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INTRODUCTION

- Experiments during the past 20 years at Oak Ridge National Laboratory

(0. R. N. L.) and other laboratories around the world have established
that electron cyclotron resonant heating (e. c. r« h.) can be wused to
produce and sustain hot electron plasmasl. In 1967, it was shown by R. A.
Dandl et. al.z, that these plasmas took the form of rings or annuli made

up of very hot, often relativistic, electrons (from about .05-1.0 Mev) with

values of beta ranging upward to a sizable fraction of unity (7groupdk_.4).ir_7777”7”7>

It was further shown that these rings measured a few Larmour radii in
thickness and that they were macroscopically stable when they existed in a

sufficiently dense core plasma. This discovery came at the same time that

1. N. A. Uckan, "OVERVIEW" (EBT Ring Physics Proceedings Of The

Workshop, December 3-5, 1979, Oak Ridge , Tennessee)

2. R.A. Dandl,H.0. Eason, P.H. Edmonds, A.C. England, G.E. Guest,
C.L. Hedrick, J.T. Hogan, and J.C. Sprott, Plasma Physics and Controlled

Nuclear Fusion (International Atomic Energy Agency, Vienna, 1971) Vol. 1II

p.607

3. W.L. Stirling, Phys. Fluids, 15, 688, (1972)

U
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refined energy balance calculations showed grave difficulties in producing

3
net power output from simple magnetic mirror configurations. Though in no

- way causally connected, these two discoveries can be said to have set the

stage for the development of E.B.T. (see figure 1 and 2)

u
Again in 1967, R.A. Dandl proposed that (high beta) electron rings
could be formed into a bumpy torus and that the local magnetic wells

created by the rings would stabilize the core plasma in which they were

formed. Specifically, by creating a Well_qfﬁsuﬁfigien@ depth, these rings

would stabilize a plasma against flute and interchange iqstabilities; and
at high core betas, would enhance stabiliﬁy against ballooning modess.
This motivated the first E.B.T. experiment. The device was built and and
lived up to expectations. ‘Experiments established that microwave heating

did indeed produce hot electron rings and that these rings did enhance the

~

e e e e — — e e e e

-

stability of the toroidal plasma in a bumpy torus .

4, R.A. Dandl, H.0. Eason, P.H. Edmonds, A.C. England, G.E. Guest,
C.L. Hedrick, J.T. Hogan, and J.C. Sprott, Plasma Physics and Controlled

Nuclear Fusion (International Atomic Energy Agency, Vienna, 1971) Vol. II

P.607

5. Dandl, et. al. pp.607
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On closer inspection, however, the problem is not a simple one. The
stability requirements of the hot electron rings and the toroidal core
biﬁémé'”'éferﬂréldéé1§”'dau§1éd; - From both 'kiﬁétié"Ehedfirrﬁoaelé"aﬂd
experiments, it is a well-founded fact that the relative densities of cold
(core) plasma and hot (electron ring) plasma are a critical factor in the
overall stability of the configuration?. Further, the stability of the
core plasma requires that the magnetic well produced by the rings be strong

enough that U” < 0, where U = l%i, near the edge of the plasma, to support

8
a pressure gradient there . As will be seen later, these stability

criteria provide limits on the betas of both hot and cold plasmas which

define the regions where they are stable.

6. G.E. Guest EBT Ring Physics: Proceedings Of The Workshop Dec. 3-5,

g e A e ——— e e -

1979, Oak Ridge, Tennessee, p.163

7. R.R. Dominguez EBT Ring Physics: Proceedings O0f The Workshop,Dec.

3-5, 1979, Oak Ridge, Tennessee, p.383

8. N.A. Uckan, EBT Ring Physics: Proceedings Of The Workshop, Dec.

3-5, 1979, Oak Ridge, Tennessee, p.31
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Today an evolution of knowledge is occuring along this very line of
thought. Two models have been advanced to describe these regions of stab'e
and unstable plasma configurations. The rigid ring model assumes that the
only effect of the -rings is to produce a local minimum in the magnetic
field and there is no further interaction between ring and core plasmas on
MHD time scalesg. This model predicts that stable confinement of the core

plasma (in the ideal MHD limit) will occur if B8 is less than 7y..3

core

provided that the ring beta is of sufficiently high value to produce a

10
local magnetic well . The interacting ring theory alters these results in

11
the region, Bhot = 10-30Z . Unfortunately, this is the region where a
fusion reactor of the E.B.T. design must operate to be economically
12
feasible as an energy source , so the point of departure of the two

stability models is extremely significant.

———r e e e

9. D.B. Nelson and C.L. Hedrick Nuclear Fusion, 19, 283, (1979)

10, G.E. Guest, C.L. Hedrick, and D.B. Nelson, Phys. Fluids, 18,

871, (1975)

11. J.We Van Dam and Y.C. Lee, EBT Ring Physics: Proceedings Of The

Workshop, Dec. 3-5, 1979, Oak Ridge, Tennessee, p.471

12, N.A. Uckan, EBT Ring Physics: Proceedings Of The Workshop, Dec.

3-5, 1979, Oak Ridge, Tennessee, p.33

e
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The theory which evolved from the rigid ring approach is the

interacting ring model of stability. It predicts much more pessimistic

'”fégiéﬁéirdf'ﬁéféﬁilify'ﬁifh réépéét to the betas of the core plasma and the

rings, especially in the region of reactor operation. To be specific, the
rigid ring model assumes that the rings are unaffected by low frequency
perturbations in the core plasmala. On the other hand, Vam Dam and Lee,
using the interacting ring assumption that the rings respond significantly

to low frequency perturbations of the core plasma, especially in the

parallel  compoment of its magnetic field, contend that ring-core

interactions will  produce compressional effects which lead to
destabilization, if the core beta exceeds a very low valuelq. More details
will appear later, as well as an expansion of this distinction at a more
basic level, but suffice it to say here, that this evolution of the

knowledge of the interactions  between ring and core plasmas still

Larar

continues.

13. G.E. Guest, C.L. Hedrick, and D.B. Nelson, Phys. Fluids, 18,

871, (1975)

14. J.W. Van Dam and Y.C. Lee, EBT Ring Physics: Proceedings Of The

Workshop, Dec. 3-5, 1979, Oak Ridge, Tennessee, p.471

T
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Someday it is 'hoped that with interacting ring theory using a more

realistic toroidal (r~dependent) geometry rather than a slab geometry and

with the inclusion of so far neglected effects such as ring kinetic effects

and effects of the backround plasma, that a comprehensive, clear picture of

stability in ring stabilized plasmas will emerge. However, what stands
out, enhanced By this evolution of knowledge, is crystal clear. For the

bumpy torus concept of plasma confinement to succeed in building a fusion

’reactor, the physics of the hot electron plasma as well as the physics of

the core plasma must be understood. And they must be understood not just
separately, but as they interact as species in a self-contained unit.
Further, this basic physics must be engineered into a magnetic
configuration. The magnetic well created by the rings in fact exists as do
the stubborn instabilities of all presently known mirror confined plasmas,

both with and without annuli. To interface these two areas of knowledge is

e e ey« e e e o o e ot et o i e

a major task as well as a major hope in successfully building a fusion

reactor and will be the subject of this paper.

7T
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USE OF VLASOV-MAXWELL EQUATIONS AND MHD THEORY

IN RING STABILIZED PLASMAS

The most striking feature of what has been classifed in this paper as
ring stabilized plasmas is that they consist of a very hot species, the
electron rings, whose energies can run into the Mev range, and a relatively
cold species, the core plasma, whose energies are of the order of Kev.

Thus in order to understand the physics of these plasmas; and as a

consequence, their regions of stable operation, one must deal with a plasma _

whose component species can and do exhibit totally different physical

characteristics.

On a purely intuitive level, one would expect the two species to obey

two different sets of equations. The Vlasov approximation to the B. B. G.

K. Y. hierarchy deals with a collisionless regime and would seem best
suited for describing the behavior of the electron rings. On the other
hand, a fluid-type MHD description seems more applicable to the colder core
plasma. Yet to describe the behavior of ring stabilized plasmas, these two
essentially different plasma 'regimes must be coupled into a consistent,
closed set of equations. Indeed, the difficulty shows up immediately in

elementary plasma physics. For the MHD equations to be valid, all drift

1. G.E. Guest, C.L. Hedrick, and D.B. Nelson, Phys. Fluids

18,871,(1975)

T T e e e e e ——

TTTTTTTTTTYT I



14

1
velocities must be small compared to the ion thermal velocity . Yet in the

hot electron rings, the drift velocity of the electrons normally exceeds

~ the ion thermal velocity.

This dilemna was postulated to be resolved by considering the

2
parameters of interest in ring stabilized reactors (especially E.B.T.) .
In all known stability regions of E.B.T., the density of the hot electrons

is much less than the density of the core plasma, while the temperature of

‘the hot electrons is much greater. Under these circumstances, the

interaction of the rings with the core plasma can be ignored and indeed, it
will be shown that the dispersion relation derived from Vlasov theory
agrees with that derived using MHD assumptions in the single fluid limit.
This, however, is only the first step in this evolutionary process of

understanding the relation between the rings and the core plasma. Soon

after these MHD calculations were published, it was shown that having the
hot electron drift frequency exceed the ion cyclotron frequency can produce

effects not seen when using MHD analysis. This implies that differences

2. Guest, Hedrick, Nelson, Phys. Fluids 18,871

3. Y.C. Lee, M.N. Rosenbluth, and J.W. Van Dam, IFS Report 12,

March, 1981

e
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between MHD theory predictions and the actual behavior of ring stabilized
plasmas are significants. Additionally, the single fluid plasma comparison
seems to exclude the fiﬁéé”fEAﬁmcoﬁsi&éféfiénrgfréf 1eéétwfsitrééfwfhéﬁ aé
physically unrelated to the core plasma, thus assuming the validity of

rigid ring theory rather than proving it.

The question as to whether MHD theory remains consistent in a hot—cold
species plasma is the very essence of the difference between the two
theories to be discussed. The advocates of rigid ring theory perform their
stability analysis using the assumption that MHD theory works well enough
to be able to modify and use when studying ring stabilized plasmas. On the
other hand, interacting ring theory maintains that there is additional
physics left out when using MHD theory (the frozen-in field line constraint

must be replaced by flux conservation. See chapter 4-6). It is precisely

S,

this line of thinking that leads from the first attempts to explain

stability regions in E.B.T. to the contemporary view.

In what follows, two methods will be developed to find the stability
regions of ring stabilized plasmas. The first will incorporate rigid ring
theory, the second interacting ring theory. It will be found that they
agree 1in areas where a single fluid approximation is valid, but they will
disagree when it is necessary to consider regions of reactor operation
where the hot electron rings must be considered as a separate component of

the plasma either with respect to their density or their pressure effects.

TrTrmuT T T
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This will not be obvious at first,'but by breaking the analysis into two
parts, one in which § = O (single fluid approximation; § = density of hot
éléciféﬁs/déﬂsifybe”ééfé”éléémé), aﬁd oﬁé iﬁ”ﬁhiéh 8 %Wditﬁﬁifipiéisée;iéé
plasma), it will be obvious that what is breaking down is the MHD

approximation.

The complexity of mathematical treatment and the crudeness of results

often obscures basic issues that hit at the very heart of the subject of

_discussion. The Vlasov-Maxwell equations in the MHD-approximation seem .

like a perfectly reasonable starting point in analyzing the stability of
ring stabilized plasmas. . Indeed for awhile nobody thought to question this
approach. Yet the frequency domain of ring stabilized plasmas is
inherently outside the domain of MHD theory. To replace the MHD approach

with an approach that self-consistently includes the frequency range of the

i .
e e e e e e ——

—— .

hot electrons seems a logical next step in understanding the behavior of

ring stabilized plasmas. The results of this step and its comparison with

modified MHD analysis will be explored in depth in what follows.

et i S 1 | e e e Y
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RIGID RING THEORY

””Tﬁeribééiﬁhiﬁérrbfiaﬁy diséuséﬁéh éf figid ring theory begins with the

assumption that a modified MHD analysis is valid and that the author is
free to use MHD equations. The idea is often justified by the fact that in
the approximation that the plasma can be treated as a single fluid
(n, K n,;T, >> T.), Vlasov theory and MHD theory agree. Later, by

allowing the hot electron component of the plasma to be perturbed, this

Jjustification was extended to include regions of operation in which the hot

1
electron pressure was not too large .

The rigid ring theory was proposed by Nelson, Hedrick, et. al. and
2
has been around for nearly a decade . 1In it the hot electrons of the rings

do not interact with the rest of the plasma on an MHD-time scale although

they are in force balance with the plasma and the external magnetic field
on a diffusion time scale. With these assumptions, the equation of motion

of the plasma is:

1. D.B. Nelson and C.L. Hedrick Nuclear Fusion 19, 283, (1979)

2. G.E.Guest, C.L. Hedrick, and D.B. Nelson Phys. Fluids, 18, 871

(1975)

B
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. D
;lz:

o3
+

= (V x B-J,) x B-Vp

where J, is the current produced by the diamagnetic drift of the hot

electrons. Further, in equilibrium, all species in the plasma satisfy the

equations:

Je X B= Ve

T s I B,
"PXE Vp

ge + gp = gtot =V x E

where:

Jp is the plasma current

Re is the pressure tensor of the total hot electrons

~

p is the scalar pressure of the ions

Now to proceed any further an energy princple must be constructed from
which the stability of the system can be analyzed. Fortunately, an energy
principle had been studied which is applicable in this type of system. It
was first proposed in the late 1950’s and studied by many reseetrchers3’Lf
and thus was quite well established by the time of rigid ring theory. It

can be derived as follows:

A 10 § |



Consider the 1limit m/e small.

written as:

3 2 2
e = [d §%(§ +E)

where:

Y=gty +an

v Ui aed f nel

B(x,t) = IB(x,t)In(x,t) = B

19

The energy of an MHD plasma can be

2

& + ]
+—2—' uB)

(1)

ExB
& = ———
B
q — X.n
2
YL
= ——_ = constant
u 58
2
=94
€ = .+
5 uB

3. M.D. Kruskal and D.P. Oberman Phys. Fluids 1, 275, (1958)

4, M.N. Rosenbluth, N.A. Krall, N. Rostoker Nuclear Fusion Suppl.

Part 1, 143, (1962)

T 1T T T T T
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f is a rotationally symmetric function in velocity space

The equilibrium condition can be written as:

O=—V-E-+(Vx§)x§

where p is the total pressure tensor
Now displace the system by a vector: £(x,t). To first order, the change in

€ is given by:

oW - a3 Dol [ e d’ o] (g + eg ) G5t
)M + gas1) + ez (1))

(2)

where_subscripts represent-differentiation,

superscripts represent quantities of first order change; and,
g is a so far arbitrary function.
Furthermore, if the magnetic field is displaced from X to a new position

X + £, the new value of the magnetic field to second order will be:

e o e e e e

T T T T T s s e ey e
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B + 30 + 3R = 5+ [Bvg-weg]

~

S, e

+ S BOV+E)" + VE:VE-2(V+£)BeVE]
(3)

Let all the constants of the motion assume their equilibrium values.

Summing over all the particles of the system, this boils down to the

vanishing of the integral:

0 = fff(%)dudedach(f,u,l)

G is an arbitrary function of f,u, and 1;

where 1 labels a line of magnetic force.
Notice that a consequence of this is that the field lines are frozen into

the plasma.

Integration by parts and substitution of the defined quantities yields

a more convenient form:

0= ‘fffdvdﬁdssz(g(u,e,l) aLL[BaeEg + g (8,01 + % £(1)]

(4)

RO —

NS
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where G¢ is an arbitrary function.

Using the identity:

deggﬁa(x) = d¢fldla(x)

where integration is over a thin tube of flux T on the LHS,
integration is over a line of force 1 on the RHS,
and Y is the flux.

