheet is initially
located in the convection zone. Figure 9 shows typical results for the magnetic field
lines. The magnetic flux is first carried by the convective and magnetic buoyancy
forces from the convection zone toward the photosphere (¢t =~ 507 =~ 18min). As
the loop expands into the chromosphere and corona, it shows the same self-similar
behavior as in our previous case of the Parker unstable magnetic flux sheet (section
I1Ib). The magnetic field configuration below the photosphere is dominated by the
convective motions and forms a cellular structure (Figs. 9b and 9c). As the velocity
fluctuations expand within the convection zone, the initially unperturbed part of the

magnetic flux sheet is also disturbed. Thus the flux in the initially unperturbed

- part also expands and forms two minor side loops. Shock waves are formed in the

downflow.

Figure 10 shows the results with zy = 0: The magnetic flux sheet is initially lo-
cated just above the convectively unstable layer. In the course of evolution, magnetic
flux is partially transported by convection into the region below the photosphere:-
The upward motion of the gas in the nonlinear regime of the order of 0.2C,, over-
shooting from the convection zone into the photosphere, transports the magnetic flux

sheet upwards. The gas slides down from the top of the expanding loop along the

field lines. The evacuated loop rises as a result of enhanced magnetic buoyancy. As

the loop expands into the corona, its overall shape is similar to the case where the
destabilization is driven by velocity shear (sec. III).

The case where the magnetic flux is intially embedded in the higher atmospheric
layer (zo = 5H) than in the previous calculations is similar to the model studied by
Shibata et al. (1989a), except for the fact that here we examine a stable magnetic field
configuration .and include a convection zone. The convective disturbances initiated
from below the photosphere propagate upwards in the form of magnetohydrodynamic
waves, but are not able to destabilize the flux sheet in the upper chromosphere. This
is not a stabilizing effect of the over;lying corona, since simulations with different
heights of the coronal basc (Z.,-) show the same bchavior.

The results of the overall evolution are summarized in Table 1. including the
behaviour of additional cases. This table displays the stability properties for different
plasma J and different locations z of the lower base of the initial magnetic flux sheet.
It clearly shows that magnetic flux within the convection zone or just above easily

becomes unstable by convective motions. On the other hand, destabilization for
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magnetic flux in the chromosphere occurs only for low 3 (G = 1), since the growth

rate of the Parker instability of isolated magnetic flux increases with decreasing S.

V. Summary and Discussion

In this investigation we have presgnted results of numerical simulations of the
nonlinear evolution of the Parker instability in an isolated horizontal magnetic flux
sheet which is subject to convective motions. We have considered convective mo-
tions in the form of horizontal photospheric shear flows as well as vertical velocity
fluctuations in a convectively unstable layer below the photosphere.

The most important results of our investigation can be summarized as follows.
Even if the initial flux is stable with respect to the Parker (undular) mode, both
velocity shear and fluctuations in a convection zone are capable of nonlinearly driving
-the instability and resulting expansion of magnetic flux into the corona. In the
nonlinear regime, the overall evolution is characterized by the self-similar expansion
much like the previous studies (Shibata et al. 1989a,b), where initial flux is in a
layer unstable to the Parker mode. Photospheric shear flows do not drastically affect
the nonlinear expansion of magnetic flux as long as the initial flux is unstable to the
Parker mode.

We thus conclude that the nonlinear expansion of magnetic flux is nearly in-
dependent of the primary excitation mechanism. This investigation has shown that
convective motions can cause nonlinear destabilization and expansion of magnetic
flux from the convection zone into the corona even if the solar photosphere and chro-
mosphere may be stable against the Parker mode. When the Parker mode is stable,
shear motions can convert their kinetic energy into stored magnetic energy. On the
other hand, when it is unstable, this storage process has hardly enough time to take
place because the Parker instability develops linearly.

