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Abstract

The 9caiing of the diffusion coefficient with the amplitﬁde‘of the fluctuation is stud-
‘ied in cohjunction with the E x B veldcity correlation function. For_high ﬁuétuatiqn
a.mplitude the velocity correlation function is spiit into two parts. One part is the ‘
correlation for the integrable case which does not contribute to the net transport. The
' othe1; part is the correlation which results from the stochasticity. The diffusion coeffi-
cient obtained from the integrals of the second part of cor:elation, sca;les as '&70 or 5'1

* depending on the cases considered.



I. Introduction

For low-frequency (w < wee,wsi) and long wavelength (ki p <« 1) fluctuations typically
present in plasmas, the motipn of the particles are governed by drift equations. As is well
known, for broad frequency and amplitude fluctuation spectra, the system easily becomes
stochastic. Less well known is that even for the simplest two-wave systems the motion
also becomes stochastic under easily satisfied conditions.”? In the two-wave regime, how-
ever, the scaling of the diffusion coefficient on the amplitude of the fluctuation has been in
controversy.?®

As noted by Kleva and Drake,? the usual quasilinear theory seems to be inappropriate to
the simple two-wave systems for moderate to high amplitude of the fluctuations. Dupree’s
improvement on the quasilinear theory includes the orbit corrections due to the fluctuations.
But the Dupree work does not have the physics necessary to describe the exponential diver-
gence of nearby orbits, because his work is before the advent of modern stochastic theory.

In the present work, we investigate the correlation function and the diffusion coefficient
in the simplest systems. We study the transport of the guiding centers in a homogeneous
constant magnetic field, supporting two transversely propagating, electrostatic, fluctuations.
It is well known that even this two-wave system shows stochastic behavior when certain
conditions are satisfied.2~® We consider electrostatic waves propagating perpendicularly to
the direction of density gradient and magnetic field, i.e., the diamagnetic direction. These
drift-type waves are easily observed in the tokamak or other fusion devices which have a
confining magnetic field and density or temperature gradient.

The previous studies of Horton® and Kleva and Dra;ke2 show some difference on the diffu-
sion coefficient with respect to the amplitude of the fluctuations. At high amplitude Horton

finds two results D oc ¢ and ¢~ depending on the value of the wave phase velocities, whereas
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Kleva and Drake obtain D « #ng. We study numerically the two-time velocity correlation
function of this system. As is Well known, the time integral of this correlation function is
the diffusion coefficient. We show that when the amplitude of the fluctuation is small, the
correlation time 7, is independent of the fluctuation amplitude, a result which supports the
quasilinear theory with D o« #2. In this case, the correla,tioﬁ function C(7) shows decaying
oscillators h@ving time scale 7. which is independent of the ﬂuctué,tion amplitude &F Whe_n
the fluctuation amplitude becomes large, the correlation function é;ve_ntually begins to de- .
crease as time elapses. In this regime, we can ~n'ormal,‘lize the correlation function by C(r = 0)
land scaling the time propértional to the fluctuation amplitude, i.e., 7' = @7 to obtain a self-
similar correlation function. As a result of these scaling.s,i the correlation function shows

similar behavior for different fluctuation amplitudes given by "

C(r)
c(0)

= R(7)+ 3 R()+ ;%er'). | G

- This result implies that the correlation time 7, is inversely proportional to the fluctuatio

amplitude. If we consider only the FO(T/)' part of the correlation, the diffusion coefficient
should increase proportionally with 5 But, as we note, Fy(7') is the correlation which results
;Nhén the system is integrable. We therefore, suspect and attempt to prove that Fy(r') does
ﬁot contribute to the net transport. Thus, the tra,nsport may scale‘;s #° or ’25-1 depending
on whether Fi (") = 0 or not. o |

Thevpaper is organized as follows. In Sec. II we introduce the fluctuating electrostatic
potential, which takes the status of the Hamiltonian of the problem giving the perpendic-
ular equation of the motion. In Sec. III we relate the velocity correlation function with
the diffusion coefficient and analyze the"sca.ling of the correlation firrie on the rudimentary
manner. In Sec. IV we investigate the problem through -numerical exf)eriments and verify

the conclusion of Sec. IIl. In Sec. V the results are summarized and_discussed.