One can rewrite the constraining condition in its final form:

0= [, 5[Ba(V-E)g, + (%)o-v-g + B%:vg)(qz-ufi)ga-(%)f(l)]

Since G¢(g(v,e,1),u,1) is arbitrary let:

Gf(g(u,e,l),u,l) = -me

Eliminating £(1) using equation(4) in equation(2), have:

e(1) = fdszs(%ﬁzv'é + 3B/ [ dued xelp 7ot + 3y (D]

Substituting into this equation, the equilibrium condition, definitions of
pressure and magnetic field variation, e(l) can be shown to vanish. It is

evident that to obtain an energy principle, one must go to second order.

e e e e e e e
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To this end, the second order variation in energy can be written as:

'é<'2'>*=”fa3g{%[@'.pz-v;;vgj 5 + @-£)p 51 %'%13'('172 S

1 3

-+ §.§(2) NS %E(l)z + 7

o0’} + %fffdudsds?g{%[ (-£) e 78 q

+ 880 YD+ (87 D (eg,, + 28) + (B D

+ (To5)(Ba Ve, D + 26, (1) 488 e, () + 26, (D)

where p is the mass density

Application of the constraint equation(4), to second order yields:

0= {%Jffsquuded3§(g’f(§)+ g’fee)}(Z)

primes denoting spatial differentiation

-Ts-.-TTTmr T -y - —— ——
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Jlad dx{e e D@y,

e s DR, s @Dy e H D

-+

D)8 ), + %{W-;)z-(v;.):(vg)]s? + @) g )M

+

3 - -
B Y@ + e g )

“This -can point the way toward the ~desired - energy principle if "the T T 7

second order variation is written in the following manner:

e(2) = %Jd3§(e(l)2 + pgz) + Sw

where:

£(1?

(]

)

w = HCHE + @ x pegx g+ gTE-p) - i aedx &

+ [ anded xg, (H 7-5) e veleg’ + @-)ea D + 8P}

where: Q=Vx (§ x B)

O TTTTTTYTTTNT T O T T T T e e e e e e e e e e e e — b
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Since 8w is quadratic in & and £y, this is the required energy principle

for stability analysis given the validity of the constraints. If 8w is

77p6§iti§éirfo£' éiimiéiiGWéarVQAiﬁesr6f7§ éﬁérfigifhe system will be stable.

Otherwise, it will be unstable.

Now to use this equation, note that this calculation is defined in the
small m/e limit. Also the hot electron current density must be included to

apply this energy principle to ring stabilized plasmas. Substituting the

~equation of motion for this type of plasma into the energy principle and _

dropping the last two terms (and adding a term proportional to the growth

' 5
rate for completeness ), then stability can be determined by the sign of:

2 ‘ 2
§w = [di(Q + (V x B-J.) x £+Q + E+VPVeE + yp(VeE) ]

(5)

hved

If V'£e = 0, this equation can be integrated by parts to yield:

sw = Har(g + B0 -4 +yp(vop)’]

(6)

5. D.B. Nelson and G.0. Spies Phys. Fluids 17, 2133,(1974)

———




where:

Q =V x (% B)
X = EeVY
E=Jpx ¢
vy
7T
V|
«J
A= 28 (BV)g- =3
IV |

And 2my is the magnetic flux enclosed by a surface at

constant pressure;

£ is a small spatial perturbation

26

Y—is—the—growth-rates

This
stabilizin
energy pr
more optim

closed.

equation was studied in 1974 by Nelson when he studied the

g effect of the growth rate term, compressive energy,

the

6
inciple . He found that by not dropping the growth rate term, a

istic stability condition is found if all the field 1lines

This stability analysis applies in two limiting

6. Nel

son, Spies Phys. Fluids 17, 2133

are

In
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straight mirrors where the magnetic field has a negligible component in one

direction, the energy principle constitutes both a necessary and sufficient

Wéoﬁ&itﬁbﬁifbfiééagiiiffﬂ(if it is positive). Also at low B, equation(6)

approaches a sufficient condition for interchange stability in an arbitrary
geometry. Thus equation(6) is well applicable to E.B.T. and probably most

ring stabilized plasma configurations that will be devised.

Starting, then, from equation(6), using the Schwarz inequality:

117 1Vp1” > (Qevy)

And the identity:

one obtains:

o’ 2
sw> Yar[ 20 1 _a’)

2 1991

\Y%

(7>

2
where <X > has been normalized to 1

and K vee > = (IfE%LLL

e e

s

A A A A | (R a
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Minimizing X in equation(7), one has the Euler equation:

BeV (= )+ (A+ M)X = 0
IV

where A is the Lagrange multiplier corresponding to the normalization

described previously and is stable if on every field line Ay > 0.

The next step in this stability analysis is to decompose Q in the

orthogonal basis (e,j,F). When this is done, the energy principle becomes:

B0’ ] 9)2 (FQ + F X
2° oA = L 2 Ypr_.

—— + -~ -+ > —AX +._z.l‘ P BVZ
[V | J F P

8w = =f arf

+eg + (g -]

e —— e — —— —— R

(8)
, Eeg
where: Z =z
. _ 9D
p W

and minimizing the term: FeQ, one obtains;

R et oLy g

R L 1 | R
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2 2
BeVX) 2 AX
Sw %JdT[(:;——jr-—AX +-fi_ziq S
T B 721/ s T

Y

The resulting Euler equation is finally:

2
BeVX
g-v(:;._3r9+ (A+1)x = A A2
V1 o
@
where:

-2

2 2
o = <F > +F2 _
del/BYp a1
F B = | —_—
<F> o 15

Mathematically, this is a non-standard integrodifferential equation.
To solve it, note that its lowest eigenvalue Al’ can be found from finding
the eigenvalues of the equation which results from setting the right hand

side of equation(9) equal to zero. Consider the following theorem:

Let Al and Az be the smallest eigenvalues of the reduced equation
(right hand side of equation(9) equal to zero).
Then >\1 < Al < A2 and:
(1) if Ay > 0, then Ay >0 (stable)

(2) if A9 < 0, then Ay <O (unstable)

B 3 S | SR B St s
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(3) if A1 <0 and Ay > 0, then Ay > 0, if and only if

P ("¢ +vpqg®) O (Al stable)
This theorem points out several interesting regions of plasma
stability. For example, condition(3) implies that in a region where q° < 0
and p* < 0, the condition is never satisfied and stability is determined by
the sign of A1. Additionally, if ¢ > 0 and p* < 0, then A1 1s negative

and stability is determined by either condition(2) or (3). Equilibrium is

thereby considered to form two regions, depending on  the sign of . q .

Constant pressure is always stable (p” = 0) and p” < 0 may be stable in
either region, but at the edge of the plasma where p goes to zero, q° must
always be negative for there to be stability. It is precisely this
function that the hot electrons serve in ring stabilized plasmas. To

determine the marginal strength of Jo required to contain a low beta core

plasma, one must expand equation(9) in the limit of low beta for arbitrary
Jge

In this limiting case, B can be used as a measure of deviation of B
from the vacuum field produced by external currents. Hence p” « J« 8 in

this limit and:

2 ‘a’ 2
A= <A> +0) = B+ 0G)

e e e e s e e e

e Seege g v —
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Next one can relate < A > to the eigenvalues using the reduced

equation(9) and the theorem stated above. Specifically:

2
0 < <A <ashy <O

2
<A> 2 a »A % 0 as AZ % 0

Now using the identity:

One can obtain the simplified condition:

Ay > 0»>> either Ay > 0 orAo > 0 and p"(p"q +¥Ypq") € O

What follows is known as the interchange stabilty condition:

The stability threshold is reached when Jo 1s strong enough to satisfy:

" (p"q +Ypq") > 0

(10)

e T T T T T T T T e e ey e
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Finally, equation(9) must be integrated to see the total stability

picture. Due to the intrinsic three-dimensional nature of this problem,

mumerical techniques on computers are long and costly. The easiest way to
do the integration is to assume a large aspect ratio and use perturbation
theory. 1In this limit, equilibrium is assumed to be a perturbation about a
periodic bumpy cylinder and one assumes that the J+B term vanishes. To
lowest order, then, the eigenvalues are those of a bumpy cylinder and
higher order terms are proportional to the inverse aspect ratio.

To fascilitate these calculations, one first expands the coefficient

2 gp. ge
A= 2eVpek + (I BIB x e (BV)em =
B Vi |

~

Then to lowest order equation(9) becomes:

:—1(41 %)+A'§'DX=% YP_<px >
r B ~ ~ 1 +-_B£
q
(11)
where:
_ TZeyk T p  Jtot 21nB
Sttt T — - 5
rB B rB

e
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The differential equation(1ll) was obtained with the use of the identity:

dtot o B
e, oK = g p—
~p =~ B 3y

Now equation(1l) is identical to the case of a bumpy cylinder eavilibrium.

In this case, Al being positive is a necessary and sufficient condition for
stability. Further, ring stabilized plasma experiments in the past and
probably in the future will be on devices with large aspect ratios. In
these instances, the corrections to equation(ll) are small and in the limit

that the aspect ratio goes to infinity, equation(ll) is exact. For these

reasons one can use equation(ll) as the stability condition.

To summarize, it has been shown that equation(ll) represents the Euler
equation for the form of 6w in an axisymmetric configuration (bumpy
cylinder) in equilibrium, for large aspect ratio devices as, for example,
E.B.T.. This was accomplished by mninimizing the displacement in the

surface:

Sw = f&w(W)dw

T e T T T T T T T T T e e e e e e
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2
sw(u))-f_[(l_}f +p]3x]+.._‘l_.__<1)x>2
ral T+ 4
YP )
(12)

The ﬁhysics in these equations points to the stabilizing effects of
the hot electron currents. For equilibrium, p* is negative, which implies
that D is negative and 8w is positiye.r.NoW Wip 7ther abgencewﬁqf>regternal
currents, D 1is negative and the configuration is always unstable. With a
hot electron current, there is a region near the outer edge of the plasma
where Je is negative, and, in this region, D can become negative. However,
because Jiotal 1s negative, D cannot be negative unless gf- is negative.

Put another way, stabilization is possible only when a local magnetic well

e e e e e o e e e

is created.

To be more specific, one can insert a test function, X = constant,
into equation(12). When this is done, the condition for stability on each

flux surface becomes:

2 2
PPqg<D> + 9 <D> 0

I+ 9
Yp

But:

.

T T
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q<D> =q"-p'I

Thus for stability:

(¢"-p"I)(p"q +vpqg") > O

So depending on the sign of q°:

q¢°-p’I< 0if ¢ < O

The first of these equations is just the interchange condition in the

region where q” is positive, but the second equation shows that, except for

low-beta, making-q*—negative—is-not—sufficient—for—stabilitys < D> must

also be negative. It is this fact that is the stronger of the two
conditions and must be taken as the true guide for finding stable
equilibria in this model. Armed with this fact, one can formulate the
stable operating regions of ring stabilized plasma in axisymmetric, large

aspect ratio devices (like E.B.T.).

To begin, the fundamental equations which apply specifically to an
E.B.T.-like magnetic configuration (toroidally connected mirrors, with hot

anisotropic electron rings, and a bulk plasma which traverses these regions

e T T T Ty T T T T e e e e e e e e e ——
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to form an isotropic torus) can be formed from the equations presented at

the beginning of this section:

VxB=Js+ Ip = drot

(Je + ;) x B = V‘(E + pI)

V.E: O

Now, assuming azimuthal symmetry implies that Jy = 0. In this case, the

“equations reduce ‘to:

PPy
BeVp = BeVB (13)
~ B ~ ~
29
P
A¥%p + Vinoewp = = L1 (14)
o 3
B=Vyx V6 (15)
where:
I
* azq 18y
AT =2 Y 4 2 (L oV
B

and ¢ is the flux function.
Further, the ellipticity of the assumed equilibrium in E.B.T. requires

that the geometrical quantities T and ¢ be positive, where:

R e i § | R e

o
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3p

T =1+ }.__jl
...B 3B

PI= P

To make the calculations more transparent let:
R

where wc is the flux produced by the external coils and wp is
the flux due to the hot electrons and core plasma currents. With this

distinction equation(14) becomes:

T

* <
Ay + VinoVh, = s (15a)
where:
2
I ) —V1noeVy (16b)
L c

TT10
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Making use of this separation of flux, one can solve equation(1l4) if

the perpendicular and parallel components of the pressure have equations

7(16a) and (16b) as definitions. From this point iterative techniques can

be used to find wp. Often a computer can be wused in this calculation?.
First the flux due to the coils alone is used to calculate S and Vino.
Then standard finite differencing techniques for elliptical partial
differential equations are used to solve equation(l4) for wp. From this
wp, S and V1lno are recomputed for wp + V. and this procedure is repeated
until the desired convergence is obtained. . The trick.here is to find
appropriate boundary conditions at the edge of the grid. Again wusing an
infinite aspect ratio approximation, justified in the case of E.B.T.-like
machines, the calculation becomes one of finding the flux in a bumpy
cylinder.' To calculate the boundary conditions for wp then, one merely

imposes periodic boundary conditions at the midnrlane (z = 0) and at an

adjacent coil plane (z = 1/2). Further, the radial boundary condition can

be obtained via the Biot-Savard law thusly:

-

lx=-x" |~

7. D.B. Nelson and C.L. Hedrick Nuclear Fusion, 19, 283, (1979)

——

T T YT T T T T T T T T e e e e e
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expanding m—;L_—-in spherical harmonics, obtain:

Ix-x" |
© o P! (cosp_ )
1 T n m ol 3 s \Dp 1 .
= « P

m

(17)

where:

Rm ";"\/(z'—mL')z + r2'
- (z-mL)

R

cosq>m

Now to solve equation(17) one first recognizes that the problem is

azimuthally symmetric, ie.:

Jg(x,~2) = Jg (r,2)

P (r,-z) = ¥(r,z)

This implies that even n in equation(l7) vanish and only odd n survive.
Next, for each iteration, the boundary value of wp is computed from the
previous value of Jg and the value of Tnax 18 found (usually about twice

the maximum plasma radius).

R At

TT1" 7T
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To complete the analysis, the functional forms of the pressure must be

given. Usually, for an E.B.T.-like device, these are given by:

Py = %u(B)g(w) + p(¥)

p; = P (Bg(y) + p(¥)
where the first expression on the right hand side of the equations

describes the hot electrons, and the second, the core plasma. g(y) is

8
given by :

Wb (b=p )

e — . e e et e e e e ]

V<Y <Yy
» (1P 2"4’ 1 )Z (‘Pz—wa)z
g(v) =
' 2 2
W-v) (-v3)
A Z 1p2 <P < l1’3
(o=vy) (Wo=13)
0 otherwise
where:

<
W
I

= 20y-Py

by = 2yvs

8.  Nelson, Hedrick Nuclear, Fusiom, 19, 283

e e e e e
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and the coefficients Vysby,0g are adjusted to meet the boundary conditions

that the peaks and zeroes of the function occur at the correct radii in the

midplane (z = 0).

As to the parallel and perpendicular

actually several forms have been investigated.

- 1,2 2

Py (B) = 5s(B. -B) B< B,

e . ,

py(B) = ES(BC—B) B < B,
0 B > B,

Notice that one need only consider s < 1 in

requirements, since:

components of the pressure,

9
One of these is :

satisfying the ellipticity

BC '
T = 1-sg(¥); o=1+ sg(w)(jg--l)

.9 D.B. Nelson and C.L. Hedrick Nuclear Fusion, 19, 283, (1979)

10. J.B. Taylor Phys. Fluids, 6, 1529 (1963)

TT 7T
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will be greater than =zero only if s < 1., In passing, note that another

10
form of the pressure has been investigated by Taylor

- 2 -1
p;= mcB (B -B )™

P“= CB(BC""B)m

However, to continue, one can close the equations and make them soluble by
introducing a functional form for the scalar pressure of the core plasma.
Nelson used a model where the pressure is outward along the magnetic axis

11
up to a specified value of y and then falls to zero . Specifically:

11. D.B. Nelson and C.L. Hedrick Nuclear Fusion, 19, 283, (1979)

T T T s g
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PO v < Yy

2 2
(=) (b-v5) -

p(w)ﬂ= PO - ~
(W=¥o) (=)

where:

Ve = 20,05

Now, assume that wp has been found and that the fundamental equations
(13-15) apply. The task that remains is to apply these results to a
stability analysis. To start, one goes back to the Fuler equation derived

from §w earlier (equation(9)). 1In reduced form this equation is:

E.V(E._jﬁizg + (A + A)X = 0.

