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Abstract

Allowing for the presence of an expected moderate concentration (~ 10%) of low
energy ions in excess of the Maxwellian distribution causes a dramatic change in the

neoclassical prediction for momentum transport, leading to agreement in magnitude

with experiment.



It is well known that the experimentally observed rates of toroidal momentum transport
in tokamaks'? have not been explained by neoclassical theory. Taking the appropriate com-
ponent of the ion pressure tensor to be given by 74 = —nymiu,0Vr/0r, where ¢ is the
toroidal angular coordinate and Vi the mean toroidal velocity on a magnetic surface, the
neoclassical value found for the momentum diffusivity u,, in the original work of Rosenbluth
et al.® and confirmed more recently* was 0.1(r/R)%p2,vs;, where pig is the ion Larmor radius
in the poloidal field and »;; the standard ion collision frequency. This value of y,, is about two
orders of magnitude too small to explain the experimental results. (An attempt to explain
the enhanced transport based on classical gyroviscosity® has been refuted® and has not been
accepted by the theoretical community.) In contrast to this substantial discrepancy the much
larger value for the neoclassical ion thermal diffusivity (x:nc) had the right magnitude to
explain most experimental results throughout the 1970’s and early 80’s. More recently, with
increased auxiliary ion heating and improved diagnostic measurements, experiments have
given values of x; well above xino. The ratio x;/xinc increases with minor radius and can
be as large as 10 to 15 in the outer regions.”® To explain the discrepancies in both u,, and y;
anomalous transport caused by electrostatic turbulence has generally been proposed®® with
the “n; mode” the popular candidate for causing the turbulence.'® There is experimental
évidence for such turbulence at high densities in TEXT!! and there is qualitative evidence®®
that ion energy containment is improved when 7; (= dInT;/dInn;) is reduced, but there is
no definitive proof that such turbulence is the main cause of the enhanced ion transport.

An alternative explanation for the enhancement of x; over the standard neoclassical
value is the increased neoclassical heat conduction which will be caused by an enhanced
non-Maxwellian tail to ion velocity distribution fip.}? Such non-Maxwellian tails are caused
firstly by the ion heating process. With neutral beam heating, for example, the dominant
collisions for the tail ions will be with the slowing down beam ions and with electrons;

the reciprocal of the resultant negative slope for In fip can be substantially larger than the




temperature of the bulk ions.'® Secondly, in the modern tokamak experiments with long pulse
times and long heating pulses, once the slowing down beam ions have scattered sufficiently
in pitch angle to populate the trapped region of velocity space, these ions will contribute
to the enhanced ion heat conduction. Lastly, the heat conduction process contributes to
the non-Maxwellian tail. The large poloidal Larmor radii of these energetic ions causes
them to diffuse outward radially too rapidly to thermalize with the bulk ions.*? The relative
enhancement of the distribution tail increases with minor radius and hence the enhancement
of x; will increase as observed experimentally. Such non-Maxwellian tails were observed
experimentally in PDX,* ATC!®, and DIII'®, but for most experiments the presence or
absence of such tails is unknown. Allowing for electron as well as ion collisions these tails
can easily enhance the neoclassical heat conduction by an order of magnitude.®

But even if this increased neoclassical heat conduction due to the non-Maxwellian distri-
bution tail is the prime cause of the anomalous x;, there still remained the abysmal failure
of neoclassical theory to explain momentum transport. This has now changed. In a recent
paper'” the author has argued that an additional non-Maxwellian part of the ion velocity dis-
tribution will occur at low energies. Due to the combined effects of a large collision frequency
for pitch angle scattering (because of the impurities present) and electrostatic diffusion, low
energy ions diffuse inward too rapidly to thermalize with the outward diffusing energetic ions
and a near singularity will occur in fio at low energies. It was shown that the presence of a
moderate concentration of such excess low energy ions (~ 10%) was necessary to explain the
density asymmetry measurements in PDX,'® where conventional theory fails to explain even
- simple momentum balance within a magnetic surface. In addition, it was shown that the
presence of these excess low energy ions leads to simple neoclassical explanations for many
hydrogen and impurity ion transport phenomena. In particular, it was pointed out that
there is a dramatic increase in the neoclassical prediction for the momentum diffusivity py.

The theory leading to that conclusion is presented here.



The neoclassical contribution to 7y, for an ion species j is

Tigr = —/ /m,v“ #B + “) sin 0 f;,d%, (1)

where 2, is the cyclotron frequency and fjs is the part of the species distribution function

which varies as sin § and is odd in v} being given by

BG’ af.?s ~

” B 7"80 Cjc Zk: [ ik (f.?cafko) -+ Cyk (ng,fkc)] . (2)

Here Cjy, is the collision operator for collisions with species k and fjc is the part of f; which
varies as cosf and is even in v). In particular the part of fjc which is proportional to

Vi (= 0Vp/or) for Vr < vy, is

x wB + m; Vi
fie = — ( 0 ”> f;’TfJO cos 0, (3)

where {14 is the cyclotron frequency for species j in the poloidal magnetic field. The con-
tributions to 7y, due to the parts of f;, not proportional to Vi are given at the end of this
letter.

It is first noted that Eq. (1) can formally be written in the form

T (qj“s + lellls)
g 20,R

(4)
where g;|s is the amplitude of the sin § component of the total heat flow for species j parallel
to B and g, is the corresponding quantity for the flow of parallel energy. In the originai
treatment of Rosenbluth et al.?® a pure hydrogen plasma was considered and only ion-ion
collisions were included. As a result, since the collision operator in Eq. (2) then conserves
energy, there can be no sin @ heat flow to first order in the poloidal Larmor radius. Only Gilllls

will contribute to my,; it is balanced by a reverse flow of perpendicular energy. The resultant

value was found to be very small
r\* ’
Tér z"i: —0.17% <§> Viz'PiemiVT- (5)
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If one allows for collisions with an impurity species, ¢;)s can be nonzero. g)s is found to
be negative and ¢y, positive. If the cos component of the collisional energy transfer from

Z-ions to hydrogen ions is denoted by Q,; cos §, energy balance requires

By 0

—B—W (qz”s sin 0) = —in cos §

= —%% (q'i”s sin 9) (6)

and from Egs. (4) and (6) the value of 7y, due the two g;), heat flows is

r@m' m; .

