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Foreword

From time to time we issue special Institute for Fusion Studies reports that are of a review
or pedagogical nature. In the future these reports will be indicated by appending the word
Review to the IFSR number. A purpose of these reports is to familiarize plasma physicists
with subject mattef that may not be easily accessible, either because the information is not

contained in a single reference or because it is of a mathematical nature, and as such may

not be written in the “usual” language of plasma physics.
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Abstract

The theory of bifurcation from equilibria based on center manifold reduction

and Poincaré-Birkhoff normal forms is reviewed at an introductory level. Both

differential equations and maps are discussed, and recent results explaining the
symmetry of the normal form are derived. The emphasis is on the simplest
generic bifurcations in one parameter systems. Two applications are developed

in detail: a Hopf bifurcation occurring in a model of three-wave mode coupling

and steady-state bifurcations occurring in the real Landau-Ginzburg equation.

The former provides an example of the importance of degenerate bifurcations
in problems with more than one parameter and the latter illustrates new effects

introduced into a bifurcation problem by a continuous symmetry .
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I. Introduction

Bifurcation theory is a subject with classical mathematical origins, for example, in the
work of L. Euler (1744); however the modern development of the subject starts with Poincaré
and the qualitative theory of differential equations. In recent years, this theory has under-
gone a tremendous development with an infusion of new ideas and methods from dynamical
systems theory, singularity theory, group theory, andbomputer-assisted studies of dynamics.
As a result, it is difficult to draw the boundaries of the theory with any confidence. The

characterization offered twenty years ago by Arnold (1972) at least reflects how broad the

subject has become:

The word bifurcation, meaning some sort of branching process, is widely used to
describe any situation in which the qualitative, topological picture of tile object
~we are studying alters with a change of the parameters on which the object
depends. The objects in question can be extremely diverse: for example, real
or cofnplex curves or surfaces, functions or maps, manifolds or fibrations, vector

fields, differential or integral equations.

In this review the “objects in question” will be dynamical systems in the form of differ-
ential equations and aifferénce equations. In the sciences such dynamical systems commonly
arise when one formulates equations of motion fo model a physical system. The setting for
these equations is the phase space or state space of the system. A point z in phase space
corresponds to a possible state for the system, and in the case of a differential equation
the solution with initial condition z defines a curve in phase space passing through z. The
collective representa,tion.of these curves for all points in phase space comprises the phase
portrast. This portrait provides a global qualitative picture of the dynamics and this picture

depends on any parameters that enter the equations of motion or boundary conditions.




If one varies these parameters the phase portrait may deform slightly without altering

its qualitative (i.e. topological) features or sometimes the dynamics may be modified signifi-

cantly producing a qualitative éhange in the phase portrait. Bifurcation theory studies these

qualitative changes in the phase portrait, e.g. the appearance or disappearance of equilibria,

periodic orbits, or more complicated features such as strange attractors. The methods and

;’esults of bifurcation theory are fundamental to understanding nonlinear dynamical systems,
and the theory can potentially be a,pplied to any area of nonlinear physics.

In Secs. II-VIII, we present a set of core results and methods in local bifurcation theory

for systems that depend on a single parameter y. Here local bifurcation theory refers to

bifurcations from equilibria where the phenomena of interest occur in the neighborhood of a

single point. This restriction overlooks an extensive literature on global bifurcations where in

some sense qualitative changes in the phase portrait occur that are not captured by looking .

near a single point. Wiggins (1988) provides an introduction to this aspect of the subject.?
In addition we shall concentrate on those bifurcations encountered in typical or “generic”
sy.stems. Thus symmetric systems and Hamiltonian .slystems are not considéred with the
exce;;tion «of pitchfork bifurcation for reflection-symmetric systems. A precise mathemati-
cal description of generic can be given at the expense of introducing a number of téchnical
definitions (Ruelle 1989). The heuristic idea‘ is simply that when a parametrized system of
equations exhibits a generic bifurcation, if we perturb the system slightly then the bifurca-
tion will still occur in the perturbed system. One says that such a bifurcation i-s robust.
Bifurcations that are robust in this sense for systems depending on a single pa,ranieter are

referred to as codimension-one bifurcations. More generally, a codimension-n bifurcation can

11t is worth emphasizing that the division between local and global bifurcations introduced here should
not be taken too seriously. A detailed investigation of a global bifurcation often uncovers a rich spectrum of
accompanying local bifurcations; similarly a local bifurcation of sufficient complexity can imply the occurence

of global bifurcations.




occur robustly in éysterns with n parameters but not in systems with only n —1 parameters.?