Vil

Since the equation is solved in cylindrical coordinates with azimuthal
symmetry (r,z), one can best solve this equation by changing the wvariables
in equation(9) from 1 to z, with z scaled so that the distance between

mirror coils is unity. Using the identity:

1T 1"
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The reduced equation becomes:

-9, 0% T '

X(z + N) = X(2)

where:
B
z
£=—
r B
: “D~X
g=PB
N = number of bumps of the E.B.T. model under consideration

Equation(18) is a Sturm-Liouville equation, so the number of zeroes
increases monotonically with A and hence A1 has no =zeroes. Now, din the
simplest case f and g are constants. In this case, no periodic solutions

exist for_g > 0_and the lowest eigenvalue--occurs-where—g =0, corresponding

to the eigenfunction:

X = constant.

In the general case:

2rn 2

g = (5

corresponding to:

O

e e e e ey s e T T S e e s e e

.
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X = cos(Z“nz) ; Sin(Zan)

In actual E.B.T.-like devices, f and g are periodic, with each bump
being of unit period and symmetric about each midplane. If one writes the
reduced equation as two first order differential equations by making the

change of variables:

and neglects the periodic requirements on X, then each A corresponds to two
linearly independent solutions of the system depending only on the choice

of initial conditions. The vreduced equation(9) is then a matrix

U, = A(2)Y

A(z + 1) = A(2)

A(-2) = A(z)

e o e | e T S i e o o e 1t e e e e . e e e e e e . e et o

e e e



xy(2)
U(z) =

y1(2)

0
Az) =

g

The solution to this equation is:

x,(2)

Y2(Z)

th| =

46

U = R(z)e™

where P carries on the periodic nature of the problem:

(19)

(B(z + n) = P(z)); and, I is a constant matrix.

Now assume as an initial condition that U(0) is the identity matrix.

Un) = ™ = ¢P

Then:
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To be a solution for E.B.T.-type devices, for a given A, the solution
must be periodic, with a period eQual to the number of bumps (N) in the
 device under consideration. 7C6nsidef the eigenvalueé of Q.r If oneris an
nth root of unity, then there is a solution. To find these eigenvalues of

C, one must integrate the reduced equation from the midplane (z = 0) to a

mirror coil plane (z = 1/2).with:

Using equation(19),and recognizing that U(-1/2)C = U(1/2),then:

1,1, 1
¢ = 2(- PY

~

Now U(1/2) can be computed using standard techniques (ie. Runge~Kuttae...)

starting from U(Q) = I. Also U(-1/2) can be calculated from U(1/2) as

follows:

If:

X1 X2

Y1 Y2

R

e

DA o iian 0 | Shid
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Then:
X ™

~

UG- ) =

X Y2

=1
with the numbers X1,X9,¥1,Yy being computed numerically. Additionally U

can be calculated using the following theorem:

.,z
detU(z) = detg(O)exp[fotrA(x)dx]

21
with trA =0 and detU(0) = 1, detU(z) = 1. From this U (1/2) can be

calculated simply and the result becomes:

) X1 XY 2%p7)

2x1y; X172 + %7
Using the characteristic equation:

det(C-vI) = 0

The eigenvalues of C can be calculated from:

g

e i e e e e

- s g e T e ———_— o —
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2
VvV =vtrC + detC = 0
trg”:- 4X2yl + 2

detg =1

Thus the eigenvalues of C are:

»

W 2

with the constraint arising:

because detg = 1.

The behavior of the system behind this mathematical analysis is seen
through wunderstanding the behavior of Vi For very negative A, g is
positive and all solutions blow up, Xy and yy are large and positive and v,
are real and positive (v, > 1; v_ < 1). As X increases, X9 and y; decrease
assymptotically and v, move toward unity, coming together at the point
where Xy and y, first vanish. The first eigenvalue thus occurs at vy = 1.
Also, because g first becomes negative at the midplane, Xl(z) begins to dip
down before blowing up. yl(z) is thus negative for small z and increases

to large positive values as z increases. In addition, because V4. are roots

e e

e g s ey
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of a quadratic with real coefficient and lie on the unit circle (v v_) they

are complex conjugates of one another, and when their phases take on values

of E%E, the corresponding A has been reached.

Thus the solutions of equation(19) are much like sines and cosines
with P(z) adding bumpiness. The lowest eigenvalue is a constant and the
next has two nodes over the whole N-bump section. There is even two

degeneracies for each eigenvalue as there is for sines and cosines.

One set of results that is derived from calculating the eigenvalues
12
and determining the stability boundaries is presented in figure 1. This

graph shows marginally stable BC as a function of B, where:

 2Ppax

Note that wuntil a region is formed by J. where q° < 0, no core plasma can

be stably confined. This threshold occurs at Bl = 10-15%. Above this

12. D.B. Nelson and C.L. Hedrick, 19, 283, (1979)
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threshold, the marginally stable B . becomes comparable to By - At fixed
Bi’ if BC exceeds its marginally stable value, the plasma is unstable to a
ballooning mode; below this value, the plasma is stable to all ideal MHD
modes. In addition, the shape of the annulus influences the regions of
stable confinement. Because the local magnetic well extends further along
field lines, longer annuli produce great core plasma stability. Taken
together, if one believes this theoretical treatment, these results are
extremely encouraging for the success of an eventual E.B.T. fusion

reactor.

To understand these results qualitatively, note that the threshold for

confining the core plasma occurs when q¢° < 0. Now q° is defined as:

= g

3q 91,&0°K | 9B
=~ (== + )
IET T oy

eW'K varies linearly between coil planes from negative at the midplane
(destabilizing) to positive at the coil plane (stabilizing) with the factor
1/rB giving more weight to the negative contribution. To be stable, then,
g§- must be positive along most of the field line to balance the curvature

term with the threshold point occuring about when 25- becomes positive at

the midplane. To see where gf- vanishes, one can use the equilibrium

r§lation:
2
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B 2
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If the derivatives are replaced in the equation by scale lengths, then v |
!

vanishes when:

where:

rp is the half width of the annulus

R, is the radius of curvature of the plasma at the midplane.

In—figure—I rp/RC =—05-+1; For~this~ratio;*BI—is—approximateiy—TOHQO%,
which is born out computationally and is further a function of the

thickness of the annulus (rp/RC).

I

The rapid rise in the marginal B . above this threshold value can also !

be understood qualitatively. In general, the coefficient D, defined I
previously, is positive (destabilizing) near the midplane and negative near

the coil plane. As By is increased, J becomes more negative and the

e

positive region of D dis smaller. As the field lines bulge out as BC

increases, increasing the bad curvature near the midplane, it also makes
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the positive region larger. Using the equilibrium relations, this

competition can be seen mathematically:

if Jtot = (Py=py )¢ +V)p
then D = _13{—(1 + G)Bze ok + g,V ]
rB A ?le

where P 1s the perpendicular pressure due to the hot electrons only. Now
raising BC makes the first term larger by slowly increasing the curvature.
However, B, goes up rapidly with Vp s @s By is the integral of Vple+ This

qualitative behavior is shown in figure 1.

= o — ———

S B 0 18
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THE RIGID RING THEORY OF A GUIDING CENTER PLASMA

The rigid ring stability model paints a rather rosy picture of
stability in an E.B.T. fusion reactor. The stable operating regions exist
at high enough core beta to provide all the power necessary for an
economically viable device. The problem is: Is MHD theory modified as
shown in the previous section sufficient to describe a ring stabilized
plasma? By the late 1970’s, interacting ring theory was born and raised
questions ~which made theorists reconsidér trigid ring theory and the whole
MHD hypothesis. In 1979, Nelson made a rather convincing effort to save
his theoryl. Using a dispersion relation technique to analyze stability
criteria, he used the parameter § (;ED to compare his results with that of

P
a single fluid plasma (8§ = 0) with success. It is informative to go

through this analysis for two reasons:

1. It can best be used to compare with Vam Dam and Lee’s interacting

ring analysis; and

2. It will forcefully demonstrate a major theme of this paper; namely,
that it is the deviation of a ring stabilized plasma from MHD theory which

is the basic difference between rigid ring and interacting ring stability

I. D.B. Nelson, Phys. Fluids, 23, 1850, (1980)
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models and it is this deviation which leads directly to the different
results obtained.

. , . . 2
The analysis, from Nelson’s point of view follows
To set up the problem, consider the MHD modes of a ring stabilized

plasma using a complete kinetic Maxwell-Vlasov model characterized by three

different distribution functions representing the core electrons and ions

and the hot ring electrons. For this @analysis, one uses a local

approximation for the modes of interest, an inhomogeneous slab geometry,
simulates the magnetic field curvature by a ficticious gravitational term

and assumes that both core plasma species have a finite temperature.

el

As a means of simplifying the calculation, let there be density and
magnetic field in the x-direction only and let the magnetic field in

equilibrium be given by the equatioﬁ:

A~

B = B(x)z

Also let the temperature of the three plasma species be constant in space.

Further, this analysis will only investigate plasma waves whose extent is

2. Nelson, Phys. Fluids, 23, 1850, (1980)

R (e | T B T S ———
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assumed infinite in space so that k*'B =0 and propagation is in the
y-direction with the magnetic field in the z-direction. The analysis will
be restricted to a local region around x = 0 so that the x dependence of
the waves can be neglected. The wavelength region to be investigated 1is
such that the wavelength is small compared to a particle's_gyroradius

(ka << 1) and the frequencies are small compared to gyrofrequencies:

w <L L

Finally, the phase velocities are large compared to diamagnetic, grad-B,
and gravitational drift velocities of the core plasma, but small compared

to the drift velocities of the hot electrons.

With these assumptions and simplifications, the analysis begins with
the wusual assumption that the waves must obey Maxwell’s equations and
current densities can be computed from a linearized Vlasov equation for

each species. Thus:

E % °4

E=V - 5=

B=V x4

veE =2 = 1(Jq fd3vf )
~ ey ¢g s/ = ~71s

T T TN
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VxB=un(J+e 3%5 = z 3 O
SRR T: 05 agfd y(ufg) +ugepss

<
X
=]

~

Mefys = —é qsfdt(g + v

where: qgMg,and f, are the charge,mass, and distribution functions for

each species.

These equations, together with Poisson’s equation and Amperé’s law:

2
Ve =2
€0

3A
5(—= +V
s+ 2 e ¢)—uJ
~ Tz L
R 3t

completely define the system.

Now assume the waves take the usual form and are proportional to:

exp[i(ky—wt)]

The simplified geometry of this analysis requires only the x-component of

A. Thus Poisson’s equation and Ampere’s law reduce to:

e e g e e

e
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2
Eokd):p

2.2 2
Eo(c k -w )AX = JX

Giving € a real and imaginary part, one must write these equations as:

p
(e = ef° + defyea,
K

—C—éi)eoc = ie?z— e%chx,
k

These

equations can be rearranged into a more convenient form and one must

solve the equations:

(1 +)
S

: ]
lé €12

€906 + ié €15cA, = 0
2
o+ (1= - -] €55 deA, = 0
ck 8

For there to be non-trivial solutions, the determinant of these two

simultaneous equations must vanish. Thus:

DesDem

+ (CT)2 =0

where:

e

TT 1
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- s
DeS =1 + é €11
2
= W S
Dep = 17— _z €22
c k s
CT = .3
é 12

This dispersion relation gives w in terms of k and can determine whether or

not the waves are destabilizing.

Let the equilibrium magnetic field be:

B = By(L + ex)z

where 1/e is much larger than the particle’s gyroradius so that it will be
possible later to make an expansion about the guiding center position (Xg).
Also let the equilibrium distribution functions of each species be
functions of guiding center positions (Xg) and energy (H = mv2/2 + mgx).
Then to a good approximation, the distributions for E.B.T.-like

configurations can be given by:

- 2gx
£ (xg,H) = £q(xg,H) + Nogfp(l + & x,)exp] - “E]
%s
2
1 4
fp = —————jyexp(—-ﬁz)
CRE o

] S

= e gt g o—ts - pen o ——— ——
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where the as’s and e's’s can be different for each species.

Consider also a distribution function which is a §-function in V).

Now Poisson’s equation and Ampere’s law require that:
Ny = N, + Ny

2 . 2
_ eBO _ NSMSE s%s

Ho _S 2

where Ni,NC, and Nh are the density of ions, cold electrons and hot

electrons, given by:

N. = N(x)
N, = N(x)(1-6)
defining:

- 2g
1 s
€ == + —
P og

2

a
(the field curvature is simulated by g = ifo
c

One obtains the equation:
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26 = -B( + 2y = ge,
o R s
) c

2

B =] %
- p Bs - uOé NSMQTT
By

The first order perturbation of the distribution functions fls are

computed from the linearized Vlasov equation by matching orders in the

guiding center parameter €. When this is done, the perturbed distribution

function is given by:

8fg dqw

3fy 1
=t A+ [—(p=ve A)dt
1 q?ﬁf¢ 5 axgAy 5 Df—(¢p-ve A)dt

where:
RBfO Tk afo

S Rl
w 9xg qB(xy)
2 is the gyrofrequency = 5
and the integral is taken over a particle’s equilibrium trajectory. This

3
- integral can best be evaluated using the identity :

3. Nelson, Phys. Fluids, 23, 1850, (1980)
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n .

63

When this is done, the perturbed distribution function can be evaluated and

one finds that for a given fO:

fl=

quOfB ESVJ_
—(1=
7\
Mo

cosB) (¢ + (w-wg)d) ) -
m,n

+iv A (w-wy) ) Jm’JPeXp[i(m—n)e]
1 W 4w =1

m,n

where:

JmJneXp[i(m—n)e]

wd-w—ﬁﬂ

kz
e = Q€
* 20
wd—ka
2
eV
L g
= — 4+ = !
VaT oy T |
|
l
kv %
1 H
In = In(=)

For MHD modes (w << @), the perturbed charge and current densities for each

species are given by:

L
€0

) 2 . k2 2

w 3 0 5~ VW - Wy
P d 1

—H & yEpld (—— + —; =
O W 20 w

- i amtea e e, .

Py



J 2 2 k 2
(i) 3 VJ_
P .
— = - d vf
ey | v Bf[lfb 53
o
s
where:
a)l = w—wd
2
2 qus
(1) =
ps sOMS
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2 kZ 2
W= 4 v Vo2 W Wy
(—) + A (— ) (]
X )

Now for the cold species of the core plasma, w >> wy,wq and thus the

integral can be evaluated by a Taylor series expansion. The result is:

5 2 k2 2
0 00 g~ o W=
i’ _ p w d 1 C w
e11° = =, ¢ U gl )]
k ai’c W 2 Wwp
2
. w W= &
e11§ = r(——)
® -wp
2
w 2 2 W= %
ety§ = P [k % o + (w-wx) @ ﬂwB)]
k c@ w —wp

where: 2
keai c
Wp = — 2~
B 20
- kg
U)d = U.)B + —Q—

(evaluated at the thermal velocity)
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and terms arising from the resonant denominator are considered mnegligible

and dropbed.

The hot electrons cannot be evaluated in this limit for the frequency
domain is different than it is for the core plasma. For them, one must use
the fact w < Waps but accoﬁnt for the fact that the thermal frequency N
can vanishu. To accomplish this, consider both a 6&-function and a
Maxwellian in v, as their distribution function. A Taylor series expansion
assuming w < Wit is then performed to evaluate the integrals for Jy and p.

The result is:

2
h 2wp W
ell= —C
k Op W
22
"(DPUJ,';

€ — ——C
12 ~ 2
kef

2 2
W O W
£ - _ph —l-C
22 T ZZT T,y 03
2¢c

The coefficients Ci» Cy, and C3 depend on whether a §-function or a

4, Nelson, Phys. Fluids, 23, 1850, (1980)

T e e oy e e e S e e e e



66

Maxwellian was used as the distribution function. For the &-function all

the coefficients are 1, but for the Maxwellian:

’u‘)’ W= s
¢, = 2(1- —F(a))
W g wB

B (1-ar(a))

Co =
2
wg
Xt 2
Cy = — (1 + a-a F(a))
w
B .
where:
Q= w-kg/Q
wg .
F(a) = exp(—a)PT dt%? (a >0 fore <0)
TS T BRI B 82 Y

Finally, the three terms can be assembled in the form of the
dispersion relation:
2—-
DygDep + (CT) =0

where:

T T ST I T T T T T e e e et s s e
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2
W%
Dem = 1 + B, + Cy8y h v

em Z
20 g1, (kv,)

Bl Wai=gi=0py  Coff gy
T = - k;_ (7;) I St R ) dh,
Di w ¥ gh
where:
n
§ =1
i
€ Mo
Ap = ——— is the Debye Length
2q N
2 2
vp = ——— is the Alfven velocity.
uOMN

and-the~electrostatic»dispersion~coefficient—HDégA—is—mindependent——of any

contribution by the hot electrons.

