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Abstract

Point vortex description for drift wave vortices is formulated based oﬁ the Hasegawa-
Mima equation to study elementary processes for the interactions of vortices as well as
statistical properties like vortex diffusion. Dynamical properties:of-drift-wave vortices - -
known by numerical experiments are recovered. Furthermore a vortex diffusion model
discussed by Horton [Phys. Fluids 31, 326 (1989)] based on numerical simulations is
sbhown to be analytically obtained. A variety of phenomena arising from the short-range

nature of the interaction force of point vortices are suggested.'
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I. Introduction

Excitation and dynamics of drift wave vortices have been intensively studied in connection
Wﬁh the anomalous plasma transport since these coherent vortices are able to carry particles
over long distances. Interactions of vortices, therefore are of central importance to obtain
a full understanding of transport. Studies on dynamics of drift wave vortices have mainly
been performed numerically based on the Hasegawa-Mima equa.tion',l which is difficult to
solve analytically. In this brief communication we derive point vortex equations of motion
for the vortex cores in the point vortex limit from the Hasegawa-Mima equation and study
elementary processes of interaction of the vortices, through. the new dynamical equations.
The dynamical equations for the interacting vortex cores provide a clear understanding of the
dynamical properties of drift wave vortices as well as statistical properties of the associated

plasma transport.

An advantage of introducing point vortices is to convert a nonlinear partial differential

equation into a system of ordinary differential equations-which- easier to solve, while - wave- - -

phenomena are neglected. A crucial difference of the Hasegawa-Mima equation from Euler’s
eqﬁa.tion is the existence of the drift term giving rise to dispersive waves, which requires
that the vorticity attached to each point vortex is no longer constant but varies in space
and time, in contrast with the point vortex description-of Euler’s equation: characterized by
constant strength vorticities. This modulated point. vortex model was first introduced by
Kono-Yamagata® based on the fact that the Hasegawa-Mima equation conserves the vorticity
along the trajectory, then later by Zabusky-McWilliams® who studied the configurations
of the vortices corresponding to a stationary solution of the Hasegawa-Mima equation and
stability of the configurations. In §2 we re-derive the point-vortex equation for the Hasegawa-
Mima equation. In §3 an exact solution for a vortex-pair is obtained and is shown to recover

the dynamical properties of the drift wave vortices revealed by numerical simulations. In §4




collision processes of two vortex-pairs are studied. In §5 a statistical theory of a many-vortex
system is formulated where the vortex diffusion coefficient is analytically derived to give the

empirical formula given by Horton.* Discussions are given in the last section.

II. Point Vortex Model

Starting with the Hasegawa-Mima equation

or o
—_— —_— 1
8i+[¢’ﬂ-]+v*ay 0, ()
where [ , ] denotes the Poisson bracket and
T=1%—YV 2"/) ’ (2)

we introduce the vortices through
m(r,8) =) fa(t)Va(r —ra(t)) , (3)

where Vo(r — rq(t)) is a localized function at r = rs(t) and-rs(t)- is- determined- by- the-

characteristics of Eq. (1):

dra(t)
oY) (e t)ora] = 0. (@

Substituting Eq. (3) into Eq. (1), we obtain
diy (1) drg 0(r,t)

> e Va(r—ra)—;%-{ﬁ—zx = }va(r—r;)

o

= —vapb(e,1). | ®)
Since V4(r —ry(t)) is a function localized around r = r,(t), we may replace the arguments
r appeared in the coefficients of V,(r — ry(t)) by rn(t), and then the second term of the
left-hand side of Eq. (5) vanishes according to Eq. (4). Then we have

Z_

Pallly (e —r,) = —vbs-wr ). (6)




Multiplying the both sides of Eq. (6) by Va(r — rg) and integrating with respect to r where

we may approximate the overlap integral as follows

[ drVale = va(®)Va(r —va(t)) = 6as , (7)
then we obtain
dko dzg
a - at (8)

When the localized function V,(r —r,) is approximated by a delta function é(r —r,), that

is, the vortex is assumed a point vortex, we have from Egs. (2) and (3)-

$(r,t) = 5= 3 Rl Ko(le — ) (9

where K is the modified Bessel function of the first kind.