The aim is to provide an accessible introduction for physicists who are not expert in
dynamical systems theory and an effort has been made to minimize the mathematical pre-
requisites. Consequently I begin with a summary of linear theory in Sec. II that includes the

Hartman-Grobman theorem to underscore the link between linear instability and nonlinear

bifurcation; this summary is supplemented in Sec. IV by an analysis of the persistence of

equilibria using the implicit function theorem. The center manifold-normal form approach
1s outlined in Sec. III, and developed in Secs. V-VIIL

Two applications of the theory are considered in Sec. IX. These illuétrate the calculations
required to reduce a specific bifurcation to normal form. In addition the examples offer a
glimpse of several important and more advanced'topics: new bifurcations that a‘rise when
there is more than one parameter, center manifolvd reduction for infinite dimensional systems,

e.g.' partial differential equations, and the effect of symmetry on a bifurcation.

Finally in Sec. X a brief survey of some topics omitted from this review is included

for completeness and to provide some contact with current research areas in bifurcation

theory. Our subject is very broad and there is much activity.by mathematicians, scientists,
and engineers; the literature is enormous and widely scattered. This introduction does not
attempt to assemble a comprehensive bibliography; th_e material of Secs. II-VIII can be found
in many blaces and in most cases the cited references are .chosen simply because I have found

them helpful. More extensive bibliographies can be found in the references.

A. The basic setup

It is advantageous to express different systems in a standard form so that the tﬁeory

can be developed in a uniform way. As an example consider the second order oscillator

2The geometric connotations of codimension can be made precise but we do not require this development
here (Arnold 1988a). Roughly speaking, the set of systems associated with a codimension-n bifurcation
corresponds to a surface of codimension n.




equation
j+i+y+y’=0 (1.1a)

by defining z; = y and z, = y, this evolution equation can be rewritten as a first order

d Tq . To | \
5 <€B2> B <—$2 — T3 — 373) ' (l.lb)

Clearly if higher order derivatives in ¢ had appeared in (1.1a), we could have still obtained

system in two dimensions

a first order system by simply enlarging the dimension, e.g. déﬁning z3 = y; similarly if the
equations of motion had involved dependent variables in addition to y(t) these could also be
incorporated by enlarging the dimension appropriately. As this example suggests, there.is

great generality in considering dynamical processes defined by first order systems:
z=V(y,z) zeR", peR, ' (1.2a)

depending on a parameter x and .describing motion in an n-dimensional phase space IR.”
When formulated in this way a differential equation is identified with a vector field V(u,z) on
IR™; conversely given a vector field one can always define an associated differential eql‘la‘cion.‘3

We shall also consider a second type of dynamics that represents the evolution of a system

at discrete time intervals. In this case, the motion is described by a map,
zir1 = flu,z;) teER", pelR, - (1.2b)

where j = 0,1,2, - .- is the index labeling successive points on the trajectory. There are close
connections between the dynamical systems defined by maps and vector fields. For example

in (1.2a), we may also think of solutions as trajectories: an initial condition z(0) uniquely

30ne often wishes to consider phase spaces more general than IR” for example finite dimensional manifolds
such as tori or spheres. However in these cases the dynamics on a neighborhood of a fixed point can be
described by the models we consider by introducing a local coordinate system.




determines a solution z(¢) and the corresponding curve in R™ (parametrized by t) is the

trajectory of £(0). More abstractly, the association z(0) — z(t) defines a mapping
b R™ — R™ - - (1.2¢)

where ¢; ((0)) = z(t). This mapping is called the flow determined by (1.2a).
" In each case, the dynamics is allowed to depend on an adjustable parameter, 4, and the

origin (u,z) = (0,0) is assumed to be an equilibrium or fized point for the motion,

7(0,0) =0 | | | (1.3a)

or

£(0,0)=0. - (1.3b)

Note that giveﬁ a fixed point solution (uo,zo) it can always be moved to the origin by a
change of coordinates so the representation in (1.3) is quite gengral.‘

The theory we develop for maps (1.2b) is useful in a variety of circumstances. Two '
particularly important applications .are to bifurcations from periodic orbits of differential
equations and in the,related context of bifurcations in systems that are ;ﬁeriodically forced.
Let z.(t) denote a periodic solutioﬁ to (1.2a) with period 7, i.e., z.(t) = z.(¢t + 7); the
dynamics near .(¢) can be analyzed by éonstruct.ing the Poincaré return map. Let 3
denote an n — 1 dimensional plane in R™ which intersécts z.(t) at the point p (see Fig. 1).
To define the feturn map f, consider a point o € Y near p, and solve Eq. (1.2a) using o as
an initial condition. For o sufficiently near p, the trajectory from o will intersect 3 at some

new point ¢’; this intersection defines the action of the map f on o

o = f(o). (1.4)
This definition is sensible for all points on } in an appropriate neighborhood of p. Notice
that p is a fixed point for f, f(p) = p, since z. is a periodic orbit.
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In the second application, a periodic modulation is applied to the system in Eq. (1.2a)

so that V{(u,z) is replaced by

z=V(y,z,1) reR", pelR (1.5a)

and

Vip 2, 8)=V(p,zt+7) (1.5b)

" where 7 is the period of the modulation. In this circumstance 1t is convenient to introduce the
“stroboscopic” map f by, in effect, recording the state of the system only once during each
period of the modulation. More precisely, fix a definite time ¢ and then choose any initial
condition zo € R™. Let z(%;1o) denote the solution with the initial condition z(to;0) = o,
and define f by

o =fla;) =012 (16)

“where z; = z(to+57;%0). The qualitative properties of the map f(z) in (1.6) are indepeﬁdent

] . . : '
of the specific choice'ty used in the definition. Furthermore, fixed points (1.3a) for the
unmodulated system typically persist as fixed points for the map (1.6), at least for weak

_ modulation.?