Now, for purposes of this report, comes the important part of the
analysis. Setting § = 0, By, = O corresponds to a plasma with a single
fluid component. This was done as early as 1961 independently by two

5 6
physicists, Newcomb and Tserkovnikov and the result is well established.

5. W.A. Newcomb, Phys. Fluids, 4, 391, (1961) 6. Y.A. Tserkovnikov

Dokl. Akad. Nauk. 130, 295, (1960)
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Thus if their result can be duplicated via this analysis it would justify
to a certain extent guiding center plasma analysis and by implication MHD
analysis in computing the stable operating regions in a ring stabilized

plasma. This can be done in just a few steps.

To accomplish this comparison, one sets § = 0 and Bh = 0 and considers
frequencies w << kv, in the dispersion relation previously derived. When

this is done, the dispersion relation becomes:

s

2 2
1 1 1 koy
Pes ~ N M, o2
w (kADi) iti ZQi
2 9p 193, °m Pn®3B p 3B2
+ PP T ECP o
[pmw xBdx °93x B &“d__gz(ax) ]
Depy = 1 +8
1 evo. k1 3p 2p 9B
CT = - (97 — — (= )
kaDi 2 Qi NiMi ax B 9x
where: 2
N.M.a
SsTs
= N.M 3 = —_—
Pm SX s's 3 P A 2

To compare this to the results obtained by Newcomb and Tserkovnikov, one

can write the dispersion relation as a quadratic in w:
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2 2
o2 3n Pm& p B2
P+ 85 + = 'Fff(g_) =0
B B
—+ 2p
Ho
The result obtained by Newcomb and Tserhovnikov for k" = 0 can be derived

in much the same way as was done in the previous chapter,ie. finding the
Lagrangian equation and minimizing it. If one goes a step further and

creates a dispersion relation out of the derived equation, the result is:

2 2

2 ap P8
pw +g 2+ 1 =0
m 9% Z
B +vp

This differs slightly from the guiding center treatment because MHD allows

only one value of vy, but in fact the difference is quite small and the two
theories can be said to agree. Indeed, rigid ring theory appears to be
justified at least in the § = 0, By, = 0 case. But the analysis cannot stop
here. For stability in ring stabilized plasmas there must be hot electrons
and in that case one must treat § # 0 and Bh # 0. Herein lies the downfall

of rigid ring theory.

In principle, it is possible to determine the stability criteria of a
ring stabilized plasma by setting § # 0, By, # 0 and solving for w in the
dispersion relation. To this end, one can write the dispersion relation in

the form of a quadratic in w. Assuming w << kv, one has:
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2
Aw -+ 2Bw + C =0

where:
2 2 2B Coog 2 a
A=£kal+6_°L(2h_1) ; al=§£
Dem Wan i
_ 1 Be Cobapy
B = 8[wajgim—(wss—ugswp) (T 7 -1)]
em wdh
1 Be 2
C = (Way-wgydwgy + 5 5—(0x3wa;3wp;)
enm
1 Wxh
De = 1 + B, + = CqBp—0
em (o4 2 wdh

Now the condition for stability is that w be real which means that
2
B -AC > O is the stability requirement. For small B, this is approximately
equivalent to:

2 1.2 2 2
Dem (Wi =030 (58 (Waz=wg)-K ajwqs] > 0

But 8n/3x > 0 so We; — Wg; > 0« Also with small Bps wgqs and D, are
positive which implies that the plasma is always unstable as § goes to
zero. Notice also that as Bh and BC increase W44 bedomes negative.

Specifically:
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2
ko .
_ i 21
gy = EﬁiT[25 AL+ 28)]
p
.
RC‘.
B =B, + B,

And the condition that w44 change sign is that:

4

In contemporary E.B.T. devices rﬁ~3 cm. , Rdv30 cm. So the sign change

occurs around B > .3.

However, both physically and mathematically, it is impossible to
stabilize the plasma by increasing Bee Physically, hot electrons are
necessary for stability. This 1is reflected by the fact that as Bc
increases, electromagnetic terms must be incorporated into the dispersion
relation. This destabilizing effect cancels out the stabilizing effect of
changing the sign of Wg4qe In short, a plasma cannot dig its own well.

With hot electrons a plasma can be stabilized. By keeping § small and

increasing Bh by increasing the hot electron temperature, the sign of w44
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will change and the result is a prediction of the stable operating regions

of the plasma.

By mnow it should be clear that the critical parameter in the analysis
is & (na/np). For finite § with Dom > 0, the stability analysis

requirement is:

A

2
L +280) (1)

By, > .
(1+2)(1 +38)

where:
a2 1, 6 2
§° = 2(>0)
) 2 kai

At the lower limit as § goes to zero, the stability requirement reduces to

C;—-‘But——fﬁr

_the_requirement~that~wdiuchangeusignj-as“befo;ej—for——smaii—“s
short Wﬂvelength, finite gyroradius destabilization results one must take
into account the full stability requirement above. Taking kai = ,1 as
being the largest possible value allowed by the expansion techniques used

to derive the dispersion relation, equation(l) shows that for & = .05,

£ = .1, BC 0, modes of kai < .1 are stable for Bh > .11.

For finite BC, the stability requirement can be written as a function

of §, &, Kaj, Bh, BC, and the hot electron distribution function (edither
A2 AN

§—~function or Maxwellian). Written in the form B -AC > 0, the stability

requirement can be given as before, with:
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A l 2 2 ~ l 2 ~ A 2

A = Ek atid-l- E(S BC(CZ‘D*_UJd)

A (S A A "~ A A ~ ~ A~
B = (D[ (Ws0g)D + B (wxwg-wp) (Consrw )]
A ~ ~ A l A A P 2_

C = (w*—wd)D + EBc(w*-md—wB)

D= (1+8 )o,+ L.

c/7d 53 h#

Og = 1 +-2¢

oy = - Lo

B oo

Wy = 28 + Wy

~ The region of stability of B. as a function of By, are plotted for both the
§—function and the Maxwellian hot electron distribution functions, the
Maxwellian being the more pessimistic of the two.(See figuresl,2,3).8 But
the main point of this analysis is clear. For E.B.T. parameters, MHD
treatment and its consequent rigid ring theory can be generalized by
allowing for electron ring perturbations assuming a guiding center plasma.
But can it? In a subsequent chapter, Vam Dam and Lee perform a similar

analysis using a non~-guiding center, non-MHD plasma by changing a basic

8. D.B. Nelson, Phys. Fluids, 23, 1850, (1980)

g e e
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FIGURE #1

Regions of stable core beta as a function of ting

- for {-function, with z

0.1.




Pffo

i i ey (S
. ..w.;.,.AL‘Afxﬁnm%Joh ;P.g -

Regions of stable core beta vs. beta of the anqulus

for Maxwellian-hot-electron—

=0

ka arbitrary

distribution—(-7—=1f)

Dotted line shows corresponding stable region for a
non-perturbed hot electron approximation.
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#3

FIGURE

0.05 ka=0.1

Same as figure#2 . with
§
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constraint used in MHD theory (frozen-in field lines) with a very different
result. Surely in the case § = 0, the comparison of this dispersion
relation with that of Tserkovnikov and Newcomb gives confidence that rigid
ring theory gives accurate results. The key is surely the parameters § and
B. 6 defines the amount of non-MHD~like hot component there is 1in the
plasma and B the effect of this hot compoment (in terms of pressure). It
shall be shown that the divergence of rigid ring theory from interacting
ring theory is exactly this, the divergence of ring stabilized plasmas from
MHD and guiding center plasmas and further that this divergence can be
isolated from the MHD part of the plasma fy considering these very

parameters § and B.
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INTRODUCTION TO INTERACTING RING THEORY

Many problems in physics have been solved by the method of continually
improving approximations. First a zeroth order approximation, which
satisfies the intuition and produces a kind of smoothed-over curve or
function which qualitatively describes the behavior of the phenomenon being
studied, is given. Soon, however, unanswered questions about the
phenomenon arise, and paradoxes crop up which put the theory in jeopardy.
Finally, the questions and paradoxes are resolved by ~going to the next
highest order'épproximation, and so on. The stability of a ring stabilized
plasma seems to be a case in point.- Rigid ring models which treat the hot
electrons and core plasma as two non-interacting components of a basically

MHD plasma seems very much like a zeroth order approximation. However,

close scrutiny reveals problems which cannot be overlooked. The drift
frequency of the hot electrons is comparable to the ion cyclotron frequency
of the core plasma, an area where MHD theory is not valid. Defining a
quantity 6§, the ratio of the densities of the hot and cold species of the
plasma and demanding that (nh/nc) << 1 appears like the well-worn road of
previous physics, where a disturbing part of a theory is treated as a
perturbétion on what 1s already established in the old theory. In this
case of the stability of ring stabilized plasmas, however, this appears to
be not quite right. The appropriate approximating technique appears to be
to look at the analysis rather than the results of the analysis; and, to

improve the results, the whole approximation of MHD analysis must be



brought to 'mext highest order" in a much more subtle way than

perturbation theory of older physical problems.
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did

The first step 1in this analysis improvement scheme is to figure out

exactly what needs to be modified in the analysis in order to obtain

self-consistent results. As early as the mid 1970’s when rigid ring theory

was first being proposed, H. L. Berk, Dominquez and others realized

the

non-applicability of MHD theory to the hot electron rings of a ring

1
stabilized plasma . In thinking about the hot electrons, the line

reasoning might have gone something like this:
Question: What exactly about MHD theory is inapplicable to the hot

electron rings?

of

Answer: The field lines are not frozen into the plasma.

Question: What can be done to improve MHD analysis with this in mind?

Answer: Modify the analysis to exclude the frozen—-in field line

contraint.

l. H.L. Berk, Phys. Fluids, 19, 1255, (1976)

mer

ey e
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Now to begin this procedure, it must be established that the frozen-in
field line condition is the offending part of MHD analysis. In fact, it
had been known for many years that line-tying could physically explain the
stability of a plasma that would normally be MHD unstable in simple mirror
machinesz. If the magnetic field lines are all frozen into fixed
positions, two flux tubes cannot change positions without twisting and
thereby increasing the magnetic energy of the system. Hence the stability
of the system against interchange modes is enhanced. Since line-tying
requires the frozen-in field line comstraint, such an occurence is suitably
explained by MHD analysis. 1In ring stabilized plasmas the presence of a
cold plasma, which is a very good conductor, could act to keep the ends of
the field lines fixed. However, the major drawback to this idea is that

the frequency domain in which this concept is wvalid is limited to

frequencies much less than the ion cyclotron frequency, not the case in
ring stabilized plasmas, and, in fact, the very heart of the problem. If a
stability analysis could be performed without the cold component of the
plasma and then cold electrons added to attempt to stabilize the plasma (in

which instabilities with growth rates comparable to the ion gyrofrequency

2. H.L. Berk, Phys. Fluids, 19, 1255, (1976)

3. Berk, Phys. Fluids, 19, 1255
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arise), results could be obtained which would exclude the effects of the

3
frozen-in field line constraint from the analysis .

As befitting a first attempt to correct the theory, the most simple
model possible should be used. Therefore, consider a local model in slab
geometry, with density and magnetic field gradients in the x—direction only

and with:
B = By(x)z

The cold plasma is approximated by fluid equations and the hot electrons
with Vlasov’s equation. To further simplify the analysis consider only

electrostatic flute modes.

Now in a ring stabilized plasma, Poisson’s equation can be written as:
Vz = -4
¢ = —4m(ggng + qgny + qyny)

where:
q; o are the electronic charges of electrons and ions
b

N, p,.i are the densities of the three plasma species in
b b

equilibrium, such that:




no(X)
n, = _ (Z = 1 for simplicity)
Zi
n, = (l—a)no(x)
nh = ocno (X)

For the hot electrons one can use the distribution function:

Yy
fy, = aFL(B,u,x + 5__9
ce

where:

i )
E = Ev

82

1 _ 9 9 -1
Ry = gglnB <K 5}—{-lnno(x) =1,
3¢

Consider a perturbation « ¢ei<kyﬂ”t) in which ky >> %?
Using the continuity equation and E x B drift for the electron drift

velocity, one finds:




83

s 2 Kk 24)
adw_ .
lm'qesnc = _wpl—y
W .
ci
where:
§ = kl
y'p

The perturbation in ion density is found from the continuity equation and

Newton’s law in the form:

2
[ W _ .
1 ci
bragéng = —2 1+ 8]k,
w—w N

As for the hot electrons, one solves the Vlasov equation in the limit

w << Woe The result is:

4rq 8ny = aai

e

where:

2

B,
Vh

|
1
i
(
]
|
|
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1
i B)gy
9F,  ky 8F, , kyWB)Z

2 — o
vy 3 (kYVGBE Weog BX)JO( Weoe )
no(X) w- va

and vy 1s a typical hot electron velocity. Combining these two results and

substituting them into Poisson’s equation yields the dispersion relation:

2 2 2
W, s Sw .z §(1-0)w oW s M.
1- . Plz (l+ Cl _ P1 - zp::l )I‘h(w) =0
- w ww . 4 k., Vo.M
w wC:L cl y h e

To complete the analysis, one must evaluate the integral Ih(w). To do

this, note that the hot electrons exist in the frequency range:

kyVD T lei 2O
Further, assume kva is a constant. With these provisos, the integral can

be estimated to be:

W) = T
y'D’*p
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oF oF
where it has been assumed vp( h)<< 1 ( ) based on the assumption
. OF Wea 4

EB-<< 1. Taken together, this leads to the dispersion relation:
b

2 §
+ 2
Yei 1+ _8-a)) _ 8o _ 4
z N X x +
where:
w
X =
Wei
v R
q=- 2 for —E >03; qg>0
rw. .8 r
pci p

Now what this means 1is that for Rb/rp > 0, there is always

instability. Actually, one can solve the dispersion relation to find a

2 2
specific stability criteria. Takingw _;/w pi <<'1 and setting § 1, the

dispersion relation can be solved in terms of x, such that:

2 2 1
% = - q(l-a) + (4 (1-a) 0T

2 4

Clearly, for q >> 1, only a small fraction of the cold electrons are needed

for stability.
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In experiments, these results have been verified and the conclusion is
that cold electrons can stabilize interchange modes. Now this phenomenon
is not line-tying. The basic mechanism of stability, it would seem is not
the frozen-in field line constraint as it is in MHD plasmas. This is an
important point. To summarize, the basic flaw in rigid ring theory is that
an MHD analysis does not apply in the hot electrons’ frequency domain.
This flaw can be traced to the frozen—in field line constraint. And now,
the frozen-in field line constraint has been shown to be not the mechanism
which stabilizes a ring stabilized plasma against interchange modes. The
stage has been set for a new theory based on the concept of an interacting

hot electron annulus.

To conclude this section, it must be pointed out that in actuality

there was not this one to one series of events from MHD analysis to rigid
ring theory to interacting ring theory. Many researchers tried to find
self-consistent ways to analyze the hot electron component of a ring
stabilized ©plasma without MHD theory. Variational methods and WKB
" approximations were tried with insightful results which will be accounted
for subsequently. However, the motivation for the formulation of
interacting ring theory might very well have run along these lines, and the
next chapter will follow this one as the next step in this evolution of

knowledge.
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A §, B PARAMETER ANALYSIS BASED ON INTERACTING RING THEORY

In researching the problems inherent in the rigid ring theory
approach to ring stabilized plasmas, the strongest clue that something is
wrong is that in the hot electron plasma, the electron’s drift velocity is
on the order of or greater than the ion g&rofrequency of the core plasma.
This leads to the need to alter the methodology of the stability analysis
and to different predictions about the regions of stability in the plasma.
In general, there are three stability analysisr methods one could chose

1
from :

< <

Swypp < Swgep

The first two cannot be applied to a hot electron plasma’s frequency

domain and therefore must be ruled out. The third is satisfactory and can
provide the basis for a new approach to the stability of ring stabilized

plasmas.

