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We derive the dispersion relations for both small and large-A’ modes (m > 2, and
m =1 modes, respectively) driven by anomalous electron viscosity. Under the assumption
that the anomalous kinematic electron viscosity is comparable to the anomalous electron
thermal diffusivity, we find that the viscous mode typically has a higher growth rate than
the corresponding resistive mode. We compare computational results in cylindrical and
toroidal geometries with theory and present some nonlinear results for viscous m = 1 modes
in both circular and D-shaped boundaries and discuss their possible role in fast sawtooth
crashes.




I. Introduction

Anomalous electron viscosity has been postulated to be an important consequence of
stochastic field lines in magnetic fusion devices.! Break up of good magnetic flux surfaces,
although an undesirable feature that contributes to anomalous transport, accompanies both
small and large scale magnetohydrodynamic activity. It has been observed in studies of
major disruptions in tokamaks,? where it is generated by nonlinear mode coupling among
primary islands. In studies of sawtooth oscillations in toroidal geometry, coupling among
secondary island chains that form around the separatrix of a primary m = 1 island was also
seen to produce large stochastic layers within the ¢ = 1 surface.® Stochastic field lines are
common in reversed field pinches (RFP’s), where computational studies again indicate the
presence of a large stochastic region in the center of the device due to nonlinear coupling

among m = 1 modes with different toroidal mode numbers.*

It is not clear how the effects of stochastic field lines can be self-consistently incorpo-
rated into a resistive magnetohydrodynamic (MHD) model. Enhanced perpendicular ther-
mal transport in such fields can be simulated, not entirely accurately, by making use of a
large parallel heat conductivity that tends to remove perpendicular temperature gradients
in stochastic regions. In low beta, near force-free plasmas, perpendicular gradients of the
parallel current, or more specifically, the gradients of Jjj/B, also need to be removed in
stochastic layers. As it was postulated by Kaw et al.,! perpendicular transport of parallel
momentum along stochastically wandering fields lines leads to enhanced perpendicular elec-
tron viscosity; in parallel Ohm’s law, this effect appears as an anomalous current viscosity
or hyperresistivity term, |

By = nJj - Z5u V2 ), (1)

which precisely serves the desired purpose of reducing or removing the perpendicular gradi-
ents in Jj. Above, u. is the (anomalous) kinematic electron viscosity coefficient.

The form that this hyperresistivity term should take in the parallel Ohm’s law so as to
preserve certain conservation laws was considered by Boozer”; others have obtained estimates
for the anomalous viscosity coeflicient in the presence of tearing mode turbulence.®*°® Our
emphasis in this article, however, is not the underlying physical mechanisms that may lead

to anomalous viscosity; we assume the existence of some physical process that produces




stochastic fields (some examples were given above), and hence anomalous viscosity, and
examine the effects produced by such a dissipation mechanism on large scale (low-m) resistive
MHD modes. Thus, this article will be in the same spirit as those of Furth et al.,'! and Kaw
et al.,! where such effects were first examined. Furth et al. studied the effects on small—2/
tearing modes (m > 2) and showed that the growth rate scales as v ~ ul/3. The effects on
the nonlinear evolution of an m = 2 island was examined by Kaw et al., who showed that
the island grows as ¢/ until a critical width is reached, after which it resumes its growth
on a resistive time scale.!? The same work also numerically integrated the linear eigenvalue
equations for the tearing layer and showed that large—A’ (m = 1) modes have a growth rate
that scales as v ~ ul/5. More recently, effects of electron viscosity on sawtooth oscillations
were examined in transport studies by Ward and Jardin.'3

In Section II, after reproducing the results of Furth et al. for m = 2 modes, we derive the
dispersion relation for m = 1 modes. We show that the linear behavior of the m = 1 mode
driven by electron viscosity parallels that of the resistive m = 1 mode, which was analyzed in
detail by Coppi et al.'* In particular, we obtain closed form expressions for the growth rate
of m = 1 mode in three different regimes where the ideal internal kink is stable, neutral, and
unstable. In Section III, computational results from our full MHD code CTD is compared
with analytic theory. Results from the nonlinear evolution of m = 1 modes in toroidal
geometry, with circular and D-shaped boundaries, are presented, and their application to

fast sawtooth crashes is discussed. Section IV summarizes the results.