II. Equation of Motion

We assume that there exists a uniform magnetic field along the z-direction i.e., B = Bz,
where z is the unit vector along the z-direction. S.uppose that there are electrostatic waves
propagating perpendicularly to the magnetic field. If such waves have long-wavelength
(krp < 1) and low-frequency (w/w. < 1), the motion of the particles can be described
by drift equation. That is, the particle motion is given by E x B velocity

ExB z X VO
. . _VE=C E =c 5 (2)

where @ is the electrostatic wave propagating perpendicular to the magnetic field. In general

®=%(z)+ &(z,y,t). In component form the equations of motion become

£--3 (gen) 0
o % (o). ¢

Thus our system is a Hamiltonian system with canonical momentum and coordinate (p,q) =
(z,y) and with the Hanﬁltoﬁian H=£9(z,y,t).

For the one wave case, the system is integrable with recourse to the elliptic functions and
changing of the coordinate system to that of moving with the phase velocity of the wave. For
multiple waves having the same phase velocities, the situation is the same. The integrable
cases are thoroughly studied by Horton.!?

For the two-wave cases with different phase velocities, the criterion for the onset of
stochasticity is given in Ref. 3. Since we wish to study stochastic transport in the Hamilto-
nian system, we choose a simple two-wave fluctuating potential (equivalently Hamiltonian)
which results in stochasticity. If we normalize the length and time appropriately, we can

take the stochastic two-wave Hamiltonian® as follows

H = Hy(z) + ¢(sin(z) cos(y) + cos(z) cos(2(y — t))) (5)
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where
dHo(z) w1 — ky vp(z) |
dz Qg

and the two waves have equal amplitude ¢. The maximum transport occurs for u(z) =

%9- = 0. Perpendicular equations of motion then become

Ccli_:; = @ [sin(z) sin(y) + 2 cos(z) sin(2(y — t))] : | (6)
_d_y

The transformation to these dimensionless equations, as given in Ref. 3, uses z,y,? in units

k;ll, and Q3" Where. Qg = ckxl ky, A1/B for the first wave. Here ¢ = ®;/A; is the dimen-

sionless aniplitude with respect to the reference potential A;. The dimensionless relative

velocity of the second wave relative to the first wave is v = (w2/ky, — w1/ky,)/(ckzy A1/ B)

and is taken as unity. Here A; is a reference amplitude for the first electrdstatic,waye which
may be taken as either A®, T./e or (p,/L N)Te/ e depending on the physical circumstances.

»Equa,tionS'_(6)—-(7) describe the E x B system with the'maximum diffusion *ratic;“sin_ce
there are no equilibrium flow te:ms. This situation occurs approximately for the 7;-mode in

the absence of shear flow.! A more general transport system is described in Ref. 3 including

a radial electric field E.(z). In the wave frame the effect of the radial ‘electric field is to

introduce an equilibrium flow u(z) modifying Eq. (7) to

% = 'z + & [cos(z) cos(y) — sm(m) cos(2(y —t)]

where the dimensionless shear flow parameter v’ is given by u = k,, vg/ks;, Q5. The effect

of va is to produce an E x B convective cell with the seﬁaf;_itrix width Az = (f/u)/? =

ks, (cA1/Buvl)'2. Thus, the effect of the shear cannot be-ne‘glecﬁed when Az < 7. For a

“shear flow layer of width Arg with potentié.l drop A® the convective cell island width is
or = ArE(g/ A@)l/ 2 and ‘the condition for strong shear flow modification of E x B tra.nspért
is Az = ky rE(g/Aé)l/z < 7.

- = ~[cos(m) cos(y) —-sin(m) cos(2(y —t))] . . (7)
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ITI. Correlation Function

When the global stochasticity is set up, the behavior of the system of test particles can be
described by the diffusion process. The basic assumption for the diffusion approximation
is that the particles experience a short correlation time along its trajectory. The short
correlation time is given by the global and the intrinsic stochasticity of the system. The

definition of the diffusion coefficient follows from the formal integration of the equation of

motion
t
2(t) — 2(0) = [ vg (a(ts), y(t:), 1) dty | (8)
where vg is shorthand for —%% = &. Introducing the average ( ) over the initial conditions

(z(0),y(0)) in the phase space, the relation

(@) = 2(0))*) = fim ["dts ["dta vm(tr)os(ta) (9)
~2Dt as t—o0 , (10)

defines the diffusion coefficient.
Thus, we are led to study the very nature of the two-time velocity correlation functions.