To begin, one starts with the drift kinetic equation:

1, Lecture by J.W. Van Dam at The University of Texas, April, 1981
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of 0FE of

— t v VEf + — __ =0

ot~ t 0E

One next gyro-averages this equation using the spatial coordinates (¥,0,1)
and assumes the temporal dependence:

oE 9B

5? = mV" E” + Eevn + Ll-a—t-

Now this equation can be analyzed in three limits, but for ring stabilized

plasmas with their mildly relativistic rings, one must use the limit:

w < Wy < Ohounce

In this 1limit, bounce averaging implies:

K veeo D> =[d8 < vuu >

With this averaging, the perturbed distribution function becomes:

f=?_f__._1__>__[ <H> - <> -2 cn

al[)< Vde
where the Hamiltonian is:
R=uQ o+

7D

which produces the energy equation:
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1 of 1 2 2 5 f 2
Wi netic = 7fdvxfW_<_V_DE._>_{[ CHY = HM |- = <« r»}

Further, without line-tying, field lines cannot be said to be frozen
into the plasma as has been pointed out in the previous chapter. For ring
stabilized plasmas, then, one cannot use the constraints of previous MHD

analysis. Instead one uses:

H = — = constant

Iy = fv"dl = constant

¢ = [Beds = constant = fads = flux

where:

v~}
fl

Va x VB and

a = o(B,u,e,J = constant)

Now at this time it will not be necessary to rigorously derive an
energy principle. This will be done in the next section. These are only
to be taken as general ground rules upon which the interacting ring model

is based. From here, without a rigorous energy principle, one can set out
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to make predictions about the stability regions of ring stabilized

plasmas.

To carry out this analysis, consider a 6,8 parameter analysis using
the interacting ring assumption that the frozen-in field line constraint
is replaced by flux conservation. In order to make a direct comparison
with rigid ring theory and, utilizing as closely as possible the
parameters of actual E.B.T. machines, similar approximations to those of
the 6,8 analysis of chapter 3 will be made when building a model of the
plasma. Since the region of interest exists around the annulus where the
radial gradient of the magnetic field is positive, using the same density
profile is justified. Also assume that the temperatures of the three
plasma species have no spatial dependence in this region. To further

enhance the comparison use:

T 3
_h>> 1 (10)
TC
o
P! .1)
nC

With these stipulations, one can describe the plasma by its
characteristic frequencies: The core plasma which can be described

conventionally in terms of the MHD equations, has a diamagnetic frequency:
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2
V ~
Wy = —i(—;}—l)(b « T1D-7

and a magnetic drift frequency:

2
1 2 ~ PPN VJ_ A
wg = = 75V (b x b+7b) + (b x V1nB)]+7,

where:

b =

d| s

Note that both of these frequencies are smaller than the fluctuation

frequency of the plasma, w, in the MHD limit.

Equipped-with—these—frequencies;one can now explore the equations of
motion of the plasma. Assuming that the core plasma is influenced
essentially by E x B effects, one can write down the MHD expression for

its pressure perturbation ( for an isotropic distribution) as:

2
B =gt + CD[g-@on +e 70 +3g)
B

This expression can be transformed via kinetic theory in the limit

W 2> Wx,wq to give:
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~ U.)*i ~ (}.)di ~ 3 ~
D = —eNi(—a-J(l + 1) + eNi(—a—J(l + 1) + (Z;JBB"

where:
_ 81TNiTi(]. + ’L')
- 7
B
Te
T =
Ty

Notice, preliminarily, that the terms of this kinetic representation

describe two separate contributions to the pressure. The first term is

convective pressure change while the second and third terms represent’

2
compressional change . This will prove of importance later in tracing the

differences of the two theories. For the present, the pressure

perturbations, obtained from considering the appropriate frequency domains
can be used to form a pressure balance equation. Specifically, in the

perpendicular direction, pressure balance is of the form:

2. Y.C. Lee and J.W. Van Dam EBT Ring Physics: Proceedings of the

Workshop, Dec. 3-5, 1979, Oak Ridge, Tennessee, p.471

e i ey

| B e e p——
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The justification for wusing this form of pressure balance is that it is
good in magnetic configurations like E.B.T. (although it can be thought
of as eliminatiﬁg fast Alfven waves from consideration). 1Its domain of
vélidity applies to low frequency modes whose perpendicular wavelength is
much smaller than its parallel wavelength and any scale length in the
plasma. Basically, the magnetics of E.B.T. make this desirable since
particles with large components of perpendicular velocity are trapped in
its mirrors. This simplification is also desirable from a mathematical
point of view, because the longitudinal magnetic field perturbation is now
proportional to the electrostatic contribution to pressure fluctuations

divided by 1 + 8, the finite gyroradius effect

As for the hot electrons, E x B motion is negligible because of their

large perpendicular energies and thus their motion is largely adiabatic

with:

w << w*h,wdh

To model this motion in non-MHD terms, then, one can use the fact that

3. Lee and Van Dam, EBT Ring Physics: Proceedings of the Workshop,

Dec. 3-5, 1979, p.471

e ————
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3
their drift motion follows the field strength surfaces . This can be

written as:
Yan' VP t Yan'VPiy = 0

With this characterization of the motion of the hot electrons, when the
magnetic field is perturbed, the trajectories of the electrons are
perturbed and this critical difference between rigid ring and interacting

ring models is built into the equations.

Now the ring electrons’ motion are perturbed mainly by VB drift, so

the condition prevails:

Vedip =0

One can relate the magnetic field to the pressure, then, by noting that
the surfaces of constant pressure are identical to the constant magnetic
field contours (in the adiabatic limit) and with this relationship one can
construct an equation for the perturbed hot electron pressure analogous to

that for the core plasma:

~ Ipy B w
Ph = (3P - - <3%>'ﬁ3”

(1)

T T TR I T T T s
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where:
Wy 1s the VB drift frequency for the hot electrons (velocity
averaged)
Since the hot electrons are anisotropically heated, thn > ty, so the

analysis is consistent,

Having described the pressure perturbations for both hot electrons
and core plasma, the next step is to combine them in a quasi-static

pressure balance:

4,".’5 EeSe ¥

BBy - - Bl (3)

h, %#*h ,
[1 48, + D]
bh
where:
B, = the total beta of the core plasma (Bi + Be)
peis‘ = the electrostatic part of the total

perpendicular pressure fluctuation.

Consider a slab geometry (also wused in the previous rigid ring

§ ,8-parameter analysis). 1In this geometry:

-
L
i
f
f
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And further, since there is mno curvature, there is much cancellation
between the first and last terms in equation(3). Thus a dispersion

relation can be constructed from equation(2) such that:

U.)*h B
) .Bﬁ(l +B)

Bh
D=1+8,+ ()

(4)

which is very small for E.B.T. parameters. Notice by way of comparison

that this result implies that magnetic field perturbations are affected by

the hot electron rings in a non-trivial fashion. This dis a major

distinction between interacting and rigid ring models which describes

basically a compressional effect not before seen using MHD analysis.

To get closer to a direct comparison, consider flute~type interchange

modes 1in the low frequency limit (w << Qi). These modes can be described

by the equation:

2 N A A AT, ~
) (w—UJ*i)vl¢—(4“Blc)[b x (b)Y Gy + Py =0 (5)
c
A
This is a good starting point because it is equivalent to charge

neutrality and is generally wvalid for modes with small transverse

"
wavelength, consistent with previous analysis . Now this equation
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consists of a contribution due to the ionization polarization drift (first
term) and the field line curvature drift of a species in the plasma
(second term). The first term also has remnants of finite gyroradius
effects of the old E x B term from the ion species. .Introducing the
parameter § = nh/nc, one can consider the cases of § = 0 and § finite as
in the rigid ring analysis.

CASE 1: 6 = O

For simplicity, ignore the azimuthal variation of local equilibrium
quantities and use a large poloidal mode number analysis. This is
applicable to strongly ballooning modes in the bad curvature regions and
flute modes in a bumpy cylinder similar to the previous § ,8-parameter
analysis of the rigid ring model. In this approximation, in the

interacting ring model, the compressional pressure effect implies that:

~ o~ ~ _P_Lc
PL = Pre T Pip = 5~

Now perturb the core plasma by an isotropic, completely convective

pressure perturbation:

4. Lee and Van Dam, EBT Ring Physics: Proceedings of the Workshop,

Dec. 3-5, 1979, p.471
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~ ~ Wai o

Using the equation for low frequency flute-type interchange modes, the

dispersion relation can be written as:

w(w—w*i)(klpi)z = —wKiw*i(l +t)(1 + D_l)

where:

W.; is the curvature drift velocity (velocity averaged) '

From this equation, one can see the stabilizing effect of the hot

electrons. Take the core beta to be zero. When the annulus is absent

D_i“lyﬂwhich_implies_an_interchange_instability—whieh——iS—;purely——growing

such that:
2
2 Cs .
w o= - (neglecting finite Larmour effects)
r R
pte
where:

rp is a density scale length

RC is the radius of curvature
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2
Clearly, w is negative definite. Once again it is obvious that a plasma

cannot dig its own well.

Next put in the annulus. The dispersion relation becomes:

D=~ K% (neglecting anisotropy)
“bi

This implies:

2 Wy
w = —wKiw*i(l + t)(1 + -

ki

2
Here w has some positive values. Specifically, when the magnetic drift

velocity Wgqs has the opposite sign to W4, the plasma is stable. To

accomplish this, a local minimum in the magnetic field must be created and

its gradient must be approximately l/Rc. Said another way, the ring beta

must be at least as large as the threshold value:

- P
= 4( ) = %

This is in agreement with rigid ring theory. In fact, the hot electrons

T T T e T T T e e e e e —— e e e, — e e e ——— e e el
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only enter the problem through the equilibrium pressure balance for § = 0

and 8, <K By» assumptions entirely consistent with rigid ring theory.

The difference between the two theories arises in the region where an
E.B.T. device becomes a fusion reactor. In this region of B-space, one
desires to have a large core beta and/or reduce the ring input power by

narrowing the annulus. In this case, if one ignores curvature in the

Be

equilibrium pressure balance relation (ie. _§.|Y£4 > ﬁL), other
. P :

C

't

interchange modes are no longer stable.

Consider the dispersion relation given previously. Enhanced
compressional pressure can only stabilize the plasma when D is negative,
ie., when Bc K 1. In a reactor, though, B is increased and D becomes

positive:

W . T Wges
D =_Kt, B (1- > )
Wpi Whi

BcBh
2

S
= (- (1 + 8.)-

where:

T
e =_E
RC

This implies that for stability:

T T Y T T T T T T T T T T e T T e e T e e e e e e i ————
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2e

B, < 2
c I + 84

Now in a reactor, By, can be in the range 20-40%, so Bo is limited to 7 or
8%, a very different result than obtained from rigid ring theory. In
fact, the difference between the two model exists in this region. The
rigid ring model predicts stability for substantially higher values of BC
than does interacting ring theory. To be perfectly precise about the
distinction, rigid ring and interacting ring theories agree when § = 0,
Bc << Bype This can be looked upon as the single fluid 1imit, for the
annulus enters the amalysis as an incompressible, non-perturbative species
in the plasma. As B, is increased, the annulus assumes less and 1less of
its MHD or guiding center plasma chatacteristics as its compressional

effects are increased and consequently the results of the two theories

diverge.

CASE 2: &#0

Next let &#0. Starting from the flute~like interchange mode
equation, equation(4), one need oﬁly consider the perturbed electrostatic
potential ¢ and the perturbed parallel component of the magnetic field,
Bu, to describe the perturbed electromagnetic field. Using charge

neutrality:

Yot = 0

TTTTTTYY I T
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and the quasi-static transverse pressure balance equation, equation(l),

one can write down the partial pressure density:

2 22 2

v v
g = _]3{¢ —(w-wy) < ! (1- l;)@ +—l§u) >}
4m d 0

where < ... > 1is velocity averaging.

The transverse pressure perturbation is:

2/2 k2 2 2

' M1 Vi

= TED w-u) < iw (1- =G + %) >
d 2

Additionally, assume w >> Wii o for species of the core plasma and

w <K Wy for the hot electrons. A local dispersion relation can be formed

L

analogously with that for the 6#0 case in rigid ring theory by casting it

into the quadratic form:

2
Ay 4+ Bw +C =20

This time the coefficients are:

A= (k p) +5__(1_ﬂ)2

Yhh
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B C Waph
B = 8] (wagmwgs= (50 (1- e (Wi g37001,3)]

2 Be 2
C = [Wagmugdoggupy + 5(@agugiopg) 11+ 1)

where:

T = (1—6);?

i
Compare the figures derived din the MﬁD, gﬁiding center plasma
analysis of rigid ring theory to those derived wusing the assumption of
interacting rings (See figures 1,2,3).5 Using ﬁhe slab geoﬁetry common to
both calculations, D « B, in equation(4). ﬁowever, there is no longer a
distinction between By, and Bo» they only appear as a total B. The other

free parameter is §. Now for § = O:

2
B -4AC > O

is never satisfied and hence there is no stability. At high B, & must
exceed 5% for stability. The analysis of the case § = 0 and the case §%#0

are therefore nearly identical.

5. Y.C. Lee and J.W. Van Dam EBT Ring Physics: Proceedings of the

Workshop, Dec. 3-5, 1979 Oak Ridge, Tennessee p.471

S

G,



104

FIGURE #1
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Using a different model which includes the effects of curvature such

that:

W s 2 W .

2= (- Ha- L
Wpi “pi

and replacing the curvature and the wvarious gradients by their 1local
values, BC becomes a function of Bt as in the § = 0 case. For finite B,
however, there exists two stability regions. The lower one resembles the
§ = 0 region. The major difference is that the stability threshold for
By» when B. approaches =zero is shifted downward as 6 - is increased,
approaching for & > .05, the line above which mod-B has no minimum. The

upper boundary is strongly influenced by the singular behavior of the

dispersion relation at D = 0. The upper stability region, on the other

hand, appears to be unattainable, unless the ion temperature range can be

6
greatly increased .

What appears to be coming out of this comparison is this: the higher
the annulus density (ny), the larger the difference between interacting

and rigid ring theory. Clearly, the annulus is having an effect on the

6. Lee and Van Dam, EBT Ring Physics: Proceedings of the Workshop,

Dec. 3-5, 1979, p.471
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stability of the core plasma not defined when using a rigid ring model.

And that effect is purely non-MHD.
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THE ENERGY PRINCIPLE

If one were to put as precisely as possible the crux of the
difference between rigid ring theory and interacting ring theory, it would
be this: The trouble in MHD or guiding center analysis of ring stabilized
plasmas is the frozen-in field line constraint. This does not represent
their actual behavior. With this fact in mind, the next step in the
theoretical development of interacting ring theory is obvious. The heart
of the theory must be an energy principle which will accurately predict

stability regions without invoking the frozen—in field line constraint.

To  begin, the energy principle from which rigid ring theory

originates is well-known (see chapter 2). Based on MHD analysis it

requires the adiabatic conservation of single particle magnetic moments

and the longitudinal action, as well as that the magnetic field lines are
frozen into the plasma. In ring stabilized plasmas, the.électrons are
highly energetic so it would seem questionable that a displacement in the
hot electron ring plasma would follow exactly a displacement of the
magnetic field. One can make this argument more plausible when one
considers that the E x B displacement is inversely proportional to the
frequency. Now, in the case of the hot electron rings, the frequency is
Doppler shifted by a large precessional magnetic drift. Clearly the
normal MHD response of the hot electrons is negligible to a perturbation

in the magnetic field. The frozen-in field line constraint must go.
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Basically, to replace this third condition in MHD analysis, Vam Dam
and Lee used the condition that the magnetic flux passing through a
precessional drift orbit is conservedl. This new condition is guaranteed
if the hot electrons complete several orbits in a typical plasma
oscillation. This serves to restrict the energy principle to low
frequency regions while relating particle behavior to magnetic field
perturbations thus quite naturally serving as a good replacement for the
frozen-in field line condition. And it does work well in ring stabilized
plasmas where the region of the hot electron drift frequency is comparable

to the ion cyclotron frequency.