B. The basic question

According to Eq. (1.2), at 4 = 0 there is an equilibrium state at = 0. The basic
question in Jocal bifurcation theory is:
What can happen in phase space near z = 0 when there are variations in u about
p=07
The Hartman-Grobman theorem, described in the next section, effectively reduces this ques-

tion to an analysis of a narrower issue:

#More precisely, this is true for hyperbolic fixed points, as defined in Sec. II.A.2, and follows from the
averaging theorem (Guckenheimer and Holmes, 1986).
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As p is varied near g = 0, what happens near z = 0 if the stability of the

equilibrium changes?

Before addressing this question, which involves the nonlinear terms of Eq. (1.2) in an essential

way, it is necessary to develop the theory of linear stability.

II. Linear theory
A. Flows

At z = 0 the Taylor expansion of Eq. (1.2a) begins,

&= V(u,0) + Do V(g0 + O(a?), | (2.1)

where D, V(p,0) represents the square matrix with elements

(Da V(s 0));, = S—V (4,0), (2.2)

and O(z?) indicates higher order terms that are at least quadratic in the components of z.
When the context is clear we will omit the subscript = and write DV (u,0) or simply DV.

At p = 0 the constant term in (2.1) vanishes, and near z = 0 we study the linearized system,
¢ = DV(0,0) -z, (2.3)

ignoring momentarily the effects of the nonlinear terms.

In the typical situation the eigenvalues of DV(0,0) are non-degenerate® and this matrix
can be diagonalized by a linear change of coordinates z — /. This allows (2.3) to be

re-expressed as

z! A0 0 2!
Et‘ E - E . | : 3 (2'4)
z! 0 An z!

SA degenerate eigenvalue is one for which there are two or more linearly independent eigenvectors.




if the spectrum of DV (0,0) includes complex conjugate pairs of eigenvalues, then the cor-

responding new coordinate components } will also be complex (Hirsch and Smale, 1974).

The general solution z/(¢) is obviously
o1(0) ¢
)= | 2O (2.5)
o (0) et
If Re); <0, then as t — oo, the zi-component decays to zeré, conversely, Re A; > 0 implies

exponentially rapid growth of z!.

1. Invariant linear subspaces

For each eigenvalue A of DV (0,0), theré is an associated subspace of IR™ — the eigenspace
E,. For simplicity we assume DV'(0,0) is diagonalizable, then our definition of Ej depends
only on whether ) is real or complex; the case of a real eigenvalue is most familiar. When )

is real, E is simply the subspace spanned by the eigenvectors,
AeER, Ey={v e R"(DV (0,0) — A\I)-v = 0}. (2.6a)

If ) is non-degenerate, then we have dim E, = 1.

When A is comnplex, then the eigenvéctors are also complex; furthermore since DV(0,0)
is assumed to be a real matrix if vy +4v, is the eigenvector for )\ then the complex-conjugated
vector vi — 103 is an eigenvector for A. The eigenspace E, in this case is spanned by the real
and imaginary parts of the eigenvectors for ), e.g. v; and vé. Noting that both v; and v,

satisfy (DV(0,0) — AI)(DV(0,0) — AI) - v = 0, we replace (2.6a) with

AER, By={veR"(DV(0,0) = AI)DV (0,0) — X) - v = 0} . (2.6b)

Now if ) is non-degenerate, we have dim E, = 2.
When DV (0,0) has eigenvalues that are degenerate, this construction for E, is satis-

factory provided DV (0,0) is diagonalizable. When DV (0, 0) cannot be diagonalized, then
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the definitions in (2.6) must be extended to include not only eigenvectors but generalized
eigenvectors as well (Afno.ld 1973; Hirsch and Smale, 1974).

An eigenvalue ) corresponds to a “mode” of the system that is stable, unstable, or neutral
depending .on whether Re A < 0, ReA > 0, or Re A = 0, respectively (Fig. 2(a)). We divide
the eigenvectors (and genera,lizea eigenvectors) of DV (0,0) into three sets according to these

possibilities and form the stable subspace E*, unstable subspace E*, and center subspace E°:

E* =span{ulv € Ex _and Rel <0} (2.7a)
E* =span{vjv € Ey and Rel >0} (2.7b)
E°=gpan{vlv € E, and Rel=0}. ' | (2.7¢)

These subspaces span the phase space, R = E° @ E° @ E* and they are invariant: if
z(0) € E*, a = s,c,u, then the trajectory z(t) of (23) with this initia;l condition satisfies
z(t) € B For E® and E* the dynamics has a simple asymptotic description: if z(¢) € E*,
then as t — +oo the trajectory converges to the equilibrium; if z(¢) € F¥, then the tvra,jectory'
converges to the equilibrium as ¢ — —oco. These features are‘illustrated in Fig. 2(b).