For simplicity of the notation, let us write the unnormalized correlation function as
C(r) = (ve(t)ve(t + 7)) (11)

where we assume that the average over the initial conditions is time translationally invariant,
thus eliminating the ¢ dependence of the velocity correlation function. The definition for D

can be developed further using the time translational invariance of the average to give

. 1 t i
1 [t+eo -
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where we changed integration variable from (t1,%2) to (7,€), where 7 = t; — 3 and £ = t,.

That is, the diffusion coefficient is the time integral of the velocity correlation function which

is a well established result.

It should be noted that becé,use our approach is not a self-consistent field theory, that
is, we staft from the given waves,. the velocity correlation function is known in i)ringiple.
Since the system s not integrable, however, we cannot evaluate the correlation function
exactly. But we can know the derivatives of any order atAt = 0 although the aléebra
becomes extremely complex as the order of the derivatives becomes large. For illustration,

we compute

C(0) = (s(0)0s(0)) )

and

) _ (500 ([vm 1+ 220))) 15)

“where | f, g] is the Poisson bracket defined by ’ ' . -

E— . ' 16
Thus we can evaluate %ﬂ |;r=6 explicitly. Recursively, we can compute the higher derifratjves

LoD — (op(OD*s(r) )

where

D*tlyg(r) = [Dvg(r), H] + %’D’,‘vg(r) and DOvE(T) = vg(7) .

From these derivatives of the velbcity correlation function at 7 = 0, we can form a Taylor

series expansion about 7 = 0:

. 1d
z?n—

»1'=0'

™. ‘ . (18) .,
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Although this expansion is useless for the evaluation of diffusion coefficient, since the series
is not in a closed form, we may hope to infer the time scale of the correlation function as é
varies. We explicitly computed the first few low order derivatives with help of the symbolic
manipulator MACSYMA. The result is

(5 9547 +128 93914* + 2707242 + 8192 .
— 421 2 4 ...
Clr)=9¢ (4 T 24 - 512 R

We note that for the 5 & 1 limit, the time scale is independent of &, but that for the ¢ > 1

(19)

limit, the dependence is on (¢r)" and thus 7, ~ 1/4.
We consider this approach more systematically. First, it is noted that the derivatives
in Eq. (15) consist of two terms, the contribution from E x B convection and from the

explicit time dependence of the drift velocity. It is noted that the convective contribution

is O(¢°) and the contribution from the explicit time dependence is O(#?) in Eq. (15). For’

low fluctuation amplitude ($ < 1) we may keep only the contribution from the explicit time
dependence. In this case we can calculate the derivatives exactly to the infinite order. The
Taylor series reduces to

C(r) = & G+cos(zr)) o (20)
In this limit the cgrrela.tion function is simply sinusoidal oscillations with period 7. This
is just the period of the driving Hamiltonian. Also we can see that as é — 0, the Taylor
expansion of Eq. (19) agrees with the expansion of Eq. (20) confirming our calculations. For
the other extreme, where # > 1 case, we keep the contribution from the highest order terms.

— d*C(7)

In this case it is immediately seen that C, (= ===| _,) has the leading term proportional
. dr =0 g

to ¢"*2. Thus we may write

Cn 2 C(0) (ang" + a2_, "' + al_,6" %) (21)
and
= 1 n et ny1\n 1 1 n T \n
0= 3 20w 2 00| 3 @) +3 T 2peia(6)
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1
Z—— ; 7 n-1 (6 ) : (22)
If we scale the time variable through 7' = cz'r and if we define
— a’z—i \n : '
then we may write
i R' C(T) ~ ’ ]' 7 1 ! | » . ‘

From this we infer

»D:%/:’o( =§$[/ Fy(+) dr—!—/ Fy(r )d7+ / Fy(r')d } (25)