Consider an isotropic guiding center plasma whose behavior is
completely magnetohydrodynamic and thus the field lines are frozen into

the plasma. There are two adiabatic invariants:

2
MVJ-
u o= -5 the magnetic moment
where:

M is the mass of the particle and v, is its

transverse velocity

1. J.W. Van Dam, M.N. Rosenbluth, and Y.C. Lee, IFS Report 12

March, 1981



111

J = Mfle" = the longitudinal action

where:
1 is the arc length along a field line and v
is a particle’s parallel velocitye.
Now the existence of these two invariants implies that the gyration and
bounce periods of the particles occur in much less time than a
characteristic fluctuation of the plasma. Because of this, the potential

energy of the plasma can be written as:

deduvB
Vi

W, = [ xf (eF) = [dadBdI(eF)

__..wheres ___ S S

F is the gyro— and bounce- averaged guiding center

distribution function: 5

Mv
€ is a particle’s energy = _El' + uB and:

o, B are the flux and azimuthal angles respectively
for axisymmetric systems and define the magnetic field

such that:

Also note that the velocity space integration includes a summation over

£
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the species in the plasma; one which, if taken over parallel motion, would
vanish for trapped particles. 1In addition, finite Larmour effects, the

electrostatic potential, and relativistic effects are neglected.

The procedure is to take this integral, give it a displacement £ in
the magnetic field, and calculate the variation in plasma energyz. Now if
a Lagrangian viewpoint is adopted (coordinate system moving with the local
velocity of the plasma), the number of particles in an infinitesimal phase

space volume:

FdadBdudJ in (a,B,u,J)~space

is conserved by Liouville’s theorem. Thus one need only calculate a

change in a single particle’s energy (¢) and integrate it in order to find

——— —

the total change of energy in the system. This can be accomplished by

using the adiabatic invariants u and J.

With this in mind, displace the magnetic field while keeping ¢

constant. The action integral J would change to first order, by:

2. Van Dam, Rosenbluth, and Lee, IFS Report 12, March, 1980

S

e e e — —— e
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g - Mf(%l)(l)[Bv" +%(Bv”)(l)] f%—l-(MVﬁq—uB’) (1)
[

31, 2 -
= IV—(MV” q=uB )
Il

where: the subscript 1 indicates first order change and B

is the first order Lagrangian change in field strength:

B = -B(V*'g—q)

q= %%:Vg

o>
1
TRES

In order to calculate the arc length, notice that in a displacement, the

quantity 91/B has the same transformation properties as the Jacobian

relation x to x + £, ie.:

%—>++ a_B]_‘{]_ + V-é" + %[(V-E)Z—VQ:V&;] + ....-}

Also the invariance of J implies that there must be a change 8(1) to

balance the change J(l). Thus the first order change is:

B=0=3W 4+ Weh, o

e T f (i S el i i T o

era



With this, one can easily invert this equation to solve for E(l).

Now, defining the bounce average as:

_ 0J,-t
Cover > = (7]

L.
M

where: gélis a bounce period

e o ¢y @

2
H = ~Mv,q + uB(l) is the gyro-averaged increment to a

114

i

" T particle’s kinefic emergy.
Substituting equation(2) into equation(l) yields:

A1)
3 PL
W, = [dadBaudJF < H > = [d x(-pq t—)

where:
Py is the longitudinal component of the pressure

P, is the transverse component of the pressure

e ———— et e e

e e e

o e e e g

4

S
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To complete the analysis, one needs the change in magnetic field energy::
W= [dvs(s(D-g.vp)
ml p4 (B &-VB

However, when this is added to the plasma energy variation subject to the

boundary conditions and when one considers the equilibrium relation:

the change in potential energy vanishes to first order. Apparently the

energy variation is second order as in chapter 2.

To do the analysis, second order change in action and energy are

needed. These are calculated in the same fashion as first order change:

2 2
=0 = 7(2) ()0, L(1)y 2 J (1) 37
Jg=0=17J + € (5E0+-§s (5;29 + e (550

or:

(2) = _33y-174(2) _ 3,1 (1)2 87
¢ G =G 5 (3)

where J(z) is:

1,07 20 % oy 2

e e e e e

s e e
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n (1) 2 (1)
—uB[(b-vg)z—qz—(v . é)z + VEVE + 2(B—B—) - 1 < (“B )2

This comes from the second Lagrangian field change:
2 2 ~ 2
B(Z) = %B[(V~§) —-2q(V<g)=-q + VE Ve + (beVE) ]
and yields the change in magnetic energy:
1,3 .2 v , , o
o = 5/ £{Q-(EVE)[Bx (7 x B)] + & x Q x B}

where:

Q=7 x (g x B

"7 7 777 "The total change in énergy comes, once again, by combining the plasma and

field energies:

3 2 2 - - ‘
W= ';"fd %[ 0Q|+rQ+0Ty be (ExQ) HaEsV py- %(ZQ" BTRET By ]+ b

where:
ap
B OB
2
3 py
T = 1)
3B

are measures of stability against firehose and mirror anisotropy

Vof
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modes;

Jy 1s the parallel equilibrium current

v o= v-vel
0B

and 6w, is the kinetic energy variation which arises from the second term

in equation(3). Performing an integration by parts on the distribution

function F in this term yields:

2
8wy = - %{dqududJ(%§)< "> » @ standard result.

Now these results are consistent with those of a guiding center
plasma with u,J invariance. Its consistency establishes that the methods

here yield results well-known in MHD plasmas. The next step is to carry

Consider a plasma that is entirely non-MHD. According to this new
energy principle, this consists of replacing the frozen—in field line
constraint with the conservation of magnetic flux through a precessional
drift orbit. The calculation begins as in the MHD case; namely, the
invariance of J implies that a particle’s energy must change as the
magnetic field is displaced, where o and 8 label the same field line. The

difference occurs when it is noted that particles are not constrained to

i
?
F
|
|
|
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follow field lines. This causes the surfaces of J to move in (o ,B)-space

and the original contours:

a = an(B,u,e,J)

obtained from J-invariance, are displaced into new contours:

a=ag+ al(uO,B,u,e,J)

The first ofder change in J isrthus different than in the MHD case:
Jy=0-= (1) 4 8(1)(2?‘1) Iy

(1) 3
a,B,u +a (WS,B,U (4)

where: o S

%ﬂ-indicates the drifting away of the J-contours
o

from the lines of force.

One must add to this calculation a new step: the calculation of the

secondary displacement a(l). This is obtained from the condition of flux

invariance:

81 =0 = [a(Dag

where integration is around a constant J-contour. Now defining a double

average over both bounce and drift motion:
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= ¢ \-1 de (-1
K eee D (559 ‘de(gaJ < aae D

where:
3 . . .
5o 18 the precessional drift period
o . < aE—) is the rate of precession
ao at

and solving for a(l) and é(l) using equations (4) and (5), as in the MHD

case, one obtains:

e o <> (6a)

oD = (ggg"l[ KKH> =-<H> ] ' (6b)

where H has the same form as the MHD case. Again, wutilizing the
equilibrium relation of the MHD case and the boundary conditions for the
magnetic energy, the variation of the total energy wvanishes to first

order. Once more second order variations J(Z),¢(2),8(2) are needed.

Thus following the same procedure as in the MHD case, the second

order invariance conditions imply that:

B S o Bh ubn T T el U N S S—
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3,50 = 3@ 4 @Ay )@,
: dE da

2 .2 2 2 2
+ M (%j;)i-%a(l) <§;§>-+a<1)a<l><§%§g

+ (D24 (13 ;1) (7a)
oe do
$$2) = 0 = [a(2)gg (7b)
3¢(1)
Using ( )= 0, one can solve equations (6a and 6b) and

ae

(7a and7b) for 2(2). The result is:

T/ (2) _= a¢-—l ) 38" (2)" 31(1) "(]_E)BJ __ ( 1-5 _ A
€ G Ispmatd Tt e D) G

2 .
. (1) ,3J

The plasma energy can now be calculated from the equation:

Wy = [dadgduds(re (2))

Note that attention must be given to maintaining the correctness of the

e e T e e — o e o
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coordinates. Specifically, o must be transformed from a coordinate which
describes a drift orbit to one which describes a field line. The

transformation is:

3
(_3?)0(’ O_>'+++ (—S)J

3J =1, 3 d
(g Gaer Gpe

But to continue, the wvariation in total energy is formed égain by
combining the change in field and partiéle energies. Since J(z) makes the
same contribution to the total energy and ka can be derived from the last
two terms of equation(8), one merely follows the procedure outlined

earlier. Integrating equation(6), the result is a new generalized kinetic

.energy principles _ e

e

T e s e e e e e e e — e
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3 . 2 2 . . )
W= -;—fd ?S[O'QJ_"'TQ "+0||J”b- (é X Q)"l—qg‘-v P~ %(ZQ""’Q'VB)E:V pJ_]

Q>
QL

2 2 2
+ofaadads{h «r >’ + 2 <y’ n ) (9

Qo

It is instructive to compare this generalized energy principle in the MHD
and non~MHD limits. The local part in the two cases are the same, but the
kinetic part is quite different. While the first term resembles the MHD
result, the second term, dominant in E.B.T. applications is proportional
to 9£/3J (although it vanishes when the distribution function makes the

components of the pressure functions of the magnetic field only).

Now the 8w of equation(8) conforms to all the mathematical properties

of stability analysis and hence Sw > 0 is both a necessary and sufficient

condition for stability. Because of this, predictions of this new energy
principle offer a departure from rigid ring theory. According to these
results, because the rings of a ring stabilized plasma are not MHD
plasmas, they will have different stability properties than they would if

they were MHD plasmas.

Consider as E.B.T. configuration. First of all, it is axisymmetric.
In this case, the drift averaged quantities in equation(9) wvanish when
m = 0 and the equation becomes identical to that of the MHD case.

Employment of the Schwarz inequality, much in the same way it was used

e s 2 Tt § (i Bt B S
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when discussing rigid ring theory, leads to the fact that the kinetic part
of 6w in equation(9) is positive definite provided the local conditions

are such that:

OF
()g,u <0

5

3T <0

€,U

Now in a ring stabilized plasma, the core plasma can be described by the
MHD case, but the hot electron rings must utilize the non-MHD analysis.

Using both the MHD energy equation and equation(9), the new Sw becomes:

0 *h

—_— Y ~<<HDY N (10)
< W gp > :

9F,.
Sw = GWG'C'+%fdochdudJ{ <§§E)(1-

3
For ease of interpretation, equation(l0) has been broken into two parts .

swCCe is exactly what would have been found if the entire ring stabilized
plasma (core and rings) had been an MHD plasma. Only the second term
involves the non~MHD hot electroms (with Wygy and < wyy, > representing the

diamagnetic and bounce averaged drift velocities). Now the purpose of the

rings in a ring stabilized plasma is to cause a local magnetic well as

3. Van Dam, Rosenbluth, Lee, IFS Report 12, March, 1981

,,,,,,
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discussed earlier. This in turn creates a local minimum B and reverses

the magnetic drifts, since the plasma pressure decreases steadily outward.

Hence wy, and < w4y » are of opposite signs. Now giveun the local

conditions for positive definiteness defined earlier, the difference term

in equation(10) is negative. This predicts that the plasma will be less

stable than it would given purely MHD assumptions.

One can specifically compare the two energy principles by finding the

L
stable operating region of By, as a function of Bo + Consider the

perturbed parallel field Q”, and assume that the magnetic well produced by

the rings is sufficient to reverse a particle’s drift. The energy
principle describing this component of the energy is:
d1 2 i, .
[[=ug )] g =] 2
__.v,,....al AN 2 ——— e C B ‘V” P PR—— h V"
U=[2=(tq)) -[ dedu (=) + [ dedy ((—) (11) .
B de d1 da "pdl, 2 -
e f—(V”K'I‘UB )
Vi M

/

where:

¢,h are ring and core plasma quantities

(%-Vb)-_jELZ is the curvature
5 IVa |

30

K

4, Van Dam, Rosenbluth, Lee, IFS Report 12, March, 1981

e e

e e e e
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For large mode number m in axisymmetric systems 8w may minimized on each

field line. By the Schwarz inequality:

3 2
di Plh | 4Plc
U< +
IB(I B3B +_§T—)Q"
-3P1h
2
[f—zQ"(Plh B )]
+ 9B

8 »
iy , - 29D dp
& - B ,~” ~Pin
Sl 55" TP 55!

Now one would like to choose a perturbation which would make the sign of U
determine the overall stability of the plasma. One case is when Q « 1/B.
In this instance, the condition for stability (at least for an isotropic

plasma) is such that:

41.2p Ph + P’
IT(_Z‘C‘)I—( €= )
- rdl dl B B B
_pcf']? + gt a1 > 0
=
B

If this condition is not satisfied, what will occur is a type of mirror
instability. On the other hand, if equation(12) is positive, the
quadratic terms in the field perturbation are positive definite and 8§w can

also be wth respect to BQ".

P

e i ey
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Next, take a flute-like displacement:

the Schwarz inequality, stability

determined by the sign of:

along

each field 1line

126

is




127

V(a) = -p f-_(zK— _ZJ +‘2pcfE§{;K2—3K(E;Q +<E;gz]
B B

C 2
[Pcf—g- pcf£g<2K LY

_ B
3
2p Ph(fgl

f—?(l +—) + [ |

B f——(ZK" —2-)
B

Further, V(a) can be interpreted such that the first term is the
driving term for electrostatic interchange modes and the second represents
compressional modes. Now the first term has been calculated previously

using rigid ring assumptions and has been traditionally associated with

the threshold for stable operatlon in E B T., namely.

d1i
_ 2pp 45x
Bh BZ > =
2,.41,Pn
B [5(=)
B Pn

But the last term produces additional instability not seen before coming
out of MHD or guiding center plasma analysis. It is not a trivial

distinction. If equation(l2) is satisfied, the last terms of V(a)

 overwhelm the first two and the interchange mode is unstable. TFor this
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case, the upper limit corresponds to a B, three of four times lower than

that predicted by MHD analysis. It is clear that this new energy prnciple

will lead to a whole new model of stable operating regions in ring

5
stabilized plasmas .

5. Van Dam, Rosenbluth, Lee, IFS Report 12, March, 1981
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THE FUTURE OF STABILITY THEORY OF RING STABILIZED PLASMAS

The direction of theoretical research into tﬁe modeling of hot
electron rings in a warm, guiding center plasma can be broken into two
categories. The first is to make a more realistic model of the plasma.
Geometry is the leading edge of this research. Slab geometry has no
curvature and thus neglects the driving terms of some destabilizing modes,

weakening the realism of the analysis. The density structure of the

‘plasma, charcterized by the parameter §, also lacks realism in past models

by being simplified to handle certain domains of reactor operation.
Further, analysis in the past has assumed a local view which may lead to a
lack of cohesiveness one senses when reading various papers on interacting

ring theory. The key to this problem seems to be, basically, the concept

of a mode spectrum.

The second direction of research is tied to the concept of evolution

in science. If an MHD plasma has a small non-MHD component, it would seem

_that a modified MHD analysis, treating the non-MHD component as a

perturbation would produce the same results as an analysis in which both
components of the plasma are treated self-consistently. As has been shown
this has not been the case. Yet perturbation theory has worked on many
physical theories in the past and the recognition that interacting ring
theory may be the next higher order approximation holds the intriguing

possibility of this second direction in theoretical research.

Srne
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Overall the two directions are tied to one another. One would have
great difficulty making a more advanced theory from one whose full
geometrical implications are not yet understood. Thus it is reasonable to
start at this point. Recently, efforts have been made using interacting
ring theory to treat the radial aspects of stability in ring stabilized
plasmas by modeling the plasma as a z-pinched core plasma surrounded by
hot electron ringsl. The hope of this model is to allow for curvature in

a more realstic way than an artificial gravity term. This would lead to

finding a mode structure and allow construction of a mode spectrum which-

would include modes from diverse calculational methods (such as W.K.B.

approximation methods) and long wavelength modes excluded to this point.

Without going into the details of the calculation in great depth, the

procedure copsi;tg gfi_,_wnn_
(1) Finding a radial differential equation which describes the
behavior of the system based on pressure balance relations
and the Vlasov-Maxwell equations familiar from previous
chapters.
(2) Analysing the resultant equations in the appropriate

frequency limits to determine its mode structure.