II. Dispersion Relations

Since the dissipative terms become important only in a narrow léJyer around the rational
surface where the parallel wave vector k) vanishes, determination of the growth rates typically
involves a boundary layer analysis. We will assume that the exterior problem, where ideal
MHD equations are valid, has already been solved, providing us with the solutions that the
inner layer equations have to satisfy asymptotically.

We obtain the inner layer equations from the reduced MHD equations!®:
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TUL 419, Vid)+ VT =0, )
aa—f + V¢ =nJ — uV3iJ. (3)



Above, the brackets are defined by [f,g] =z V. f x V.g, and V| f = (0f/0z) + [f,]. The
parallel current density is given by J = V3.

After linearizing, and with usual approximations, the inner layer equations can be put in

the form
Pé .z &
Zr i 4
dz? Z:1:,4 dz? 0 (4)
T 2T 4 d
¢+chA¢_w’7 dz? Ok ggd (5)

where z measures the distance from the rational surface, z = r —r,. The Alfvén layer width,

the resistive layer width, and the viscous layer width are given by

TA= ’Y/kﬁ, (6>
z2 = /7, (7)
Ty = u/v, (8)

respectively. Note that we have let r/a — r, and ¢/7y, — t, where 7, is the poloidal
Alfvén time given by T, = a/vag, with vag = Bs/(ttop)*/?. In these normalized units,
N = Tap/Tn, and g = Tg,/T,, where the resistive and viscous diffusion times are, in mks units,
Ty = pea®/(n), and T, = (wp/c)?a*/ e, respectively. Equation 4 is the vorticity equation,
whereas the second equation comes from the parallel Ohm’s law. For the remainder of this
discussion, we will ignore the the resistive term in Eq. 5 and concentrate on the fourth order
viscous term. Together, Eqs. 4,5 comprise a sixth order system for the flux function 7,/), or
the electrostatic potential @.

Below we solve Eqs. 4, and 5 using Fourier transform techniques. First, modes with
m > 2, which exhibit a finite discontinuity in the first derivative of the flux function, will be

examined.

A. Small-A’ Modes

The solution of the exterior equations for tearing modes is characterized by the quantity
A’ which measures the jump in the derivative of the flux function 1 across the tearing

layer?®:

r_ P'(rs +w/2) —P'(rs —w/2)
4= o) ’

4

(9)




where we take w to be the width of the tearing layer. Equation 9 represents a contraint that
has to be satisfied by the inner layer solution so that it can be asymptotically matched on

to the exterior solution.

Before solving Eqgs. 4, and 5 with this particular boundary condition, we define an inner

variable y = z/w, where we take the layer width to be, in anology with the resistive mode,
1/3
w = (w Awi) . (10)

Then rescaling various quantities as |

@ _ A Py N &

= A W w g ™
d$ 1dp &% 1 &%
de  w dy’ dz?  w? dy?’
we rewrite Eqgs. 4,5 as
d2 / xﬁ 1/3 d*p
meraa () = -
2 Al g4 2/3
oA dbp (:c#>/
w= 2 ¥ t) =0. 2
S () 61w =0 (12)

Note that we made the usual “constant-i” approxiination, valid for A'w < 1, and let
¥(y) — ¥(0) in Eq. 12. At this point, we can obtain an estimate for the growth rate simply
by balancing terms in Eqgs. 11,12, which gives

2/3
v~ (AR MR (13)

To get a closed form solution to Egs. 11,12, we formally extend the inner variable y to

(—o0,+00), and define the Fourier transforms

Lol = L7 {30 ferma a3

The techniques used here are similar to those of Pegoraro, and Schep.’” The transformed

equations are:

4N\ 1/3
o (Fw) T Y g -
A <SCA> 7 +Ek*¢ =0, (15)




(2)7 28 5 s = (o) atw), (16

(I}

where J = —k?i)(k) is the transform of the parallel current, and §(k) is the delta function.