In the above expression (25) we note the following: =~ . ' : e

1. FO(T) is the hlghest order contribution i in @, Whlch results from the summa.tmn for the
convective contnbutlon only. In other Words if we ignore the time dependence of the
" Hamiltonian, we should get Fy as the exact velocity correlation function. Therefore, we
may say that the eorrelation Fo(7') is the integrable contribution of the Hamiltbniaﬁ
system; Since §; = 0 implies integrability in. a 1D (d = 2) systeni. Frofn the above

argument we suppose that FO(T' ) represents at most an aperiodic oscillation and will

S T
not contribute to.the integration which is the transport coefficient. In other words, we

exp ect

due to the integrability of the 1D Hamiltonian system.

2. From the above arguments we infer that the diffusion coeficient should scale as either

#° or ¢~! depending on the circumstances.

| - | /0 Fo(')dr' =0 | (26)
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IV. Numerical Experiments and Discussions

A. Numerical Experiments

We measure the velocity correlation function through numerical techniques. Since the prob-
lem is pefiodic in phése space with period 27, we replaced the phase space average by the
average over the reduced phase space of [—7, 7] X [—7, 7]. For measurement of the velocity
correlation function, we locate N particles randomly in [—=, 7] X [—, 7). We integrate the
equations of motion of these particles with given initial conditions. During the integration

we compute

N
0lr) = 7 3= (vs(0)us(r) @)

i=1

and take this as an approximation for the velocity correlation function. In this work we
take N = 128 ~ 1024 particles and the integration of the equation of motion was done by
a 5-6 order adaptive Runge-Kutta method (DVERK from IMSL). The truncation error er
per step was set between 10~ < e < 107% and the effect of integration error is controlled-
by varying er so as not to result in erroneous values of C(7).

In Fig. 1 we show the effect of the finite number of test particles, which can be regarded
as the effect of the Monte-Carlo (MC) simulation. For this case fluctuation amplitude ¢ = 3,
er = 107%, N = 1024 and we superimpose 5 different runs. We note that although there is
a finite difference for the runs, the error seems to be small and the structure of the velocity
correlation functions is obviously not affected. We also see that the correlation function
decays to zero while oscillating from the maximum at 7 = 0. This is a general structure of
the computed correlation function, and it is physically appealing. Also note that the velocity
correlation function is normalized to its 7 = 0 value. The Cyc(0)/C(0) is 1.025 showing an
error of few percent compared with the exact 1.

In Fig. 2 we show the velocity correlation function for the ¢ < 1 limit. In Fig. 2(a) ¢ =

10.01,0.02,0.03. The plot shows a steady oscillation. As 5 becomes smaller, the correlation is

10
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more nearly periodic in agreement with Eq. (20) in Sec. IIL. Also we niote that the oscillating
time scale is the same for é = 0.01,0.02,0.03 and the périod of _oscillatién is estimated to
b'e 3.1 agreeing with the periodicity of the driving Hamiltonian 7r To obtain diffusion in
this small amplitude regime there must be a small background diffusion Dy due either to

collisions or small scale ﬁu_rbulence. We now add the effect of Dy giving small random kicks

to éz, by each time step At. The resulting decay of the two-time correlation function is

shown in Fig. 2(b).
In Fig. 3, we plot C(1)/C (0) as a function of non—scaled time 7 and scaled time 7/ = ¢r

for different é. From‘Fig. 3(a) we can guess that the correla,tlons may resemble each other

if we scale the abscissa. That is, if we compress or stretch one of the curves, the correlation

may show similar behavior. The result of scaling is shown inv Fig. 3(b), where we may say
the velocity correlation function contains a dominant contribution which does nov"cﬁa"ép'end
on ¢ when regarded as a function of 7', Therefore we suggest the cor;élation function may
be written as | |

C(r)/C(0) = Fo(r’)+0( 1 | Y (28)

where Fy(7') is 1ndependent of ¢ When 45 > 1. The poss1b111ty of this self-s1m11ar scahng is
anticipated in Sec. III from the power series expression of the correlatmn. In Fig. 3 we use
3 =20,30, N = 1024, and e7 = 10*.