1. H.L. Berk, M.N. Rosenbluth, J.W. Van Dam, and D. Spong,

Z-pinch Model For A Hot Electron Annulus (to be published)
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The results have been encouraging. Not only have modes obtained from

W.K.B. analyéis been recovered, but long wavelength modes, with

wavelengths stretching over the entire annulus have been calculated, thus

creating a more unified mode structure.

As to the density problem, researchers using interacting ring theory
have discovered a new mode in the plasma if the backround density is too
high., Recent work has shown that when this new mode is included in the
analysis, the energy principle obtained in the preceding éhapfer is both a
necessary and sufficient condition for stabilityz. However, a more
detailed model is needed to understand this phenomenon in the context of
the entire den;ity picture. Recent work points to a density threshold

around which the work with radial models of the plasma and density

parameter analysis can be merged, but once again a more detailed model of :

the plasma is needed in order to undertake the task of such a merger. In
the end, though, the picture of interacting ring theory is gradually
becoming more complete, organized into a single unified form, and
self-consistent. The major question that remains is: Is there something
beyond interacting ring theory and if there is, how accurate are the

results obtained via its use?

2. H.L. Berk, M.N. Rosenbluth, J.W. Van Dam, and D. Spong, Z-pinch

Model For A Hot Electron Annulus (to be published).
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One way to answer this question 'is to consider the distinction
between rigid ring theory and interacting ring theory. Wﬁen § = 0,
Bo << By, Dboth theories show identical results. But this limit implies
that the annulus is a negligible part of the plasma with its effect being
minimized also. This is just begging the question. If there is no
non-MHD component to a plasma, the plasma can be handled by MHD-analysis.
A more meaningful question is to ask in what limit the analysis methods of
the two theories agree. Said another way, when does the frozen-in field
line constraint lead to flux conservation (or vica Verga). In a recent
paper, Nelson let the hot electrons be perturbed in discussing a different
formulation of rigid ring theoryﬁ. His analysis still showed basic
differences in stability regions between the two approaches, although the

slab model wused clouded the issue by its lack of realism. Even

discounting this, it can be hypothesized that using a form of perturbation

theory to describe the effects of hot rings on core plasmas is not enough
as long as the frozen—in field line constraint is utilized to close the

equations. One must somehow perturb the method of analysis itself.,

Now the work in the first direction of improving the realism of
plasma modeling provides insight into work on the second by clarifying the

distinction between the two results. In the limit of high backround

3. C.L. Hedrick and D.B. Nelson Nuclear Fusion 19, 283, (1979)

e
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density, anyway, the more pessimistic predictions of interacting ring
theory are tied to the compressional effects of the annulus on the core
plasma. These new modes come out of interacting ring modeling quite
naturally, but cannot be accounted for using rigid ring theory. Having
the frozen—in field line constraint seems directly to lead to a lack of
knowledge about compressional effects. To avoid this, it might be
possible to use a perturbation technique on this constraint. Let the
field 1lines be perturbed, but by only a small amount, from their original
positions Another approach might be to analyze -the functional relation
between fiux conservation and having the field lines frozen into the
plasma. If one could understand the parameters on which this relationship
is based, one could do a parametric study on exactly when the two

constraining conditions are the same and how they diverge parametrically.

of the two theories.

Compressional effects of the annulus are estaBlished as facts in ring
stabilized plasmas. This implies that the natural behavior of the system
is not well described by the frozen-in field line assumption. The flux
conservation of interacting ring theory is a more physically valid
assumption about the plasma. How far it goes in describing the real
nature of the system is subject to speculation. Could it be that flux
conservation is a less rigorous constraint than the frozen~in field 1line

condition, but that they represent two levels of approximating a more
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general physical condition? If so, is interacting ring theory nothing more
than a modified perturbation theory analysis which acts on the method of
analysis father than the behavior 6f the system? These and other questions
will be answered in the years ahead as the problem of stability in ring
stabilized plasmas is studied ever more accurately in the future. In all
this; one goal is manifestly present, to discover a unified and complete
picture of stability in ring stabilized plasmas. With all the recent

progress in this area, this goal is realistic and close at hand.
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FUSION POWER POSSIBILITIES

The evolution of stability theory herein discussed points to the
necessity of using the more pessimistic predictions of interacting ring
theory in attempting to build a successful fusion reactor out of the
E.B.T. design (See figures 1 and 2). Even allowing for the possibility
of a new breakthrough in theory, the bright picture of stability presented
by the rigid ring model seems to be a thing of thé past. There 1is Jjust
too much theoretical basis for the compressional effects of interacting
ring theory to deny that such destabilizing effects exist. Given this
fact, the beta of the core plasma must be limited to around 10% for the

plasma to be stable against interchange modes.

Among the recent developments in hot electron ring stabilization is

an—attempt—to utilize —a tandem mirror=like—device —in —a polygonal
configuration. The motivation for this research is an article by J. W.
Vam Dam applying the interacting ring model to a tandem mirror de&icey.
Due to reduced radial transport, no need to recircularize flux sdifaces,
and simplicity of coil construction, electron rings have on occasion been
proposed to act as end plugs on tandem mirrors. The only difference in

this scheme i1is that a polygon configuration would incorporate these

1. J.W. Van Dam (inter-IFS note)
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advantages with the toroidal flow of plasma inherent in the E.B.T.

design.

To begin, in an E-ring tandem mirror device, the stability condition

is determined by the field average of the driving term introduced

previously using pressure balance:

ZKP;

Now,

5PLh
(1= —>)

B K=Pa
where:

k is the curvature

PosPy, are the core and ring pressures; and,

_.primes_are radial derivatives. . . _. ... .__. —— e e

in the plug region, B, must be low enough to prevent the denominator

of equation(l) from blowing up and causing destabilization. Advantage can

be

-and

fairly high value (10-15%) yet avoiding the singularity. Further, B

gained by widening the annulus through appropriate microwave heating

increasing the curvature of the field lines, allowing B. to have a

c

could be increased in the straight sections, where there is no curvature,

_for

fusion purposes.

—
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The purpose of an ongoing computer study is to study the extent to
which the rings would serve as line~tying agents. For this study, a
modified version of the ballooning eigenmode equation must be constructed.
It starts from the generalized kinetic energy principle derived in the
previous chapter. For large mode number perturbations (flute-like in the

vicinity of the rings), the ballooning eigenmode equation is given by:
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2 - e e
- 2 2
BeV (—,B-VX) + LU x4+ {p.Cc + %_)—pc[Z(%_) + 3K3B_+31< ]
IVl [V |

afy . 2 . . ¢ B c

} x=0
Y

7

Bdude ST, uB) |
TNET R -
v <WKﬂm >

2p
[ T+ ZC+—12-f
B B

X = E+Vy; the radial component of the displacement £
_ - V(‘) 2 .
kK = (B*VB)—-IVy| ; the curvature
B
3p
- 1+ =B
-1+ PLh™Pih it = 3B
o = ——_EZ——_ and T = —s

are the measures of anisotropy and must be positive.
f;, = the hot eiectron distribution function which is a
_ function of flux (¥), magnetic moment (u) and enmergy
(e = %Mvi + uB)
< «¢s > = bounce averaging (Note that when this is done the
ring component of the plasma is entirely trapped in the

mirror field)

E— 3
3y

Now the fact that the hot electron rings must act as end plugs in
being the agents which produce line-tying is the only difference between

this and previous stability analyses. To accomplish this, at marginal

¢

Erci
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stability, field 1line averaging must be performed on equation(2) and the
result must be negative (subject to the boundary condition: 98X/31 = 0 at
the ends). Since equation(2) is an interchange stability condition, the

idea of line-tying will be justified.

Equally important as the prospect of stability in this proposed
configuration is dits promise as a possible reactor. To determine this
facet of its feasibility, one must perform a calculation on this type of
device, in the Lee-Vam Dam limit, that has been applied to a standard
E.B.T. reactor by many researchersz; namely, a Q-value calculation. It
is useful, for the sake of clarity to review this calculation and then to

apply it to the E-ring tandem mirror.

Véhe faét.;ﬁaébié a-£;actor is heated to ignition, the core plasma heating
could be turned off, but the ring heating must continue for the 1life of
the reactor. Thus the power required to sustain the rings defines the
so-called ﬁfigure of merit" for the reactor and is the major factor
contributing to its economic merit. To be more specific, the power

supplied to the annulus is dissipated via three dominant mechanisms: drag

2. N.A. Uckan, EBT Ring Workshop: Proceedings Of The Workshop

December 3-5, 1979, Oak Ridge , Tennessee, p.507

For ring stabilized plasmas, the economic feasibility boils down to
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loss, scattering, and synchrotron radiation (with brehmstrahlung radiation
and non-classical power losses playing a much smaller role in the
temperature regions of a reactor plasma) and this power must be constantly
replenished. In contemporary experiments, drag loss (energy exchange
between ring electrons and core electrons through Coulomb collisions)
proves to be the main mechanism for power loss. However, when dealing
with reactors, these experimental results must be scaled upwards, so it is
important to be as general as possible in order to avoid scaling errors.

These facts motivate the subsequent analysis:

One begins by defining a Q-value for the reactor Qg = Qelectric)®

net P _~P
Qe = - e™™ (1)
Py Py
where:
Pnet = net electrical power
P, = gross electrical power produced

Py = input maintenance power

This equation may be rewritten in terms of reactor parameters such that:

e " Men(zy +2,) (2
P ,
Py = R (2b)

nu + Paux

L
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where:
Pyy, = thermal fusion power
Pu = microwave power required to sustain the rings
Nip = thermal conversion efficiency coefficient
n, = microwave conversion efficiency coefficient
P ux = auxillary power requirements (pumping, refrigeration...)

Substitution of the definitions of Py and %J into equation(l) yields (See

3
figure3) :

P
u
nth(Pth+Pu)—(Paux + —)
- n
Qg = s (3)

P]J
Paux =
u

i

mIf.onemassumes.that.PaUX‘<.Pu/n“,,onevcan simplify. equation(3)-to-reads —— — - -

Pty

For large Qg, the reactor would have a high overall efficiency, while for

small Qg, the reactor costs would rise. In fact, for Qg > 15, the cost

per kilowatt would remain nearly constant. This is because for Qe > 15,

3. N.A. TUckan, EBT Ring Physics: Proceedings of The Workshop Dec.

3-5, 1979, Oak Ridge, Tennessee, p.507
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where one uses the assumption:
T~T~T

Substituting this back into equation(5), one obtains:

2 L
th MW 2k
‘-{7;—('1\—,13-) = 1.33 x 10 < ov >DT—§2_-
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Next one can calculate the microwave power necessary to sustain the rings.

In its most basic form, the annulus power loss is given by the equation:

PUA = Psynch * Phretms T Pscate T Pdrag + Phon-classical

where:

Psynch = power loss due to synchrotron radiation
Pyrehms = Power loss due to brehmstrahlung radiation
Pocatt = 90° pitch angle scattering of ring electrons

on core ions.

(6)

Pdrag = power loss due to Coulomb interactions of hot electrons

on cold core electrons

D 1 1 e
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PuA = microwave power to sustain the annuli

Pnon—classical = non—-classical power loss mechanisms assumed

negligible here (and verified negligible in experiments)
These power loss terms can be expressed in terms of plasma and machine

parameters. When this is done and substituted into equation(6), the

result is:

PuA 20 2

A 3.2 x 107 By (y=D[1 + 0.5 =D)] (Pgyneny
+ 8.5 x 10 epiY (Pbrehms

9 -
+ 1.0 x 10 AL ‘iégl_%lzlnA i (Pscatt)

Inh; = 38—1n(7E;-= 20-25

np,Tp,By = density, kinetic energy, and magnetic field

strength of the annulus

0,504, 0, = COTE plasma density near the annulus

1nA = Coulomb Logarithm ~ 20

VA ZWaGALA = annulus volume

SA = total annulus thickness

e

e
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length

. x number
section

L, = total annulus length = lAN =

of sections.

One can neglect brehmstrahlung radiation since it is more than two
orders of magnitude less than the other loss mechanisms. When this is

done, equation(6) becomes:

P 20 2 _18
2 2 3.26107 N, By (-1 1.040.5(y=1)] +1.56x 10~ °m (1+2:2 1

Y
]
VA P‘/Y‘_l . Yy + 1

But this equation still contains unmeasureable, or rather, hard to measure
quantities. To put this into an equation formed with easily measured
parameters omne must first find Pua/VA in terms of the magnetic field and

the beta of the annulus. To accomplish this, one can use the fact that a

T e e e e ey

s

cutoff (wce < wpe) exists for microwave propagation which imposes a cutoff
on the gore density (np) near the annulus which, basically scales as the
square of the magnetic field.

Let fc = microwave cutoff,

Then n, = flcutoff = f.n, 3 n, = 10 B,

Now, definiﬁg the annulus density in terms of By and By:

B B2 s 10183 B

21 X

ny = 2.5x 10 24 hA
T, T,/511




And substituting these values into equation(6), one obtains:

P
ALV 20 2
A = 3.2 x 107 n,B,{ (r-1)[ 1.0 + 0.5(y~1)]

VA M

Y 0.5
+ 15.6f (1+ )}
c/ <z N
/Y‘l Yy +1

13

20 2
3.2 x 107 n,ByF (y,f,)

2y
Tp/511

]

Fo(v,£L)

Assuming T, < 1 Mev, this becomes:

149

where:

Fo = (y=1)[1.0 + 0.5(y=1)] + 15.6f (1 +

%/;4_1

216Ff ) when T, < 1 Mev
A
c;?Z:T

e I | 1 e e e S O,
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There is one further fact that needs consideration. In the
introduction it was pointed out that the stability of the core plasma in

ring stabilized plasmas depends on the ring to core plasma densities. To

be more specific, for stability:

Equation(6) can be written as:

-

P 202 38 2

_i233£§z 3.2¢107  Bym, (y=1)[ 140.5(y-1)] +5¢ 10 £y (142:3)

Va u VERENTE
Bszr

= 1.2f . ZY h7A - Tp <1 Mev

v - 1 (1,/511)
2 4
1.2y BepBa

£ YA 2
r V¥ -1 (T, /511)

where:

——————

e

B
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B

ep = core electron plasma beta near the annulus
Tep = temperature near the annulus

It is evident that these equations confirm the experimental finding
that drag losses dominate a large range of ring energies; but, as the
temperature of thé annulus increases, drag losses decrease, falling off as
T -2 . . . .

A . At energies around 2 Mev, ring cooling is accelerated by
synchrotron radiation. Globally, the total loss rate has a broad minimum
bounded by the extremes of these two loss mechanisms. Further, from these
two equations, the important parameters for loss rate seem to be: ring
beta, the ratio of hot to cold plasma densities required for stability,

the magnetic field strength near the annulus, the fraction of microwave

propagation, and the ring volume. It follows that determination of

microwgygdhgdﬂing“~Lequirementsu_depends_won~_a__knowledge__oi_—all——these

parameters.

Experiments with the E.B.T. series (E.B.T.-I and E.B.T.-S) have been

"
conducted at Oak Ridge to determine these parameters . The results are in

reasonable agreement with theoretical predictions and there 1is some

confidence that these figures, though done in a low parameter range, can

4, N.A. Uckan, EBT Ring Physics: Proceedings Of The Workshop December

3-5, 1979 Oak Ridge, Tennessee,p.507
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be scaled upwards to reactor parameters. This is attempted in figure4.5
Assuming this to be accurate, one can pick a hot to cold plasma density
ratio that is in a stable region and a corresponding ring beta. Also the
magnetic field strength near the annulus and a microwave cutoff frequency
can be determined readily from machine paramgters. 4A11 that is left to do
is derive an equation for the annulus volume in order to calculate the
microwave heating requirements and further, the Q-value for any

hypothetical ring stabilized fusion device.

The  annulus volume,  based on- experimental 'measurements and
theoretical estimates, appears to have a thickness that ranges between a
few and‘several relativistic gyrodiameters of the hot eleCtrons6. Also as
seen in these experiments, the annulus length appears to be of the same

order as the plasma size (in E.B.T. type reactors), and seems limited to

a length of not more than 10 centimeters. Theoretically, ring length is
associated with the heating anisotropy (T"/Tl) because the size of the

annulus depends on its stability which in turn depends on its drift

5. Uckan, EBT Ring Physics: Proceedings of the Workshop, Dec.

3-5,1979 p.507

6. N.A. Uckan, EBT Ring Physics: Proceedings Of The Workshop December

3-5, 1979 Oak Ridge, Tennessee, p.507
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surface characteristics. From these considerations, two formulae and

7
scaling laws for the annulus volume have been derived .