Combining Egs. 15,16, and rearranging terms, we get

d 1 dJ

where a* = z4/(A'z2). Equation 17 has the solution

J(k) = w e~ IF1/3, (18)
and ¢(k) is easily found to be:
2/3
(k) = @ (z—f‘) sgn(k) e F12, (19)

where sgn is the “sign” function. Finally, the growth rate is determined using the constraint

equation, Eq. 9, which, in terms of the inner variable y, becomes

+co
| Iy = (0. (20)

Making use of Eq. 9, Eq. 20 can be put in the form

/ “:’ Cay= it (””:) 2/3¢(0). (21)

Using Eq. 19 in Eq. 21 finally yields

2A/
Zu _ T, or (22)
T4
KA
T= (T) e, (23)

Note that the viscous mode has a weaker dependence on viscosity than the corresponding
resistive tearing mode does on resistivity, which has a growth rate that scales as v ~ n3/5,

The growth rate derived here is in agreement with the results of Ref. 11.



B. Large-4A' Modes

What is meant by small or large-A’ can be understood easily by considering the relative

change in v across a boundary layer of width w at r = ry:

where < ¢ >= [(rs+w/2) +¢(rs —w/2)]/2. For wA’ <« 1 (small A’), the relative change

as defined above is small and ¥ ~< ¥(r) >~ 1(r;). This was the case considered in the

section above, where we replaced v (y) in the inner layer equations by its value at the rational
surface, ¥(0). For wA’" ~ O(1) (large A’), however, we see that the relative change is of
order unity and the “constant-¢” assumption is no longer justified. This is the case for the
solution of the outer layer equations for m = 1 internal kink mode, which exhibits a large
variation across the boundary layer.!*

Letting A" — 1/w, and ¥(0) — ¥(y) in Egs. (11,12), we obtain the equations appropriate

for m = 1 modes:

d2¢ C1dp
d4

where now a = (z4/2,)"/3. The boundary conditions for these equations are determined by

the exterior solution, which gives!*:

( Arée 1
éoo+ H£ - y— —x0
w7rk” Y
?
By) = 7 27)
Ao 1
Hi/ - Yy — +o00

The layer width w is given by Eq. (10), and we define k. = m/r: Ay is the growth rate of

the ideal internal kink model#18;

r3 L / gdr, (28)



where the integrand g is the part of éW that contains the kink drive.
A careful analysis of the Eqgs. (25,26) below reveals three distinct roots for the dispersion
relation, as in the case of the resistive kink mode. We can obtain one of the roots by simply

balancing terms in Eqgs. (25,26), which gives
v~ R, (29)

Again we find that the viscous mode has a weaker dependence on u than the corresponding
resistive mode does on 7, for which ~ ~ n'/3,
In order to find the full dispersion relation, we Fourier transform Eqgs. (25,26). Combining

equations, we obtain for the parallel current

d 1dJ .. 4 J
% F % - J=ua kz, (30)
Equivalently, we can write the equation in terms of ¢ as
d k? dé 2
— — = ) 1
dk a*+ k* dk ¢ (31)

We note that the boundary conditions for ¢ given in Eq. 27 are neither odd, nor even in
y. To make the problem more tractable, we notice that if ¢(k) is a solution to Eq. (31) that

satisfies the mixed boundary conditons in Eq. (27) (properly transformed to k—space), then
(k) —iZL = 50 €

will satisfy Eq. (31) with the following odd boundary conditions:
( éoo /\H €oo 1