Finally, we also measure the diffusion coefficient using the usual rule

_D(t)NaNz(m(tv—m . (29) .

i=1
When D(t) appears convergent, we regard that D(t) is ergodic and replace the ensemble

average by its time average. We obtain from the time series of D(t)

T-To

D=—" ‘/:;TD(t)'dt‘ | (30)

and estimate the standard deviation by

- 11
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§D = [T 1 T /TT (D(t) - DY? dt]m (31)

where T is the time when convergence is observed.

From a series of simulations we plot the diffusion coefficient D as a function of the
fluctuation amplitude ¢ in Fig. 4. For ¢ > l,D(g) decreases linearly with as ¢ increases.
Using a least square fit, we find that the D(@) for ¢ > 1 is given by

D ~ A | (32)

where A = 9.28 and a = 1.03. This power dependence.of ¢~1%% should be compared with

é~! which is the conclusion of the analysis in Sec. III. It seems that this inverse power

dependence on amplitude is in reasonable agreement with the theory in Sec. III taking into
account the limitations of the simulations and the theory.

The units of the dimensional diffusion coefficient are Qg/k2 so that Fig. 4 shows that
D, is bounded by Qg/k2 = 0.j93(lcy1 /ks, )(cA1/B) with the upper bound reached at ¢ =
®,/A; = 10. In terms of the reference potential A; of the first wave the maximum diffusion
rate is Dpax & 0.93(ky1/ ks, )(cA1/B), thus when the reference potential is 4; = T,/e we
obtain that the Bohm diffusion coefficient is the upper bound to the diffusion rate.

| Now we consider the reduction of the transport by the presence of a small velocity shear
flow giving dy/dt = w'z + 8¢/dz. The Hamiltonian now has the usual kinetic energy term
H = 5= p* 4+ V(p, q) with p = w'z = mz. The reduction of the diffusion at fixed é = 10 for

increasing shear parameter «' is shown in Fig. 5. The reduction follows

D(v', $) = D($) exp(—alu'|)

with o ~ 4.8 — 5.0. In the regime where m = |u'| > é the system becomes integrable and

the diffusion vanishes by the Chirikov resonance overlap condition.®

12
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B. Discussion

In this subsection we would like to note various shortcomings and the physical plausibility

of the results presented here.

1. We arbitrarily regrouped the series representation of the velocity correlation function

in powers of & to split the correlation function into several parts. Since the velocity

. correlation function is intrinsically a conditionelly convergent function, the procedure
can not be supported on a mathematical basis. This.‘shortcorning nia,y be suppiemented

on a physical basis.

Tres

2. The correlatlon function for ¢ < 1 was computed exactly in the text. However, 1t does
not have the necessary requirement for evaluation of the ‘transport coefﬁc1ent That is,
it does not converge when integrated over long times. To have convergence, another

mechamsm, such as a ﬁmte residual collision frequency or a background bath of small

- amplitude fluctuations is requlred By addmg small random kicks to 6z , 6y we may _

restore the convergence of / T)d'r as shown in Fig. 2(b).

3. The general behavior of the correlation function C(r) is decaying while oscillating as

expected on the basis of physical intuition. For é « 1. The correlation function from
the siniulations agree well with the ¢ < 1 theory. We regard this as the integrable
regime. For ¢ 3> 1, the time scale of the decaying oscillationsv.is proportiona,l to 5’;1.
% ' This consequence is expected since, in this strongly nonlinear regime, the convective
contribution is dominant although we show that the pure convection limit does not

contribute to the net transport.

4. We calculate the diffusion coefficient nnmerically for the Hamiltonian given by Eq. (5).

We es’_cima,te the dependence of the diffusion coefficient on the fluctuation amplitude.

Rather surprisingly, we find a different dependence of D on ¢ from the previous

13
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authors.2® We find that D steadily increases until about ¢ = 10, but for ¢ > 10,
D starts to decrease as 1/¢. The only difference between the earlier works and us was
that we use random initial conditions over the unit cell instead of using fixed o as in
Refs. 2 and 3. We think this can not cause essential difference in the behavior of D.
Furthermore, we fitted D on 5 as D ~ AqZ"". With a good correlation coefficient in

the fitting we obtain « ~ 1.03 which agrees with our theoretical argument of o = 1.