In the following we assume vx positive and constant:
Ka(t) = Koo + vsza(t) , ‘ (10)

where K40 is a constant. Then Eq. (4) becomes

dr,, 1

0
7 = 5 2 (ko + vx2p)7 X 5 —Ko(rap) , - (1)

B

where 745 = |ro(t) — rg(t)|. Equation (11) has the same form as that introduced by Kono-
Yamagata? first and then later by Zabusky-McWilliams® who introduced the name modu-
lated point vortex for the variation k., = Koo + vxZ,. The simple case of constant x, valid
when vk = 0 is studied by Hasegawaet al.®

There are two constants of motion for the Hasegawa-Mima equation; one is the energy
1 , a1
E=§/dr[7,/) +(V¢)]=§/dr¢7r, (12)
and the other is the enstrophy
1 1
W= / dr (Vo) + (V)] = 3 / e (V) . (13)
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In the point vortex description the energy and enstrophy are expressed as

1
E= o > (Ka0 + v42a) (kg0 + v425) Ko(Tap) (14)
T atp
1
W= Y (ka0 + vaa)(kg0 + v#2p)[Ko(rap) + Ka(rap)] (15)
ah

where the self-energy has been subtracted since it diverges. Equation (14) is not a Hamilto-

nian of the dynamical system of the vortices. Instead the Hamiltonian is given by
H= Z¢(ra) ) (16)

from which we have

dz, 0H 1 y —Yg

_— - R — .[{ o ) 17
7 T Xﬁ: Kpo + V4Tp) > 1(rap) (17)
Zda Ki(ras) . 18
dt 0:va Zﬁ: /'0[30 + ’U*wﬁ B l(r ﬁ) ( )

Since H is translationally invariant along the y-axis,.the.translational-momentum.in z is. .

conserved:

P =3 (kao +vxza)® . : (19)

o

ITI. Vortex-Pair Solution

Now we slove Egs. (17) and (18) for two vortices. In this case in addition to Eq. (19) the

relative distance of the vortices is a constant of motion.
ri, = (2 — )4y —y) =1, (20)

which leads to

0sf = M\/ A+ cos8)(B — cosf)(1 — cos?d) , (21)

at €




where 1 —xz9 = rgcosf, A = [\/2P + (K10 — li',m)] [vkro, and B = [\/2 — (K10 — fizo)] /vxTo.

Equation (20) is readily integrated to yield a solution expressed in terms of the Jacobi elliptic

function. The solution is given by

1 — B%sn?(wt, k)
1 — a?sn?(wt, k)’

cosf =+

where for vkrg + |10 — k20| > V2P > |vkrg — |k10 — Kao]|

1+ B
= =A% = —sgn (k10 — K20)

A+ B’

w=JmA+Bﬂﬂ%@i,

""JO+MG+B)
B 204+B) "’

and for v/2P < vsrg — |K10 — K20|

. A+B a?

al="—"— ﬂz =—, 7= —Asgn(fim'— /‘320)'

A b
vaKaro)
47

1+ B’

w=1/(1+A)(1 + B)

._ | _24+B)
“\N@+A4A(1+B)

Equations for the center of gravity are given:by. - -

‘l‘(cc t2g) = —— 010 40 _ Ko+ Kz
g 1 2 vxK1(ro) dt Qux
1d K (r
5%@1 +y2) = Z(WO) [K10 — K20 + V7, cos 0] cos b .

(22)

(23)

(24)

(26)

(27)

It must be noted that a vortex-pair (k10 + k20 = 0) propagates in the y-direction without

oscillation in the orbit for (= 6(t = 0)) = nx (n : integer) and with oscillation for 8y # nr

as is shown in Fig. 1, which has been numerically observed by Makino, Kamimura, and

Taniuti® based on the Hasegawa-Mima equation. Computations are monitored by keeping P
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constant within ten effective figures. In fact the frequency given by Eq. (24) shows the same
type of vx-dependence as those observed in numerical simulations by Makino et al., which
~ is depicted in Fig. 2. Recently Nycander and Isichenko’ derived the equation for the center
of gravity of a vortex-pair from the moment equations of the Hasegawa-Mima equation and
obtained the frequency of the trajectory which is also well fitted to the results by Makino
et al.A non-propagating solution shown in Fig. 1(c) is realized for such initial angles of the

symmetry axis of the vortex-pair to the z-axis that the velocity of the vortex-pair given by

1/d 1 4K (k) Kq(r : -
5 <E(?J1 + y2)> = 81—((79:)—./0 dt ;Er o) [K10 — K20 + Vsro-cos 0] cos 6-

o [1 2] Kot

K(k)| 4

c. (28)

is zero where K (k) and E(k) are the complete elliptic integral of the first and second kind,
respectively. Figure 3 shows the initial angle versus the size of the nonpropagating vortex-
pairs for the case of ko/v% = 2.0. Another ex#mplé of non—ioropagating‘\}brtex;pair is given
in Fig. 4.