An equilibrium at z = 0 is asymptotically stable if there exists a neighborhood of initial

conditions, 0 < [z(0)] < €, such that for all z(0) in this neighborhood:
(i) the trajectory z(t) satisfies |z(¢)| < € for > 0, and

(ii) |z(¢)] — 0 as t — oo.
For the linear system (2.3), the equilibrium z = 0 is asymptotically stable if and only if

Re(A) < 0 for each eigenvalue X of DV'(0,0). In other words the spectrum must lie within

the left half-plane of the complex A-plane (see Fig. 3(a)).
This criterion is particularly valuable because one can provethat if z = 0 is asymptotically

stable for (2.3), then it will also be asymptotically stable for the original nonlinear sys‘tem

9




(1.2a) (Hirsch and Smale, 1974). in Fig. 4(b) we show a schematic phase portrait for a two-
dimensional system with two fixed points on the z;-axis. If we imagine linearizing about
the stable equilibrium at the origin, then the resulting 2 X 2 matrix will have a complex
conjugate pair of eigenvalues (A, }) satisfying Re A = Re ) < 0. The phase portrait for the
linearized system is shown in Fig. 4(a); the equilibrium z = 0 is obviously asymptotically
stable in Fig. 4(a) for arbitrarily large initial conditions. In the nonlinear phase portrait
Fig. 4(b) = = 0 is also asymptotically stable but the neighborhood, 0 < |z(0)| < €, of stable
initial conditions is not arbitrarily large; it must not intersect the trajectories which are
asymptotically drawn to the unstable fixed point on the negative z1-axis. The 'linea,r test for
asymptotic stability provides no information regarding the size of the neighborhood in the

nonlinear system where the conclusion of stability holds.

2. Hartman-Grobman theorem

The qualitative relation between (2.3) and (1.2a) provided by the property of asymptotic
stability is only applicalﬂe when all the eigenvectors are stable, i.e. E* and F° are empty, but
this instance does not exhaust the information about the nonlinear problem that is available
from the linearized dynamics. Even if the equilibrium is not asymptotically stable, there are
- general theorerﬁs describing in what sense the qualitative features of (2.3) faithfully reflect
the full nonlinear flow (1.2a) near z = 0. For example near a hyperbolic equilibrium, i.e. a
fixed point With no eigenvalues on the imaginary axis, thei'e exists a change of coordinates
that transforms the nonlinear flow into the linear flow locally. Thus even when there are
unstable directions the linearized dynamics remains a qualitatively accurate description of
the nonlinear dynamics. The Hartman-Grdbman theorem provides a precise statement of
this idea.” There is a generalization of this theorem due to Shoshitaishvili that treats the

non-hyperbolic case when E° is not empty; this is discussed in Sec. VILA.2.
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Theorem II..1 (Hartman-Grobman) Letz = 0 be a hyperbolic equilibrium for (1.2a) at
some fized value of u, ¢, denote the flow of (1.2a), and ¢: denote the flow for the corre-

sponding linear system.:
& =DV(p0) z.
Then there ezists a homeomorphism®
U:R" — R"®
and a neighborhood U of z = 0 where”

$(z) = T o @y 0 U(x) | (2.8)

for all (z,t) such that z € U and ¢:(z) € U.

For a proof see Hartman (1982). Note tha,t- U(z) and its inverse can not in general be
assumed differentiable. In the terminology of dynamical systefns, (2.8) defines a topological
conjugacé/ (locally) between the linear flow and the nonlinear flow; this is a precise statement
' that the nonlinear dynamics near z = 0 is qualitatively the same as the linear dynamics. In |
particular if there are no unstable directions so that ¥(z) belongs to E*, then ¢, 0 ¥(z) — 0
as t — oo for the linear flow and (2.8) implies that ¢¢(z) — 0 as ¢ — oo as well; i.e. linear

asyrriptotic stability implies nonlinear asymptotic stability.

3. - Loss of hyperbolicity and local bifurcation

The Hartman-Grobman theorem implies that any qualitative change or bifurcation in the
local nonlinear dynamics must be reflected in the linear dynamics. If z = 0 is hyperbolic then
the linearized dynamics is qualitatively characterized by the expanding and contracting flows

on E* and E° respectively; this qualitative structure remains fixed unless the equilibrium

6 A homeomorphism is a continuous change of coordinates whose inverse is also continuous.
"Here the composition of functions f(z) and g(z) is written f o g(z) = f(g(z)).
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loses its hyperbolicity. For this loss to occur the eigenvalues of the stability matrix DV must
shift so as to touch the imaginary axis.