5. To decide theoretically whether D =~ ¢° =1 for ¢ > 1, we need to calculate all
coefficients a7 given in Eq. (21). It seems that a? = 0 for odd ¢ for the Hamiltonian

(5). Thus, for our case D should have the dependence of D =~ é-1.

V. Conclusions

We evaluate through the numerical techniquefhe velocity correlation function for the Hamil-
tonian used by Horton.? The correlation function is decaying while oscillating, agreeing with
physical intuition based on the E X B convection of the particles. Furthermore, it is shown
that for low fluctuation amplitude ¢ < 1, the correlation is a steady oscillation with a
characteristic period almost independent of the fluctuation amplitude . The period of this
oscillation agrees with the periodicity of the driving Hamiltonian. This result is calculated
analytically and verified through the numerical computation. For high fluctuation ampli-
tude ¢ > 1, the correlation function decays but shows similar behavior for different é when
written as C(7)/C(0) = Fy(+') + O(¢~1) where 7' is the amplitude scaled time 7/ = é7 and
Fo(7') is that part of the correlation which results from the Hamiltonian when only coherent
convection is present. Therefore we suppose that Fy(7') is at most an aperiodic oscillation
and doés not contribute to the transport. Since the stochasticity and stochastic transport
comes from the time dependent convection and separatrix crossing, the argument that the

integrable part of the correlation results in no transport is reasonable. Omitting the inte-

14
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grable part of the correlation we get scaling of D on ¢ given in Eq. (25) which has a power
dépendence of D ~ ¢° or ¢~1. For a paradigm Hamiltonian we used the Horton model and
compute the transport ﬁﬁding that D ~ qu‘“, with o o 1.03, agreeing with our theoretical
argument. ..

We show that the diffusion rate is bounded above by unity in the dimensionless variables.

The maximum occurs when the rotation rate Q in the frozen potential is about five times the -

frequency of the two-wave system. Below this critical amplitude the diffusion rate increases
linearly with wave amplitude. The correlation_ time 7, of the particles in the monochromatic

waves decreases 1nverse1y with amplitude for amphtudes below the critical amphtude Above

the critical amplitude the adiabatic invariance of the action associated with the rapld rotatlon

" in the convective cells reduces the transport to the boundary layer around the <I>(:v, Y, t) ~0

contours.

For convection potentials of order T, /e the upper bound on the diffusion rate obtained

s Aapproxima.tely‘the Bohm diffusion rate.

The reduction of transport for higher fluctuation amplitudes comes from the “approach

to the integrable system” as ¢ becomes large. For large ¢ the rotation rate Qg becomes ,.

rapid cdmpa,red with rate of change of the separatrix contours and the corresponding action
becomes a good invariant. S -

We acknowledge that the two-wave system is rather special and does not typically repre-

- sent the situation occurring in actual fusion devices. In experimental situations there may be

many small amplitude waves.GIFor such cases the gbrrela,tion time is determined by either the
disperSion of the waves Aw™! or the intrinsic orbital stoéhasticity from the nonlinearity as in
our case depending on the competition between Aw and k2 D. Asin Horton and Choi,? for
such broa,d spectral cases, other moreAinvolved renormalized perturbation expansions may
be necessary, and they may result in another scaling of D with é and probably having a

more direct relevance to the actual experimental situations in toroidal confinement systems.

15
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Figure Captions

L.

Superposition of 5 different runs with same parameters to show the effect of numerical

simulation. Parameters are 5 =3, er = 1074, N = 1024.
Measured correlation for ¢ = 0.01,0.02,0.03. Here N = 1024 and er =104
(a) pure Hamiltonian flow (b) Hamiltonian flow with small background diffusion from

.Do = (52:2) /At

The correlation function C (7)/C(0) (a) as a function of 7 (b) as a function of 7' = 7,

showing that C(7)/C(0) ~ Fo(7') + O(~1) for ¢ = 20 and 30. |

. Dependence of D on the fluctuation amplitude é for N = 1024 and eg = 10~

.Dependence of D on the shear flow parameter W' at the fixed amplitudé a = 10.
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