Two like-signed vortices (k10 = K20) are mutually trapped, rotating-around-the center of
graving which is easily seen from Egs. (26) and (27) (Fig. 5). This mutual trapping leads to
coarse-graining of the correlations over directions and may be considered a mechanism behind
the fusion of vortices in the sense that a group of point vortices positioned sufficiently near
one another acts at large distances as a single vortex with the sum intensity, kg & 3, kq. A
coalescence of like-signed vortices and a long-lived monopole numerically observed by Horton*
may be interpreted by this mutual trapping process. The inverse cascade® of the energy
associated by the conservation of enstrophy is also regarded in the vortex representation as
a trapping as a kind of snowballing process.

It is certainly not trivial to determine how many point vortices are necessary to describe
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a fluid vortex without losing essential features. A stationary vortex-pair solution® of the
Hasegawa-Mima equation is characterized by two parameters, the size ro and the speed ¢ in

terms of which the amplitude is expressed:

AKq (ﬂi) cos 0 for r > rg

[— + CJy (ﬂ)] cos@ forr<rg

To

ToC

T p_, g :_<£> roc T
%@ T °C(1+72>’ “=\lam TV

and 7 is determined by

A=

BEA(B)  vJi(7)

The peak amplitude is given in Ref. 9 as well.

K»(B) i Ja(v) —0.

On the other hand a point vortex-pair is characterized by the vorticity xo and the'size
o, and its speed is given by Eq. (28). From Eq. (28) we express k¢ in terms of ¢ and ro and
compare it with the peak amplitude of the Hasegawa-Mima stationary vortex-pair in Fig. 6,
which suggests that point vortex-pairs can be used to study dynamics of the Hasegawa-Mima,

vortex-pairs, as long as the number of vortices involved is not so large.

IV. Collision Processes of two Vortex-Pairs

Collision processes of two vortex-pairs are shown to recover those observed numerically®®:1°

for elastic cases with zero (Fig. 7) and non-zero impact parameters (Fig. 8). Since our point
vortex model does not take into account effects of interaction with the wake fields, the inelas-
tic collisions with an emission of wake fields observed by McWilliams and Zabusky'® cannot
be described by the vortex field component in Eq. (9) alone. However, the position depen-
dence of the vorticity gives the vortex system studied here a variety of complicated behavior
including an exchange scattering and a boomerang scattering (Fig. 9), indicating that our

point vortex system is likely to become turbulent when many vortices are involved. However




the potential structure constructed from Eq. (9) is quite orderly as is shown in Fig. 10 which
corresponds to Fig. 8(e): mutually trapped vortices behave as a single vortex though dy-
namics of constituent point vortices are very complicated. Therefore the complication of the
dynamics of the point vortices is rather analogous to complicated behaviors of constituent
partices in an ordinary gas or fluid dynamics and averaged properties may be of primary
importance although the dynamical properties of the point vortex system is academically in-
teresting since the chaotic behavior may be characterized by intermittent structures-clusters
of vortices, in which local order is a preferred state because of the short-range interaction
force between iaoint vortices. The range of the interaction ps = c(miTe)l/ 2/eB is given by

the parallel electron motion shielding the charge separation in the Euler vortex.

V. A Statistical Theory of Point Vortices and
Vortex Diffusion

Here we turn to a statistical system with /N point vortices and derive a kinetic equation for

vortex diffusion. Introducing a distribution function of vortices of oz-spe‘cbies by |
Fo(r,t) =36 (r =) , (29)
J

we immediately obtain the Klimontovich equation!! for vortices using Eqs. (17) and (18).