In Sec. IV, We will show that when a fixed point is hyperbolic, if p is varied slightly near
p = 0, then the fixed point must persist although its precisé location in the phase space will
shift. In this event the eigenvalues of the associated linear stability matrix DV depend on. .
W, and as the parameter value changes, it may happen that an eigenva,lue' A(p) approaches
the imaginary axis. The system is said to be critical when Re(A) = 0, and the cofresponding
parameter value g4 = u. belongs to the bifurcation set. This loss of hyperbolicity occurs in

one of two ways that we distinguish by the appearance of the spectrum at criticality®:

(1) A simple real eigenvalue at A = 0. We shall refer to this type of critical spectrum as
steady-state bifurcation (see Fig. 5(a)). The nonlinear behavior produced by steady-
state bifurcation may take several forms that we discuss in Sec. V. Most typical is

saddle-node bifurcation, but in applications one also encounters transcritical bifurcation

and pitchfork bifurcation.
(2) A simple conjugate pair of eigenvalues satisfying Re A = Re A = 0; see Fig. 5(b). This

type of instability is commonly referred to as Hopf bifurcation, (although the name

does not reflect earlier work of Poincaré and Andronov (Arnold, 1988a)).

B. Maps

The corresponding linear theory for a map may be discussed in a similar fashion. The

expansion of Eq. (1.2b) at z =0,
2341 = f(1,0) + Daf(p,0) - 25 + O(z?) - (2.9)

leads to the linearized system v
zj+1 = Df(0,0) - z; (2.10)

8A loss of hyperbolicity can readily involve more complicated scenerios if there are multiple parameters
or if the problem has some special structure, e.g. the equations are Hamiltonian or have symmetry.
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at u = 0. As before, we diagonalize D f(0,0) by changing coordinates ¢ — z’ = (z}, z},...,z")

and obtain
T} A0 0 z}
z! 0 A z)
o= 2 - (2.11)
! !
Tn/ i 0 An 2,/ ;
with solution )
4 A0+ 0 ]
-z 0 M !
2l =] 07 2 (2.12)
a), Vo ) \a,

If |A;] < 1, then as j — oo, the z} component decays exponentially; if [A;| > 1, then the z!

)

component will grow.

1. Invariant linear subspaces

For the linearized map (2.10) the eigenspaces Ey for Df(0,0) are defined as in (2.6)
for the previous case by replacing DV (0,0) with Df (0,0). The invariant linear subspaces
E*, o = s,u,c, are defined as in (2.7), replacing Re A by || — 1 to reflect the appropriate

stability criteria,,‘

E* =span{vjv € E, and [\ <1} | (2.13a)
E* =span{v|jv € Ey and |A|>1} (2.130)
E°=span{vlv € Ey and |A=1}. (2.13¢)

As before, we have R™ = E* @ E°@® E* and the stable and unstable subspaces have simple
asymptotic dynamics as 7 — +oc0 and j — —oc0, respectively.

The definition of‘ asjrmptotic stability given earlier applies to. fixed points of maps pro-
vided (%) is replaced by (Blj. For the linear dynamics (2.10), the equilibrium z = 0 will
be asymptotically stable if and only if the spectrum of D f(0,0) lies within the unit circle

in the complex A-plane, ie., [X;] <1 for each eigenvalue (see Fig. 3(b)). It can be shown
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that if = 0 is asymptotically stable for Eq. l(2.10) then the same conclusion holds for the
full nonlinear dynamics (12b) In addition for return maps (cf. Fig. 1), whose fixed points
correspond to periodic orbits, the stability of a fixed point reflects the stability of the cor-
responding periodic orbit. (When the differential equation is linearized about the periodic
orbit, the resulting linear equation may be analyzed using Floquet theory; the stabﬂity of the
periodic orbit is cietermined from the spectrum of Floquet multipliers (Jordan and Smith,
1987). The eigenvalues of the return map linearized at the fixed point correspond to the

Floquet multipiiers of the periodic orbit.)

2. Hyperbolicity, Hartman-Grobman, and local bifurcation

As for flows, a fixed point is said to be hyperbolic if the center subspace (2.13¢c) is
empty, and there is a Hartman-Grobman theorem relating the linearized dynamics to the
local nonlinear dynamics: if, at p =0, z = 0 is a hyperbolic fixed point, then there exists a

homeomorphism ¥ and a local neighborhood U of z = 0 where
£(0,2) = 7 (D£(0,0) - ¥()) (2.14)

for z such that € U and f(0,z) € U.
If z = 0 is a hyperbolic fixed point for f(u,z) at x4 = 0, then as u is varied about zero

this equilibrium will shift its location, but it will persist (see Sec. IV). The eigenvalues of .

D will be functions of i1 and a variation in x will cause them to move in the complex plane.

If an eigenvalue reaches the unit circle then the fixed point is no longer hyperbolic and a

bifurcation can occur.

The possibilities may be classified by the form of the linear spectrum when the condition

|Ai] # 1 fails:

(1) A simple real eigenvalue at A = 1; see Fig. 6(a). This type of instability is quite

similar to the A = 0 case for flows, and is referred to as a steady-state bifurcation for
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maps. As in the case of flows, we will find the saddle-node, transcritical, and pitchfork

bifurcations as examples of steady-state bifurcation.