+?+ w7rk|’| -gJ y— =
7
Ho) = 4 (33)
éoo /\wa 1
\_2+ wﬂ'kl'ly y— oo
The corresponding boundary conditon in k—space is
= Yo J1_ Am 2
(k) = S ks {k k] sgn(k)} as |k| — 0. (34)

Thus, we will look for odd solutions for ¢ that satisfy Eq. (34), or even solutions for J.
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From the solution of the m > 2—problem (Eq. 17)), we know that the solution to Eq. (30)

will have the asymptotic behavior
J ~ e ® P for |k| = 0. (35)
Thus, we look for solutions of the form
J(k) = u(k)e™*7, (36)

where u(k) is chosen to satisfy the boundary conditions for |k| — 0. Substituting (36) in
(30), we get
1, du

Pu o -1 M ety =0 (37)
k2 B oag LW =g

Neglecting the k* term compared to 1/k in the coefficient of u’ (we are looking for solutions

valid for £ — 0), this equation can be solved in terms of Whittaker’s functions®:
u(k) = 4a* e B2 U(2,4,24%k) (38)

where the Kummer’s function U is simply given by:

€

U(2,4,2) =1/2* +2/2°. (39)
Then, substituting for v in (36) and imposing even syn:imetry, we obtain
1
(k) = {{k| + E} el 3] (40)
Using (40), we get for ¢:
1 1 k la
d(k) = {E +—=+ F} e~ 1? kR3] (41)

Letting £ — 0 in (41) and comparing the result with the boundary conditons for ¢ in (34),
we finally obtain the dispersion relation:

1 A
S -d= —w—%. (42)

Recall that Ay is the growth rate of the ideal internal kink mode (Eq. (28)). The layer width
w is given by Eq. (10), and we have

5/4
T4 1 07
a3 = e = - (Wg) . (43)




Then, assuming v ~ p® and letting 4 — 0, we have

00 for s =0 (ideal mode),
a — ¢ a constant for s =1/5, (44)
0 for s > 1/5.

In these three limits, the dispersion relation has the following solutions:

Amr if Ag >0,

y=1 kiPuvs if Ay ~ 0, (45)

| B4 g3 pe i g <0

Note that when the ideal internal kink mode is stable (Agy < 0), the viscous m = 1 mode
behaves like a finite-A’ mode, which is analogous to the behavior of the resistive m = 1
mode.

Below, we compare the viscous and resistive growth rates for m = 1, and m = 2 modes

and discuss the relative importance of modes driven by anomalous electron viscosity.

C. Comparison of Viscous and Resistive Growth Rates

Results of the previous sections are summarized in Table I, where the growth rates of the
viscosity-driven modes are compared with those of the corresponding resistive modes.

Letting & = p/7n, and comparing the growth rates of viscous and resistive m = 1 modes,
(for Ag ~ 0), we see that for moderate shear (kj ~ 0.1), the viscous mode dominates for
a R 2 x 107% if we assume 7 ~ 1078, which is typical of ohmic discharges in large tokamaks.
For auxiliary heated tokamaks, the viscous mode dominates for even smaller values of c.
At m = 107°, we have v, > 7, for & 2 5 x 1078, Comparisons of m > 2 modes also lead
to similar conclusions. Assuming that the unnormalized value of the kinematic viscosity
coeflicient is comparable to the anomalous electron thermal diffusivity, which typically has
a value of y. ~ 1m?/sec, then for typical large tokamak discharges, u/n ~ 107%, in our
nondimensional units. Thus, linear growth rates of the viscous modes, both for m = 1,
and m = 2, would be typically higher under these conditions than those of the resistive
modes. Nonlinearly, Kaw et al. showed that m = 2 modes enter the typical Rutherford

regime after the island width exceeds a critical width, with only the resistivity playing a
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major role in the subsequent evolution of the island.! However, since m = 1 islands do not
exhibit a Rutherford regime and continue to grow exponentially far into the nonlinear phase,
anomalous electron viscosity is expected to continue to play a role in the nonlinear evolution

of the island if 7, > 4, initially. These questions are further addressed in the next section.