QF +Zx.a_®.._§_
ot “ Oor Or

B(r,t) = o 5 [ sl K e - ¥ Eu(r) (31)

Fy=0, (30)

The averaged distribution function is defined by the average over the ensemble of initial

data and the fluctuations:

(Fa(r,t)) = / drio- -+ drnoPa(Tio . . . Tro) Fa(r, ) | (32)




while the fluctuation part of the distribution function is simply given

~

fa(r,t) = Fy(r,t) — (Fu(r,t)) (33)

which includes fluctuations due to the interactions of the vortices and the discreteness of the

vortices. Taking the ensemble average of Eq. (30), and subtracting the result from Eq. (30),

we get
9 o(®) o ,_ . 8 of\
i (Fe) t2x 50 'ar<F“)"<”ar or ] (34)
and
9 - ] N ® 9
afa+z><a((<1>)+q“:>)-6r ~z % 5 o (Fa) . (35)
Introducing the Green function
0 9 £ 9 o ! n o
[a+zxa((®)+§)-a] G(r-,t|r,t)—6(r—r‘)6(t-—t), ‘ (36)
Eq. (35) is formally solved in terms of G by"
Fu(r,t) = / dr'dt'G(r, ', )8 f(r', ¢')
! ! 4l 85 a
—/dr dt G(%,t]r Vs x o o (F) (37)

where the first term is a contribution of the discreteness. The Green function determined by
Eq. (36) has a fluctuating part which is substituted into Eq. (37) to give higher harmonics
of the fluctuation. Therefore at the first approximation, we may replace G in Eq. (37) by

the average (G') to obtain

Falr, 1) = / dr'dt’ (G(r, ¢l #)) §£(x', 1)

o0 8

—/dr &t (Gr, ', 1)z % 5 5 (Fa)

(38)
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The Green function is given by a solution of the characteristic equation of Eq. (36) as
G(r,t|r', ") = 8(r —r(t;r', 1)) (39)
where
¢ P o
w(tr ) =1+ [tz x o (@), ) + B(r("),¢")
I
=r'+ Vgt —t)+¥r, ). » (40)
Therefore the averaged Green function is expressed in terms of cumulants with-respect to F:

(G(r, ¢!, ¢)) = 3 =/ =Us(=¥) eEnCn(kT) (41)
%

where Cy(k - ) denotes the cumulants and the first two terms are given by

Cik-T)=—i(k-T),

Ca(k -F) = =} (k- F)?) - [Cu(k - F)]? -
Since our vortex system is characterized by complicatedvdynami'ca‘lnbéllaviiois'r‘ of the-con--
stituent point vortices, the fluctuatons are likely to deviate from the Gaussian, implying
that the higher order cumulants do not vanish. However we may assume, as a model, that

the second order cumulant dominates over the otllefs; Then Eq (4‘1) is approximated by

(G(r, t,r"tl)) ~ Z eik'(1'—-T'—UE(t—t'))—k-D‘k(t—t’) (4:2)
k
where |
1oy 08(x(t),t)  8B(x(t—r7),t —7)
D—'é"/o dT<ZX—a£————_ZX 61. , (43)

and we have assumed that the correlation time of the fluctuations is short. Substituting
Egs. (38) and (43) into Eq. (34), we have

D (R)+A- (R (a4)

9 98 &, . 9
g1 (Fa) 2 x 5= go(Fa) = 50
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where

zxk:zxk .
D= Z/ 2r —i(w~k-Ug)+k-D- qu)(kaw”? ’ (45)
dw 7 xk 0K (K)
27I' Z_/ o E k ) I:K'OAOI{O(k) -+ Z'U* akm
" : (46)

(w—k-Ug)?+ (k-D k)

kooKo(k) + 0% 8K°
) =1+ 2 Z_z(w_k(r;,Lk - kax L (Rm), @

and K, is the Fourier transform of Ko(|r|). The second term on the right-hand side of Eq. (44)

is a drag term due to the emission of wake fields by the vortices. Since the characteristic
frequency of the vortex fluctuation is simply the vortex turn-over time, that is, w ~ k - Ug

which is given by e(w,k) = 0, we may evaluate the vortex diffusion from Eq. (45) as

D~ d(k,w) d(k,w)? | , 48
gl( )P~ (J%l( )I) (48)

which by Eq. (31) with ko < vxro approximately reduces to - -
D ~ Nuvxrg , (49)

where rg is the average size of the vortices.