(2) A simple conjugate pair of eigenvalues (), X) where ) = ¢™; see Fig. 6(b). We shall
refer to this case as Hopf bifurcation for maps to emphasize similarities with Hopf

bifurcation in flows.

(3) A simple real eigenvalue at A = —1; see Fig. 6(c). This case is novel as it does not have
an analogue in the earlier discussion of flows. This instability is generally termed period-

- doubling bifurcation, although the names flip bifurcation and subharmonic bifurcation

are also used.

This completes our summary of linear stability theorjr and the forms of instability one
expects to typically encounter when a single parameter is varied. .Characterizing an insta-
bility by the form of the linea,xl spectrum at criticality is more than a convenience; it is
very advantageous to organize the theory ( and one’s understanding) in this way. The most
important reason for this is that the linear spectrum determines the normal form. PreciAsely

what this means will be explained in Sec. VIIIL

III. Nonlinear theory: overview

Suppose an asymptotically stable equilibrium is perturbed by varying an external pa-
rameter 41, and at a critical value g = p. the equilibrium develops a neutral mode (Re A =0
- for flows; |A| = 1 for maps). At u. hyperbolicity is lost, and we must study what happens

to the system as y is varied about u..

For all of the basic instabilities described in Sec. II, this issue can be investigated using
the techniques of center manifold reduction and normal form theory. In brief outline, this

approach has several steps:
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(1) Reduction: identify the neutral mode (or modes) at p = p. and restrict the dynamical

system to the appropriate center manifold;

(2) Normalization: if possible, put this reduced dynamical system into a simpler form

by applying near-identity coordinate changes. This yields the normal form for the

bifurcation;

(3) Unfolding: describe the effects of va,rying ¢ away from . by introducing small linear,

and possibly nonlinear, terms into the normal form;

(4) Study the bifurcations described by the unfolded normal form. In this analysis, one

truncates the unfolded system at some order and considers the resulting system. Once

the truncated system is understood, the effect of restoring the higher-order terms can

be discussed. °

The virtue of step one is that it reduces the dimension of the problem without any loss

of essential information concerning the bifurcation. The advantages of the sifnpliﬁbation
offered in the second step are often decisive in being able to solve the problem. Furthermore,
the resulting simplified reéresentafcion of the dynamics provides a universal, low-dimensional
model for the given bifurcation.

This approach allows the general qualitative features of é‘bifurca.tion to be aistinguished
from specific quantitative aspects that will inevitably vary between différent realizations of
the bifurcation. The dimension of the reduced system and the structure of the appropriate
normal form may be determined without requiring explicit evaluation of the coefficients in the
normal form. Thus the variety of phenomena associated with a bifurcation can be described

in a theory that is model-independent. When this general theory is applied to a particular

%In sufficiently complicated bifurcations, these effects can be significant and highly non-trivial. However
for most of the bifurcations considered in this review, these higher order terms do not produce any qualitative
changes. The one exception is Hopf bifurcation in maps discussed in Sec. V.B.3.
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instability the normal form coefficients can be calculated from the specific physical model
under consideration. The possibility of determining the normal form without needing to

derive the coefficients is often a considerable advantage.

In Sec. V, we present the normal forms for the bifurcations enumerated in Sec. II. Then
the basic theory underlying the center manifold reduction is discussed in Secs. VI and VIL

Finally, in Sec. VIII, we develop the theory of Poincaré-Birkhoff normal forms and indicate

how to derive the normal forms previously introduced in Sec. V.

In the next section, we consider a preliminary issue that it is useful to discuss before taking
up the program outlined above. The question is basic: can the given equilibrium solution
simply disappear when p is varied? For both flows and maps, there are simple conditions on

the linear spectrum that are sufficient to guarantee the persistence of an equilibrium.

IV. Persistence of equilibria
A. Implicit function theorem

The implicit function theorem provides necessary conditions for an equilibrium of a flow
or a map to disappear as y varies. Equivalently these conditions can be restated as sufficient
conditions for the equilibrium to persist. The following version of the theorem is adequate

for our discussion; a proof may be Ifound in Spivak (1965).

Theorem IV..1 Let G(p,z) be a C* function on R x R,

G:RxR"— R", (4.1)
such that
¢(0,0) =0 (4.2a)
and
det (D.G(0,0)) # 0, | (4.2b)
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then there exists a unique differentiable function X(u) defined on a neighborhood M C R -of

p=0,
X:M-R", (4.3)

such that X(0) =0 and
G(u, X(p)=0, peM. (4.4)

In words the theorem says the following. Given G(u,z) we assume that the zero set, i.e.
the set of (u, z) such that G(p,z) = 0, contains at least one point (0, 0); see Fig. 7(a). If, in

addition the matrix,

(D:L'G(()’O))lj = %11(0)0)) iaj = 17"'771' ) (45)

Z5
has a nonzero determinant, then we can solve the equation G(u,z) = 0 uniquely for z
~ as a function of y at least for values of p sufficiently near p = 0. This means that near