11



ITT. Computational Results

We have modified our three dimensional, toroidal, nonlinear MHD code, CTD,®,* to
incorporate the anomalous viscosity term into the Ohm’s law. The equations solved by

CTD, written in nondimensional form, are:

Ou

a-l—u-Vu = J xB — Vp+ y;V?u, (46)
86—‘? = uxB-nJ-VxuVxlJ, (47)

a -

O_IZ-I-u-Vp = —FPV"H‘%(B‘V)Z'P+V'(’€LVP)+(f—1)77J2, (48)

B=VxAandJ=V xB. (49)

The anomalous electron viscosity, or hyperresistivity term, V x yV x J, in the Ohm’s
law, Eq. (47), is written with an isotropic coefficient because of the difficulty of isolating the
parallel component of the current in a three dimensional geometry. Note that hyperresistivity
coeflicient u is to be distinguished from the ion viscosity u; appearing in the momentum
equation, Eq. (46).

The Lundquist number S, ratio of the resistive diffusion time to the poloidal Alfvén time,
is given by S = 1/7(0), where 7(0) is the value of resistivity on axis. &), and x. are the
parallel and perpendicular thermal conductivites, respectively, and I" is the ratio of specific

heats.

The variables have been normalized as follows:

i r
t— —, r——,
THp a
B u
B — , U — —, p—)-Tp————, where
Bhpo UHp Bpo/,“o
G — BZO N a - _,uoaz g TR
Hp — = ——» Hp = — > R = ’ -
N ury o THp

B,, is a characteristic poloidal field strength, and a is the minor radius. The transport
coeflicients in the pressure equation are normalized as k), = 7g,/7,,, and K| = Tep/ Ty
where 7., = a?/k,,, and 7., = a?/k,,. Ki,, and k,, are the dimensional values of the

L ’ 1 I o? i

coeflicients. As stated earlier, normalized electron viscosity is given by u = 7g,/7,, where
o = (wp/)*a*/ e
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In order to treat noncircular geometries, CTD has been modified to use conformal coor-

dinates.?>?" A noncircular domain in the (r,8) (poloidal) plane bounded by the curve
z(a) = cos(a + § sin(a)),
y(@) = rsin(a)),

is mapped onto a unit disk in the coordinate system (p,w) using the conformal transformation

z(p,w) = A+ > amp™ cos(mw),

m=1

y(p,w) = D amp™ sin(mw).

m=1

Above, k and § are the ellipticity and triangularity, respectively. A represents the toroidal
shift in (7, 6) coordinate system and is used to align the magnetic axis with p = 0. The angles
a and § are related by 6 = arctan(y(0(a))/z(0(«))). The major advantage of this coordinate
system is that a code written in (r, 8, () toroidal polar coordinates can be easily modified for

conformal cordinates. Redefining the state variables as

(ﬁm&wa '&() = (hup, huwa U’C)a

(A,, Ay, A) = (RA,, hA,, AL, ete.,

and casting the equations in terms of these new “variables, the differential operators largely
retain their polar coordinate forms, except for factors of A% in a small number of terms. Here

h is the scale factor in the length element ds? = h%(dp? + p?dw?) and is given by

e l(E)(2)].

The computational details of conformal coordinate system used in CTD will be published
elsewhere. Conformal coordinates have the disadvantage of requiring a large number of modes
to describe highly deformed boundaries. There are more compact formulations?? that we are
presently examining. Unfortunately, their implementation is not as .straight forward, and
their computational merits in nonlinear calculations are not clear.