From numerical experiments on the vortex collision, Horton* found that the cross-section
o for strong inelastic collisions is peaked at the impact parameter comparable to rg, where
Omax = 27r¢. Taking the average vortex speed as ¢ > vy, he estimated the vortex-vortex
collision frequency as

V ~ NyCO ~ 2N,U%T0 - (50)

This leads to an effective diffusion D of the vortices
D = vrj ~ Nvgrg , (51)
which is the same result as that obtained in Eq. (49) by the kinetic theory for point vortices.
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VI. Discussion

In this article we have re-derived a point vortex equation introduced by Kono-Yamagata
and later Zabusky-McWilliams associated with the Hasegawa-Mima equation and obtained
an exact solution for a vortex-pair showing that the dynamical properties of the vortex-pair
revealed by numerical simulations based on the Hasegawa-Mima equation are nicely recovered
by the point vortex model. Collision processes of two vortex pairs are also examined fo show
excellent agreement with the results of the numerical simulations, although we have to be
careful about differences between the microscopic dynamical state of the point vortex system
and the macroscopic dynamical state of the fluid vortex system.. The point. vortex system
is likely to become chaotic when many vortices are involved. On the other hand the stream
function constructed by Eq. (9) from the chaotic dynamics of the point vortices remains
regular, being similar to an ordinary gas or fluid dynamics where a flow could be laminar

while constituent particles are rondomly agitated. However there can be turbulent states

in the macroscopic fluid vortex system. A question is. whether the dynamical states of the. - -

point vortex system corresponding to the turbulent state of the fluid éystem is different from
that corresponding to the laminar state, and how the turbulent states can be described in
terms of the dynamics of the point vortices.

Finally, it is worthwhile to point out that the point vortex system introduced in the
present work may be subject to a phase transition to form a.vortex. lattice, since the interac-
tion force between the point vortices is short range and a local order is likely to be formed.
We suggest that further studies of the packing fraction f, = n,nr2 and the vortex-vortex
correlation function be used to distinguish between the turbulent states described as vortex

gas,' a vortex liquid, and a densely packed system approaching a vortex lattice.
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Figure Captions

1.

Trajectories of an opposite-signed vortex-pair of £/vx = 2.0 and 7o = 0.4: Solid lines
and dotted lines indicate a positive and negative vortex, respectively. Angles between
the symmetry axis and z-axis are (a) §y = 0, (b) 8y = 7/6, (c) 6o = 0.8976 (d) 6p = 7/2
and (e) 6o = 27/3.

Frequency of the oscillatory trajectory versus vx for £/rg = 2.0 and ¢ = 0.5 with initial

angles §y = nw/6 (n =1 ~ 5 from the bottom)

Tilted angle versus the size of the vortex-pair for non-propagating vortex-pairs of

&/vx = 2.0.
Another type of non-propagating vortex-pair of £/vs = 2.0, g = 5.0 and 6y = 1.6755.

Trajectories of a like-signed vortex-pair: (a) equal vorticity strength [(k1,71) (k2,72) =

(20,2)] and (b) strong-weak vorticities [(k1,71) = (50,4) and (k2,72) = (20,2)].

Size-dependence of the vorticity of the point-vortex propagating in the y direction
with ¢ = 0.5 and v = 0.4 and of the peak amplitude of the stationary solution of the

Hasegawa-Mima equation with the same speed and the drift velocity.

Head-on collision between two opposite-signed vortex-pairs with zero impact parame-

ter.

. Head-on collision between two opposite-signed vortex-pairs of k1 /vy = —1.0, ko /vg =

1.0, k3/vx = 2, and k4/vx = —2.0 with the initial positions:

21 = T10 + Az1, o = —T10 + Azy, T3 = Tog + Axs, T4 = —To0 + Az,

z10 = 0.25, 290 = 0.50, y3 = ys = —4.0 with (Azy, Az,y): (a) (0.0,0.0), (b) (0.15,0.0),
(c) (0.15,0.15), (e) (0.25,0.50) and (f)(0.50,0.50).
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9. Trajectories of four vortices k1/ve = —ka/vx = K3/ve = —ks/vx = —9.0 initially

located at 2y = —22 = 23 = —24 = 0.35, y1 = Yy = —ys = —yq = 0.2.

10. Contours of stream function obtained from Eq. (9) using the point vortex trajectories

in Fig. 7(e).
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