(,2) = (0,0), the zero set of G(, ) consists of a single arc or branch as shown in Fig. 7(b).
B. Applications to equilibria |
1. Fiows
For Egs. (1.2a) and (1.32), we choose (i, z) = V(s z). Then
e [D.G(0,0)] = det [DV(0,0)] ; (4.6)

this implies that (4.2b) will be satisfied if and only if A = 0 is not an eigenvalue for DV (0,0).
It then follows that small changes in y will not destroy the equilibrium solution as long as
zero is not an eigenvalue of the linear stability matrix for the equilibrium. The solution must
persist and lie on a local branch of such solutions, X(u), as required by the implicit function
theo;em. | |

Two further conclusions may be drawn. First, Hopf bifurcation cannot alter the number of

equilibrium solutions since the only eigenvalues of DV on the imaginary axis form a conjugate
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pair (Fig. 5(b)). Second, the condition det[DV] # 0 fails at a steady-state bifurcation since
by definition there is always an eigenvalue at zero. Thus in general we cannot expect a
unique branch of equilibria through (u,z) = (0,0) if this solution corresponds to a fixed

point at criticality for steady-state bifurcation.

2. Maps

For Eqgs. (1.2b) and (1.3b), we take G(p,z) = f(p,z) — z, so that G(0,0) = 0 and

D.G(0,0) = Df(0,0) — I (4.7)

where [ is the identity matrix on R™. With this choice, if G(g,z) = 0 then z is a fixed point
for the map at parameter value . For the solution (g, m) = (0,0), condition (4.2b) will be
met if and only if the linear s‘tability matrix D f(0,0) does.-not have an eigenvalue at A = +1.
Provided A = 1 is not an eigenvalue the implicit function theorem implies (0,0) lies on an
isolated branch of equilibrium solutions.

For the three basic instabilities illustrated in Fig. 6, only steady-state bifurcation involves
an eigenvalue at +1. Neither period-doubling nor Hopf bifurcation can alter the number of
equilibrium solutions. In the conte#t of Poincaré return maps for periodic orbits, these results
on persistence of equilibria show that the periodic orbit can always be followed through
a period-doubling or Hopf bifurcation. The question of following periodic orbits through

| parameter space in a global sense has also been studied (Mallet-Paret and Yorke 1982: Yorke

and Alligood 1983).

V. Normal form dynamics

In this section we analyze very simple equations that describe the local dynamics asso-
ciated with the linear instabilities of Sec. II. Remarkably, these simple examples are in fact

quite general; to appreciate this generality requires the material on center manifolds and
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normal form theory developed in later sections. Let us first analyze the dynamics of these-
simple models and then establish their generality. We shall consider the various bifurcations v

in the same order they were listed in Sec. II. In the following it is convenient to assume that

criticality for an instability occurs at p = 0.

A. Flows
1. Steady-state bifurcation: simple eigenvalue at zero

For a simple zero eigenvalue'? as illustrated in Fig. 5(a) the center manifold reduction

yields a system of the form,
=V(p,z) zeR, pelR, (5.1a)
that will satisfy the following two conditions at criticality:
V(0,0)=0 ' (5.1b)
ov N .

Center manifold theory tells us that (5.1a) should be one-dimensional. Furthermore, the
reductionto one dimension will preserve (1.3a) and the occurence of a zero eigenvalue; hence

(5.1b) and (5.’lc), respectively. Expanding (5.1a) at (u,z) = (0,0), we find

ov o0V 2
=5;(0,0)# 62(0 0)
v 0%V w2 33V z3
5 5 (0,0) ,u:z;-f- (0 0) (0 0)3— + e (5.2)

For this instability, the vector field at criticality,

62V 2 63V 3

19An eigenvalue is simple if it is non-degenerate; the associated eigenspace (2.6a) is then one-dimensional.

T =
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cannot be s1gn1ﬁcantly sunphﬁed by making coordinate changes (cf. Sec. VIII); we shall
obtain normal forms by makmg truncations and rescalmgs There are three situations that
arise most often in applications.

a) Saddle-node bifurcation: the typical case

Equations (5.1a,b,c) define a steady-state bifurcation; without further assump-

tions we typically (“generically”) expect
y g Y

ov
T (0,0) #£0 : , (5.3a)
and
o2V ' :
ANFT I (5.3b)
to hold. In this case (5.2) may be rewritten as
. o0V o0V z?
&= —>-(0,0)p[1+O(u,2)]+ 5= (0,0) = [1 + O(p,z)] (5:4)
Ou Bz? 2
where O(p,z) indicates terms at least first order in 4 or z, e.g.
5V v
g 0.0/ 5 0,0)]

is one such term in the first bracket in (5.4). Near (u,z) = (0,0) we can neglect these Oy, z)

terms relative to unity, and then define rescaled variables (i, z),

2

b= i (5.5a)
50,0550, 0"
2
T = T z, (5.5b)
| 2% (0,0)|
to obtain the normal form?!?
E=ejl+ei=V(ii (5.6)