The nature of destabilization can be different. In the case of velocity shear
the magnetic pressure increases due to the generation of B,. This causes vertical
expansion of the magnetic sheet. The downflow along the ficld lines evacuates the
gas at the top of the loop and drives the instability. If the destabilization occurs
by vertical velocity fluctuations in the convection zone, the magnetic flux is pushed
upwards by mechanical movements. This deforms the flux sheet and excites the

instability in the same way as described above.
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In the nonlinear regime, the overall evolution is often characterized by the self-
similar expansion as found in the previous studies (Shibata et al. 1989a,b). Figure
2 shows that the Alfvén speed increases with height, but not linearly as found by
Shibata et al. (1989a,b). The difference is due to the fact that in the present case the
magnetic field curvature is nearly zero in the middle part of the loop. Therefore, the
evacuation at the top of the loop is slower and thus the local Alfvén speed smaller.

Figures 1 and 3 show the existence of strong MHD shock waves near the
footprints of the loops. Shocks occur since the downflow speed exceeds the local
sound speed and the Alfvén speed. In MHD, three shock modes become possible
(Kantrowitz and Petschek 1966; Priest 1982). They are classified according to their
phase speeds as slow, intermediate, and fast. The slow shock has the effect of de-
creasing the magnetic field strength as it passes and making the magnetic field rotate
towards the shock normal, whereas the fast shock (which speed exceeds (C? + V2)1/2)
has the opposite effect. A primary difference between intermediate shocks and ‘the

other two types is that the component of the magnetic field parallel to the shock

plane reverses direction across an intermediate shock while it retains its d1rect1 n':
across the others. Whereas the magnetic field strength increases across fast shocks
and decreases across slow shocks, it may either increase or decrease across the inter-
mediate shock. In our simulations we can identify a fast MHD shock in the lower
region of the downflow near the footpoints of the loop and an intermediate shock in
the upper region. The approximate location of shocks is indicated in Fig. lc (¢ = 40),
with solid lines representing the fast shock and dashed lines the intermediate shock.

The process of expanding magnetic flux can be regarded as a reliable model for
emerging flux regions (EFR) on the Sun and can explain fnany basic properties of arch
filament systems. When we compare numerical results with observations, we will use
a photosperic pressure scale height of 200 km and a speed of sound of 10 km/s, which
are typical values for the solar chromosphere and photosphere. The rise velocity of
the magnetic loop predicted by numerical simulations (Figs. 2 and 4) is about 10 - 15
km/s. This value agrees well with the observed rise velocity of arch filaments (Bruzek
1967, Bruzek 1969, Chou and Zirin 1988, Tanbell et al. 1988). The downflow speed
found in the simulations is abount 30 - 60 km/s in the chromosphere. This value
is also consisitent with the observed downflow speeds (Bruzek 1969, Zwaan, Brants
and Cram 1985). Our simulations show that strong shock waves are formed near the
footpoints of the magnetic loop, which may be related to bright plages observed near

filament systems (Bumba and Howard 1963, Born 1974).
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The kinetic energy of downflow can account for a portion of the chromospheric
heating (Priest 1982). According to the numerical results, the energy release due
to the expansion of magnetic flux is almost entirely converted into thermal energy
of the plasma through compressional and shock heating. The enhanced activities in
emerging flux regions (Priest 1982) are easily understood as due to the release of
magnetic energy stored in magnetic fields when the magnetic flux expands upward
into the chromosphere and corona.

According to our numerical results, the time scale for the emergence of mag-
netic flux from the bottom of the atmosphere to the coronal level is about 20 min.
This is comparable to the observed time difference between the first appearance in
magnetograms and the appearance of bright plage regions (Harvey and Martin 1973).

The simulation results for very long filaments (Figs. 5 and 6) are consistent with
observations of the active regions after the EFR stage. According to observations
(Malherbe et al. 1983; Schmieder et al. 1985; Hanaoka and Kurokawa 1990), there
are some filaments between the two magnetic polarities in this stage which are usually
very long (> 3 x 10*km) and do not show any rise motion (V; < 10km/s), but show
large downflow velocity (~ 30km/s). The reason of no rise motion could be the
deceleration by the overlying magnetic field (Shibata et al. 1989b). Our results
present an alternative (or additional) possibility that the very small rise velocity is
simply due to a great length of the filament in the presence of velocity shear, as
shown in Fig. 5. The horizontal velocity of 30 — 50km/s along the filament is also
consistent with observations (Hanaoka and Kurokawa 1990).