The g;)is terms give an extra small contribution. However, the net increase in momentum
transport is not large enough to explain the experimental results if 7, ~ T;. The heat
transfer caused by C; ( Fee, f,'o) is reduced partly by the term C,; ( fz0, fw> and the square
bracket term in Eq. (7) gives a further approximate 50% reduction. This picture changes
when allowance is made for an excess of low energy hydrogen ions. |

The hydrogen ion distribution function will be assumed to have the form fio = fg + fo
where fy is Maxwellian (ng,Ty) and fo represents the excess low energy ions. The velocity
dependence of f¢ is unknown but will be assumed Maxwellian here for simplicity, with density
nc and temperature Tg. In fact, fo will probably be more peaked towards low energies than
a Maxwellian,'” in which case a lower concentration ny would suffice to give the observed
momentum transport since it is the ions with v S vpz which cause the dominant drag part of
the collision operator Cz¢. Steady state conditions are assumed with the heating of the n¢
ions due to the temperature difference balanced by the term (3T'¢/2) 8T¢/0r as discussed in
Ref. 17. |

The contribution to 74, due to the ng ions will be small, since n¢ is highly nonuniform
on a magnetic surface. ng ~ exp (eéo cos H/Tg), where ed, = m;VE(r/R) — e®, and

do is the amplitude of the cos# part of the electrostatic potential. To explain the PDX




results it was necessary to assume ed, /To R 1.5. As a result any sind flows for the ng
ions will be small and, in particular, Q¢z will be balanced mainly by the cosf part of the
divergence of their radial heat flow. There remains the Z-ion contribution to mg.. Since the
factor (/LB + vﬁ) = [(4/3) P + (2/3)P,] (v¥/2), where P, is the nth Legendre polynomial in

¢ =v)/v, after substituting from Eq. (2) into Eq. (1), one obtains

3 myver iL_ ~ g ~ }
/ / Poge 2 cost [3POCZC(P0)+3P20ZC(P2). (8)

'7T¢,T

Since (4/9) [ P3d¢ is one twentieth of (16/9) f P2d¢, the P, terms are neglected. This is
justified since the pitch angle scattering parts of Czg, which only appear in the P, term
integrals, give smaller contributions than the energy scattering parts. Now only the energy

part of Cz¢ is required which has the form

O _ _12 f OHC l62GC 8fz
70 262) m,’* v 2 Ov? Ov

(9)

where v = 47 Z%e*In A/m? and Hg, Go are the Rosenbluth potentials!® for the no ions. The

required functions of Hy, G¢ are?®

0H 4 v

G = T, oV
1 0%*G dg v dr oo
T o = g ), Jevdvt g [ fovds, (10

2m;Vihr cos 6

where fo = foo (1 - 27'3—9“97,01%—) with only the F, part of fo having been retained. f, in
Eq. (8) will have the corresponding form.
After substituting from Eqgs. (9) and (10) into Eq. (8), linearizing the collision operator

with respect to the small cos @ terms, integration yields

10 r\2
Tr —= e (-) vezpzemiVr

zc — 3 R
2 2 2
() ) (e d) ()]
o .
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where voz = 4(27)’nyz Z%* In A J3m}*TS/? and p%, = 2mzTz]Z%e*B;. If Ty satisfies the
inequalities
To

(m’)<<T—Z<<1 (12)

then the quantity in the curly brackets in Eq. (11) is approximately unity and the ratio of
Eq. (11) to Eq. (5) is

/2 2
Tl 53 (%) (2) (22) (5)
Ean =3v2 1o n; Z?m;) (13)

Even for small (n./n;) this ratio can easily be of order 102 if (Tx/T;) is large, which is the

required increase to give order of magnitude agreement with the experimental results. If
vr, /vT, is not small the ratio will still be large. If for example vy, = vr, the curly bracket
terms in Eq. (11) reduce the numerical factor in Eq. (13) by a factor of 4 but then (Tf/ Tg)B/ 2
is very large; (TH/TG)?’/2 o~ (mz/mi)3/2 for Ty ~ 1.

If one includes the other parts of f;. which were omitted from Eq. (3) (see for example
Ref. 21) and at the same time allows for Vr ~ vr,, the extra contributions to momentum

transport are, assuming the inequalities of Eq. (12) hold,

r\2 m, V2 — BZed
Tér o~ —ngo (§> VCZPngz{2VTzz ( TTZ 0) VT

m, Vi —£Ze®\ | Riic
—Qz K T, ) + e | [ (14)

where p, is the impurity species’ pressure and fig/ng is the cosf component of
exp (e@o cosf/ Tg) divided by its average. The first two terms in the curly brackets will
add to the expression in Eq. (11) since they transport momentum outwards with the sign
of Vr. The third term transports positive momentum outwards and this term will lead
to improved momentum confinement with counter neutral beam injection, as is observed
experimentally.?? This term could also explain the observation that once substantial counter
rotation has been generated it can be maintained with fewer beam lines plus more gas

puffing.??



It is concluded that the expected presence of a moderate concentration of excess low
energy hydrogen ions (~ 10%) will increase the neoclassical momentum diffusivity by two

orders of magnitude giving order of magnitude agreement with experimental values.
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