Even for circular boundaries, we use conformal coordinates to align the coordinate and

magnetix axes in order to improve numerical accuracy and stability near the axis. In this
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case, only three terms in the conformal expansions are sufficient for convergence with toroidal
shifts of order 10%. Alternatively, a bilinear (Moebius) tranformation given by Goedbloed?®
can be used for this purpose, but is not implemented in CTD.

Below we first do linear studies of m = 1, and m > 2 modes, in cylindrical and toroidal ge-
ometries, and verify that scaling of the computationally obtained growth rates with electron
viscosity agree with the analytic theory of previous sections. Then in the next subsection, we
discuss the role of nonlinear viscous m = 1 mode in fast sawtooth crashes, giving examples

from both circular and noncircular geometries.

A. Linear Studies with C7D

For our linear and nonlinear studies, we have chosen the well-known equilibrium safety
factor profile ¢(p) = ¢ {1 + p*[(¢1/ )" — 1]}/*, with three free parameters: g, (¢ on axis),
¢ (g at the edge) , and A, which determines sheer. Unless otherwise indicated, we will have
g = 3, and A = 4. An aspect ratio of RB,/a = 3 will be used throughout. Finite—f effects
will not be investigated here, and average toroidal beta will be fixed at an arbitrary value of
B = 0.08%. The linear results presented in this section will all have circular boundaries.

Figure 1 shows the scaling of the growth rate with electron viscosity for finite-A’ modes in
cylindirical and toroidal geometries. Here we use ¢, = 1.2. Toroidal calculations are for n = 2
modes, dominated by the m/n = 3/2 harmonic, whereas the cylindrical calculations are for
m/n = 3/2 only. In both cases, the growth rate scales as v ~ §'/3, in agreement with the
theory of the previous section. Note that the growth rate is reduced by toroidal effects, as it
is commonly observed for tearing modes. Since the global behavior of the mode is determined
by the ideal MHD solution in the exterior region, profiles for the eigenfunctions obtained
here for the viscous modes are quite similar to those seen in purely resistive calculations.

Results of a similar scaling study for large-A’ modes are shown in Fig. 2. Here ¢, = 0.9,
and we examine the n = 1 mode in toroidal geometry, dominated by the m/n = 1/1
harmonic, and a pure m/n = 1/1 mode in cylindrical geometry. In both cases, the growth
rate scales as v ~ pl/5. Fig. 3 shows the radial eigenfunctions for the m/n = 1/1, and
m/n = 2/1 modes from the toroidal calculation, which had n = 1078, and u = 10~1°. Note
that the radial velocity profile for m = 1 exhibits a step function-like behavior characteristic

of that mode. Since the mode is dominated by the m/n = 1/1 harmonic, the m = 2
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eigenfunction displays a large structure at the ¢ = 1 surface rather than at its own resonance
layer at the ¢ = 2 surface.

Both scaling studies were done with a constant resistivity of n = 1078, As seen in Figs. 1,
and 2, in linear calculations the predicted scalings hold even when the viscosity is three
orders of magnitude smaller than resistivity. In fact, comparing the analytic expressions for
the growth rates of the resistive and viscous modes, we expect the viscous modes to dominate
over the corresponding resistive ones even in the numerically inaccessible region /7 < 1073,
as it was discussed in Section 2.C.

In the next section, we investigate the nonlinear evolution of m = 1 modes in toroidal

geometry with both circular and shaped cross sections.

B. Nonlinear Studies with CTD: Fast Sawtooth Crashes

Long after their discovery,?* our understanding of sawtooth oscillations is still far from
complete. Although we demonstrated that many of the experimental features can be ex-
plained in terms of the Kadomtsev reconnection process,® fast sawtooth crashes observed
on large tokamaks,?® and sawtooth oscillations in low—g, devices where g, remains below
unity throughout the sawtooth cycle,?® are still not understood. The difficult problem of
understanding sawteeth without full reconnection is beyond the scope of this paper. But

here we would like to examine the role of viscosity-driven modes in fast sawtooth crashes.