General effects of magnetic shear and the network coronal magnetic fields with

velocity shear will be discussed in a separate paper (Shibata et al 1990a).

The computations were performed on the Cray X-MP/24 at the Computer Cen-
ter of the University of Texas at Austin, and on FACOM VP200 at the Institute
of Plasma Physics of Nagoya University. This work was supported in part by the
National Science Foundation grant ATM88-11128, and US Department of Energy
DE-FG05-80ET53088. and in part by the Scientific Research Fund of the Ministry of
Education, Science, and Culture(01740143).
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Table 1

Stability properties of an isolated magnetic flux sheet disturbed by convective velocity
fluctuations for different plasma (3 and different locations z; of the lower base of the

initial flux sheet.
3 11 4 4 4 4 10 10

20/H 0 5 -3 0 3 5 0 5

stability unstable unstable unstable unstable unstable stable unstable stable
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Figure captions

Fig. 1 Numerical results for the case, where v = 1.05 (corresponding to the
Parker unstable flux sheet), 8o = 1.0 and Vo = 0.9C,. (a) the magnetic field lines
B = (B,, B.), (b) the density contours (logp), (c) the velocity vector V = (V,,V,).
Total illustrated area is (80 % 35) in the unit of H. The contour level step-width is 0.1
for (a) and 0.3 for (b) in the unit of logarithmic scale. The scale of the velocity vector
is shown at the top of the figure in (c) in the unit of C;,. VNM = 0.67 indicates that
the arrow with the length of this line has the velocity of 0.67 x C,. Numbers in the
lefthand side of each frame in (a) represent the time in units of H/C,. The solid and
dashed curves in (c) at ¢t = 40 indicate the positions of intermediate and fast shocks,

respectively.

Fig. 2 The distribution in z of (a) the vertical component of velocity V., (b) the
local Alfvén speed V,, (c) the component of magnetic field (log Bz), (d) the com-
ponent of magnetic field (log By ), (e) the density (log p), (f) the inverse of the local
plasma B(= py/Pm), at ¢ = Xmqz/2 (middle of the rising loop) at ¢ = 27,34, 43,46.
The dashed curves in (c) and (e) represent the curves of p ~ Az™* and B, ~ Az™1,

respectively.

Fig. 3 Time variations of magnetic field lines B = (B,, By) for the case, where
v = 1.5 (corresponding to the Parker stable flux sheet) and other parameters are the
same as in the model shown in Figure 1. The contour level step-width is 0.05 in units

of logarithmic scale. Other remarks are the same as in Figure 1.

Fig. 4 Time variations of magnetic (E,,), thermal (AE,;), kinetic (AE})) and
gravitational (AE,) energies contained in the computating domaine, where AE =

E(t) — E(0), for the case shown in Fig. 3.

Fig. 5 Time variations of (a) magnetic field lines B = (B, B.), (b) the density
contours (log p) and (c) the velocity vector V = (V, V) for the case, where Xpo: =
160H, V,0 = 3.6C,, w,, = 32H and other parameters are the same as in the model

shown in Figure 3. Other remarks are the same as in Figure 1.

Fig. 6 The distribution in z of (a) the vertical component of velocity 1%, (b) the
local Alfvén speed 13, (¢) the components of magnetic fleld (log B;) and (log B,),
(d) the density (log p) at z = X maz/2 (middle of the rising loop) at ¢ = 30,37, 45, 52.
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Fig. 7 Growth rates of the convective instability as a function of horizontal
wavenumber for different plasma 3. (a) the case of a partially magnetized convection

zone (zg = —2H), (b) the case of an unmagnetized convective layer (zo = 0).

Fig. 8 Time evolution of horizontal velocity V, in the convection zone for the
case with zg = —2H. The dashed line represents the result of the linear stability

analysis, the solid line that of the numerical simulations.

Fig. 9 Time variations of the magnetic field lines B = (B, B;) for the case,

where the initial flux sheet is located within the convection zone (zo = —2H).

Fig. 10 Time variations of the magnetic field lines B = (B., B;) for the case,

where the initial flux sheet is located just above the convectively unstable layer

(Zo = 0).
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