1. The ring thickness Ga =~ g few times the ring gyroradius (pea)

and the ring length lan < the plasma radius a.

2. The relativistic and dimensionless ring and core parameters remain

constant from device to device (ie. Sa/a, la/a)
These two scaling laws correspond to the following two
calculations for the annulus volume:

CASE 1:

Hot electrons have a gyroradius:

separate

VYZ‘l

a =3

This implies that the annulus volume is calculated from the formula:

!/2
_Zy—]_

2
Vy = 1.07 x 10 5 fefie

7. Uckan, EBT Ring Physics: Proceedings Of The Workshop, p.507

T
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fg = annulus thickness enhancement factor (GA_= preA)
f;, = annulus length enhancement factor (lA = fLa)
Experimentally, fr= 4-6 f;, = .5-1.0.

CASE 2:

To make the parameters dimensionless, the ratio VA/Vp must be
calculated. With this in mind, the formula for the annulus volume can be

written as:

VA _ 21T3.6A1AN ~ GA lA a N
——— W————z-—-—— T v— — — p—
Vp ma 2mR a aRm

Finally, QE can be calculated from plasma and machine parameters.
Assuming in the energy range of interest, drag losses dominate (ie. TA =

300-1000 kev) and Nep = +35, N, ® 5, one can write:

Qr =1 n——Pth
E = "th
upuA
,
2
18V, nj Vy -1
=~ 3x 10 2 OV
VA nAnp D Y

Using the following definitions and approximations:

T T T T
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Qp = 7.5 x 10 2 £ (B
. X — - : Z
E A r Bep T BA DTy
I/z‘”““ i
B -1
~ 3 x 10 P £.(0) <GV>DT——_YY |
A A I
v, A |
Sl T (et 2 o |
VA Y
For core plasma temperatures Ty ~ Ty ~ 15-25 Kev ]

22

and for a range of Tp ~ 700 = 1500 Kev
5 \

YY'I ~ .9-,97 (0(1))

2 _V
U = (1.4-2.8) x 107 ¢, B
Va

.-

i
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One can use figure 4 to find fr‘ It is based on a magnetic field of 2
Tesla and carries with it the stability profile of rigid ring theory (a
tenuous assumption). If ome uses this threshold value of f,. on which the
plasma is marginally stable then f. = 20. Finally one can use the formula

derived previously for.vg. In the first case:
: A

\Y 3 RB
La1esx10 2L 1
Va N fEfL V& -1

If, for example the machine parameters are:

Ty, = 700 = 1500 Kev; f

\%
—
o
-
Hh
13

1 * 1.0, R = 30 meters,
N = 24, By=2T

Then:

Qg > 30

In the second case, Vp/VA > 40 which means that Qg > 10. Both of these
cases predict the feasibility of ring stabilized fusion reactors for

sufficiently large parameters of temperature and major radius.

For use in this paper, this calculation is general enough to apply to
any reactor that utilizes hot electron rings as a method of stabilizing

the core plasma. Indeed, research done by the author into a new type of

S U

e e
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reactor which uses semi~toroidally connected tandem mirrors will be
proposed as a future extension of E.B.T.. There the assumptions are
somewhat different from the ones used here (specifically, the parameter fr
and Bc are chosen from the stable operating regions of interacting ring
theory [the Lee-Vam Dam limit] and the annulus'exists only in a small part
of the plasma). However, this analysis is general enough to include these

features and applies quite well to ring stabilized plasmas in general.

In all fairness, it would be improper to neglect entirely the more
basic ingredients of ring power balance. Briefly, the equation for %Ja is
derived from first principles as follows: the energy lost per wunit

8
distance by a fast electron moving through matter (including plasma) is:

R

2

9E___4me mg - v

Tx ———{ 1t = -
mv c

where A is the ratio of maximum energy loss per collision to the

minimum energy loss

9
The energy lost per unit time is:

8. W.B. Ard and R.J. Kashuba EBT Ring Physics: Proceedings Of The

Workshop, Dec. 3-5, 1979, p.333

— e — —— e
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4 L*n 2
dE _ Ame I v
§Eodrag - _—557_{1nA - =]
c

The other terms in the power balance equation come similarly from

basic equations in physics:

N
3E V90 2 lée ny v (y-1)
ﬁ)scatt = -Z—(Y l)mc = praps (Y‘_l)j /2 1nA
where:
32e ny
Vgg = ——— 1lnh
11 Tp Vv
Additionally:
oF

2
§Eﬁbrehms_5_yni¥mc_¢

rad

9. Ard, Kashuba EBT Ring Physics: Proceedings Of The Workshop, p.333

10. J.D. Jackson, Classical Electrodynamics, John Wiley and Sons, Inc.,

New York et. al., 1975

11. Jackson, Classical Electrodynamics, pp.701,738

e e
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where ¢raq varies in different velocity limits:

16 -~
$rad = 7{‘¢

in the non-relativistic limit

; 1y~
¢rad = 4(11'12Y - ‘3~)¢
in the extreme relativistic limit

and:

2
L
_ Yo e
¥ = 137 s
12 137m ¢
Finally:
22 2 2
BE) _2evywrp
3t synch — 7 ';F};r““

The actual figures used in this section can easily be shown to arise from

these equations.

One last point is that many different methods of the calculation of
ring power balance have been used, the most basic of which start directly
with the Fokker-Planck equation. Fortunately they all produce close to
the same result. Consequently, coming from basic physics and varying
methods of calculation, the problem of ring power balance is fairly well
understood and the results of these calculations can be viewed with some

measure of confidence.

12, Jackson, Classical Electrodynamics, pp.672,679
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For the purposes of this paper, the previous calculations must be
applied in the Lee-Van Dam limit of interacting ring theory; namely, that
the beta of the core plasma can be no larger than .l1. To accomplish this,
, assume that the temperature range of the plasma is such that drag losses
and synchrotron radiation losses dominate the microwave heating balance
equation. Thus it 1is necessary to resurrect a few equations from the
previous calculation. For easy reference, they are listed below:

Pth . PuA - Psynch Pdrag

% = Moy oo +
HPa Va Va Va

P 20 2

_symeh _ 35 % 10 B,y - D[1 +0.5¢ ~ 1)]
Va

Parag _ -39 - y1lnh

p " g2 i
021033 % 107 <owpy B
VP ';2—'

Direct substitution yields:

B o e 1 e Tt e O R



2 4
2 BB
v 1.33 x 10 <GV>DT ——
T
Q=N "

u 20 2 -39
VA 3.2¢10 Byna (Y= 1 + 0.5(y=1) + 2.5x10 nAneprT_.YlnA
Yy -1

This can be simplified using the previous assumptions that:

2 4
n, = _f};(%‘*_)zni n; = 1.56 x 10”2%:_
InA ~20
Ngp =«
ny = .35
to_yield:
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18 V B \M 1
Qg = 3 x 10 VE £, (EZ) <ov>prk F(y ,8.)

19 Vp 2
~ 4 x 10 VA— fr <0V>DTk F(y ’BC)

where:
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4 Bp2 2 T 1
F(Y,8,) = [5.13 x 107 () (v = 1)-S + L]
B S

c

T
= [1.3 % 107 (y° = 1.8 4 X -

Bc ;Y -1

and the previous assumptions have been used that:

B 1‘ICTC
)
By
B k2
B = S
2

31

Ju

4

The only difference is that a density profile k = — has been added to

e

account for the very real radial fluctuations such that the density is
greater at the center of the plasma than it is at the vicinity of the

rings.

From here, for the purposes of greater accuracy, the analysis will
\

— can be obtained in
Va

diverge from the previous case. To begin, the ratio

the following manner:

R i o TR LT PP



The radius of curvature R. = 2a and the length of a bump is about 4a

for a mirror ratio of ~2. Hence:

v Sa 2 yheree = B
Vy 24 € R,

13
Actually, researchers have been as optimistic as:

1.3
€

~

<:l<2
> o

So there is an uncertainty as to the exact value of this

(See figure 6)

e IA —
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ratio.

Séédﬁal§j~f;f%%i;f~ T_.if“85~.2 Bo~ oL,
C

If  T,~1000 kev T, ~ 10 kev

Then fr = 0(100)

(See figure 5)

13. N.A. Uckan, D.A. Spong, and D.B. Nelson, Beta Limits In EBT And

Their Implications For A Reactor, Trieste, Italy, June2-9,1981
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FIGURE #6
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2
Further, at 10Kev, <cv>DT = 1.1 x 10"2

Thus

2

=1
_ (1.5-4.4) x 10
€

Additionally, for ring energies of Ty~ (700-1500) Kev

Y

;Y -1

' 2421 Te
so  G(Y,B.) = [0(1) + (3-4) x 107 ] = o(1) for 5~ 100
Cc

Also k=2

De

Using the relation:

op = :EQY

Py where p is the pressure; Rc the radius of curvature;
T

(o4

p < Gaussian

so that the density profile also ressembles a Gaussian especially as t>

as it would in a microwave heating loss calculation. Now:

rring2
Power « fo n rdr

SRSLE S8 Ty g S S S p—— — - —,



For the density profile chose the Gaussian:

r2
exp[ ~—]

Thus

2r..
Power « [(exp—[__;gpg

To

]/4 - l)n%]ﬂr%
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It 1is a safe assumption that k ranges between 1-2 with k = 0(1.5) being a

reasonable value.

(see figure7 and table) Thus:

Tedge k
ring 1.033
zrring 1.37
3ying 1.51
4rring 1.61
Sreing | 1467
10r 1.81

e i A s e
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QE=‘4_1

From present experiments, € has been scaled to a reactor configuration

14
as:

=2 2
e = 100 -5x 10

So
Qg ~ 10 - 100
But wusing B = ae with o depending on the distribution function of the

ring electrons, in the Lee~Van Dam limit ¢ = 5 x 10"2. In this limit

Qg ~ 8 - 20

With an order of magnitude enhancement factor of the E-ring tandem
mirror configuration coming from the fact that Vj, is reduced with respect
to Vp due to the fact that the annulus is confined to a small portion of
the plasma where the tandem mirror sections meet (in this configuration of
tandem mirrors joined to form a polygon, a tandem mirror is analogous to a

bump in the E.B.T. concept), Qg is obviously satisfactory for a reactor.

14, N.A. TUckan, D.A. Spong and D.B. Nelson, Beta Limits In EBT And

Their Implications For A Reactor, Trieste, Italy, June 2~9, 1981
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However, there is another criterion for determining the economic
feasibility of a fusion reactor, a phenomenon known as ‘wall-loading.
According to this didea, in order to have an economically viable energy
source, the power output per square meter on the surface of the reactor
must be between 1 - 3 megawatts/mz. This necessity of minimum power
output can be translated into a new criterion for feasibility studies via

the following mathematical analysis:

One starts with the equation for fusion power per volume:

-

2 4
P ou B, B <ov>
LR TR E IV T e
Vp T |
. 4
Now Vp = Spf |
I
|
ff
where: ;
SP = surface area of the plasma ’
a = average minor radius
Thus:
2 4
P oy BB <ov>
P e toad = 133 x 107 S DT a
Sp T 2

or, solving for a:



PSS T |

——

S
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2
2(Load)T

a= yan VAR
1.33 x 10 <0V>DTBCB

To use this result, it must be realized that a reactor must produce
between (1-10) x 103MW to be of much impact as a power source since a
reactor which produces more than ld+Mw would be too large for most energy
production needs. Assuming this, one can write down the formula for
total power using (1-10) x 103MW as a second boundary condition on

economic feaéibility. Thus:

24 2 4
2 1.33 x 10 <ovdpqB B
Pp = (2rR)ra X v

T

Substituting for a, have:

2 . 2 2
81 (Load) T R

P =
T VA" VAR
1.33 x 10 <cv>DTBCB

3 4
32n(Load) T N
YA 758
(1.33 x 10 ) <OV>DTBCB

s
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What this equation is saying is that a problem arises in that too

much total power is produced. Using the equation:

7
- 1.8 x 10 B
2m

the proposed experiment E.B.T.R. will only produce about a 2 Tesla
15 2
field . Using a wall loading of 1 Mw/m implies that in the Lee~Van Dam

limit:
5
PT ~ 0(10 mw) (N = 24)

clearly well beyond what must be obtained in a reactor. The key parameter

is the magnetic field. Even a 2.5 Tesla field will yield a marginally

acceptable value for the total-power.

In addition, the minor radius is also a problem. For a 2-Tesla
field, in the Lee-Van Dam limit, the equations demand a minor radius in

2
excess of 7 meters for a IMW/m power output at the walls. However a

15. EBT "Checkpoint" Review LA-8882-MS, Elmo Bumpy Torus Reactor and

Power Plant- Concept and Design Study, DOE, Germantown, Aug. 4-7, 1981
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magnetic field of 3 Tesla would reduce the size of the minor radius By a

factor of 5.

For a detailed description of the effect of the wall loading.and
total_power requirements see figures 8-10. What is clear is that a small
window of oferation exists at the extreme limits of what present day
magnetic field technology can produce. This window, though small, does
provide a representation of where reactor technology exists today. The
Lee-Van Dam limit on B is much more demanding than the oldé} rigid ring
stability requirement. It thus pushes at the 1limits of present day
technology. Yet for a given 8, a suitable magnetic field can always be
found. The future of fusion reactors rests with this technology and given
an infinite capacity for creating magnetic fields, any desired reactor

capacity can be obtained. Clearly, then, a fusion reactor can be built in

-y - —t———_—_—_— e e —.

the future and modeled as a ring stabilized plasma device.

i 1 S | i &
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FIGURE #7
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CONCLUSION

From the preceding analysis, it is clear that the interacting ring
model of stability in ring stabilized plasmas has replaced rigid ring
theory in describing where the plasma will be stable with respect to the
betas of core and ring plasma. Hence one is forced to use its more
pessimistic predictions in deciding wupon the feasibility of a future
reactor. Now the problems with the Q-value feasibility criterion that
could have existed due to the necessity of operating at a lower core beta
seem to be solved by adopting a tandem mirror modification to the EBT
concept. The long straight sections provide an enhancement factor of
close to an order of magnitude in the volume ratio (VB) which more than

A
adequately compensates for the lower core beta and enables one to predict

that a Qg > 15 is probable.

The problem arises most severely in the wall-loading criterion for
feasibility. Here no volume ratio appears in the calculations and the
tandem mirror configuration has no advantages over the present EBT design.
What has been seen is that a small window of feasibility exists. Figure 1
will illustrate this point. Here it 1is assumed that a 1 MW/MF
wall-loading is necessary for feasibilify and that a 3-Tesla field is the
maximum allowable given present technology. Clearly this figure indicates

feasibility, albeit the margin of error is small.

e e e o
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One final point concerns the geometry of the configuration. At
3-Tesla, the machine would have a 10 meter major radius and a minor radius
of over a meter (See figure 2). Anything less than 3-Tesla would require
a geometry that precludes the small aspect ratio calculations of the past.
The minor radius would increase and the major radius would decrease
proportional to BH. Given these geometrical considerations it would seem
rather tenuous to go with a field of under 3~Tesla as the margin of error

would nearly disappear.

The success of any solution to a problem rests with the accuracy of
its underlying assumptions. For this reason, interacting ring theory
provides further insight into fusion research. Given the smallness of the
window of feasibility, the success of the program.of magnetic confinement

rests squarely on the shoulders of interacting ring theory predictions.

These predictions must be accurate to within 20% for the reactor to
succeed. If the core beta is required to dip below .08 for stability, the
wall-loading criterion will doom the reactor to failure or force it to
rely on a larger than 3-Tesla field. The fusion program is confronted
with these facts on all fronts and this forces a conclusion that fits well
within contemporary fusion research. There is a chance that a reactor

program will succeed, but it is close.

——
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with power at the walls as a parameter.
{(with ﬁ_

Minor radius as a function of magnetic field
a in terms of meters;
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