A possible explanation for the fast crashes was offered in terms of a pressure driven

ideal internal kink mode.?™2° However, these modes are highly sensitive to the details of -

the g—profile; in particular, they require very weak shear within the ¢ = 1 surface. Since
our self-consistent simulations indicate that g, tends to fall below one during the sawtooth
ramp,® whether these ideal modes can play a role in fast crashes is no longer clear. Here, we
offer an alternative explanation in terms of a viscosity-driven m = 1 mode.

In previous sections we saw that, if we assume y, ~ x., then the viscous m = 1 mode
generally has a larger growth rate than the m = 1 resistive kink mode. In addition, local
value of the electron viscosity coefficient around rational surfaces and separatrices of islands
is expected to be even larger than this global value given by . ~ x.. This further enhance-
ment of . can be due to stochastic layers that develop because of both small scale MHD

fluctuations and nonlinear interaction of modes with nearby rational surfaces. Without spec-
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ifying the exact cause and nature of this anomalous enhancement, which is beyond the scope
of this paper, below we study its nonlinear consequences.

Figure 4 shows the evolution of the temperature contours from a nonlinear, toroidal
calculation of viscous n = 1 mode, which was dominated by the m/n = 1/1 harmonic. The
initial equilibrium had ¢, = 0.95,¢; = 3, and A = 2. Here we had n = 1078, and yx = 10~
in normalized units. This value of p represents an enhancement by a factor of 10 — 100 over
its global value given by pe ~ Xx.. Up to 48 Fourier modes (with nguq.. = 4) and 765 radial
grid points were used in this calculation. The initial helical shift of the temperature peak,
and the subsequent achievement of poloidal symmetry, is characteristic of this mode and is
routinely seen also in purely resistive calculations.® The time scale, however, is significantly
different in this case. The sawtooth crash time, as measured from the beginning of the
shift to the time when poloidal symmetry is seen, is an order of magnitude shorter than
a corresponding purely resistive calculation would yield. (Since purely resistive nonlinear
calculations at realistic value of resistivity are computationally difficult, the resistive crash
time for 7 = 10~® is obtained by extrapolating from calculations done at 7.~ 107¢.) In
dimensional units, the crash time is on the order of 100usec, comparable to the fast collapse
times reported by large tokamaks.?®

Similar results are obtained in a noncircular geometry, as shown in Fig. 5. The D-shaped
equilibrium used here has an elongation of 1.6 and triangularity of 0.4, parameters similar to
those of JET. The same g—profile as in the circular run is used, with g = 107°, and n = 1078,
Here we used 81 modes and 250 radial grid points. The crash time is again much faster than
a purely resistive mode would give under the same conditions. Note that the deformation of
the hot spot is much more pronounced here than in the circular run. Very early in the crash
it assumes a crescent shape, the two ends of which almost, but not quite, connect to form a

hot, elliptical annulus at the end of the crash, leading to a hollow temperature profile.
Using- the m = 1 resistive kink as the driving mechanism for the crash, Kadomtsev

heuristically obtained a Sweet-Parker scaling for the crash time®°:

7o = (rim)"?, (50)

where 77 is the poloidal Alfvén time based on the helical field B* = k - B/|k|, and 7, is the

resistive diffusion time, 7, = u,a?/n. This scaling where 7, ~ n*/? was confirmed in nonlinear
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calculations.?

Using a similar heuristic argument, we easily obtain the following crash-time scaling with

electron viscosity:
1/4
Te = (Tj;"f’m> , (51)

where the viscous diffusion time is given by 7, = (wp/c)?a*/p.. Note that the crash time
based on the viscous mode has a much weaker dependence on the dissipation coefficient
(o ~ pl/%). Thus, variations in y of as large as a few orders of magnitude will not significantly

change 7.; we would still obtain “fast crashes” even with u ~ 107'%, a value implied by the

assumption p, ~ Xe.

IV. Conclusions

Incorporating electron viscosity in a generalized Ohm’s law, we investiga,ted its effects
on low mode number MHD modes. We reproduced earlier results for m > 2 modes where
“constant-4)” assumption is valid and extended the analysis to m = 1 modes where that
assumption breaks down. For the finite—A’ modes (m > 2), we found that the growth rate
scales as u'/3. For the large—A’ modes (m = 1), the dispersion relation has three branches,
anolagous to the behavior of the resistive m = 1 mode: When the ideal internal kink mode
is robustly unstable, we have v = Ag, where Az is the growth rate of the ideal mode. When
the ideal kink is near marginal stability, as is the case under typical conditions, v ~ u1/5.
When the ideal mode is stable (A < 0), then the mode has a “tearing” character, and the
growth rate again scales as u!/°.

If we assume that, like many other transport coefficients, electron viscosity is also anoma-
lous and has a value comparable to that of the anomalous electron thermal diffusivity, then
the viscosity driven modes typically have higher growth rates than the corresponding resistive
modes in present fusion devices. Nonlinearly, earlier works had shown that viscosity-driven
m 2> 2 islands resume their secular growth on a resistive time scale after the island reaches
a critical width; thus, for these modes, nonlinear effects of anomalous viscosity are not ex-
pected to be important. Their nonlinear behavior is notAinvestigaJted in this article. However,
for m = 1 modes, which do not have a “Rutherford regime”, significance of the viscous drive

persists in the nonlinear phase.
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In earlier nonlinear toroidal calculations with CTD, we had found that, although most
experimentally observed features of tokamak sawtooth oscillations can be explained in terms
of the nonlinear evolution of an m = 1 resistive kink mode (Kadomtsev reconnection model),
the time scale for the fast sawtooth collapse could not be explained in terms of a purely
resistive model. Nonlinear calculations of a viscous m = 1 mode, however, lead to a much
shorter crash time with a similar collapse mechanism; anomalous electron viscosity-driven
m = 1 modes may indeed explain the fast crashes seen on large tokamaks.

Central to this article is the assumption that magnetic stochasticity produced by low level
MHD fluctuations, and nonlinear or toroidal coupling of low mode number MHD modes, lead
to an anomalous electron viscosity of the order of the anomalous electron thermal diffusivity.
Quantitative predictions of anomalous u. produced by such physical effects, or others not

described here, should be a fruitful area of future research.
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Table I. Comparison of the growth rates for viscous and resistive modes.

Mode Number Viscous Modes Resistive Modes!41® Comments
AH g Ag >0
m=1 k{f/5/¢1/5 kl/|2/3771/3 Ag ~0
kﬁ/sl)\ﬂ |=2/3 1/ { p(li(15//44)))\H }4/5 Z’|,[6/5 35 Agp <0
m 2 2 {%A—/}WS#IB

G

(1/4) /s, 3/5
T(3/9) } i
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Figures

FIG. 1. Scaling of the growth rate with electron viscosity for m > 2 modes: a) toroidal

n = 2 mode, b) cylindrical m/n = 3/2 mode.

FIG. 2. Scaling of the growth rate with electron viscosity for the m = 1 mode: a) toroidal
n = 1 mode, b) cylindrical m/n = 1/1 mode.

FIG. 3. Radial eigenfunctions for the viscous n = 1 mode (from a toroidal calculation). Only

the m/n =1/1, and m/n = 2/1 harmonics are shown.

FIG. 4. Evolution of the temperature (pressure) contours during a sawtooth collapse driven
by a viscous n = 1 (m/n = 1/1) mode (circular boundary). Times are in units of

poloidal Alfvén time.

FIG. 5. Evolution of the temperature (pressure) contours during a sawtooth collapse driven
by a viscous n = 1 (m/n = 1/1) mode. The geometry is noncircular, with x = 1.6,
and 6 = 0.4. The g— profile is the same as that of the circular geometry run shown

in Fig. 4.
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