where

*In the terminology of Sec. IV, the normal form is actually & = ¢; 32 and €17 is an unfolding term. I
often overlook this distinction in the following and simply refer to the unfolded normal form as the normal

form.
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Obviously at & = 0, £ = 0 is an equilibrium in (5.6) and this equilibrium has a zero
eigenvalue. What happens near (fi,Z) = (0,0) depends on (€, €2); there are four possibilities.
Consider € = €; = +1 (the other three cases can be analyzed similarly). Then the equilibria
in (5.6) satisfy i + z* = 0. This describés a parabola in the (#,7)-plane as shown in
Fig. 8(a). At a fixed value of [i < 0, there are two equilibria Z.(%) = £+/=% which coalesce
-as i increases to criticality. The upper branch Z, ([i) is unstable, and the lower branch zZ_ ()
is asymptotically stable. This is indicated by the arrows in Fig. 8(a), and can be checked by
linearizing (5.6) about Z.(i). Let Z = Z.(Z) + §+ then (for e, = +1)
= o (BE) T = OB s (5.7
the eigenvalue (24 (f)) is positive (unstable) for 7, and negative (stable) for 7._.
| In two dimensions, a fixed point with one ‘sta,ble and one unstable eigenvector is referred
to as a saddle; if the fixed point has two real negative eigenvalues it is a stable node (Arnold
1973). When a parameter is varied, so that such fixed points are brought together then
the resulting merger can be described by the one-dimensional model (5.6); the bifurcation is
named for this .prototypical example. 12
Note that for i < 0 there are two equilibria, but for i > 0 there are none. This is
consistent with the fact that (4.2b) fails at (u,z) = (0,0) and the implicit function theorem
cannot guarantee a unique branch of equilibria passing through (0,0).

The results for the remaining three cases e = —e; = 1,6 = —e; = —1, and € = €5 = -1,

12More generally, the one-dimensional model (5.6) describes a much wider class of bifurcations in which
two fixed points are either created or destroyed. In higher dimensions it is not always the case that one
equilibrium is stable and the other unstable; both may be unstable. Neither is it necessa.nly true that the
eigenvalues not involved in the bifurcation must be real.

22




are also shown in Fig. 8. These diagrams in the (¢, z)-plane are simple examples of bifurcation

diagrams.
b) Transcritical bifurcation: exchange of stability

In applications, it may happen that an asymptotically stable equilibrium loses
stability through a steady-state bifurcation, but the equilibrium solution itself survives. In
this case saddle-node bifurcation, which characteristically destroys (or creafes) equilibria,
does not occur. When the equilibrium survives, we may denote it by X (1) such that X (0) =
and

Vi, X(u)) =0 peR (5.8)

replaces (5.1b). Let us make the y-dependent change of variables z = X(4) + ¢’ and then

drop the primes. (This amounts to setting X (z) =0.) Then (5.8) becomes
V(/‘I’)O) =0 y : (59)

for an appropriately redefined V(p, ). Since (5.9) implies

oV ~
=12,... .
g (00)=0  n=12.., (5.10)
if we now make a Taylor expansion around (p, z) = (0,0), then (5.2) is replaced by,
.o oV, 2 OV
m—aﬂa (0, O)ym—i——a——-(OO)——i—%—(O 0)3 +ee (5.11)
Without further assumptions, we will typically find
o0*V :
0 ,
_8p8m<’0)7é0 (5.12a)
0%V
a7 (0,0) # 0 (5.12b)

where (5.12a) replaces (5.3a). Now, proceeding exactly as in the discussion of saddle-node

bifurcation, we truncate and rescale variables to obtain a normal form,

z=d(efi+ed), (5.13)
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where € = sgn (5—;; (0, O)) and € = sgn (%‘g— (0,0)). Note that £ = 0 is an equilibrium

for all i, but at i = 0 the eigenvalue ;7 is zero. When sgn (e1/i) = —1(+1) the equilibrium .

Z = 0 is stable (unstable). The second factor on the right-hand side of (5.13) yields a second
branch of equilibria, Zy(), '

~ (o €1\ -

w(m=-(2) 7. (54

' 2
The stability of Z, is found by linearizing (5.13) Z = %} + v to find
y=(-ai)y . (5.15)

Thus 7 = 0 and Z = Z,(i) have opposite stabilities; at 7 = 0 these equilibria collide and their
stabilities are “exchanged.” The precise form of the resulting bifurcation diagram depends

on € and €; the four possibilities are shown in Fig. 9.

c) Pitchfork bifurcation: reflection symmetry
This version of steady-state bifurcation arises formally when (5.9) holds as in

Jc.ra,nscrit:ica,l bifurcation but (5.12b) fails and is replaced by the assumption

BV, |

£ (0?0) #0. _ (5.16)
A natural context for these assumptions is V(u,z) having a reflection symmetry, i.e.,

—Vig,z)=V(pg,—=) . (5.17)

Obviously, this symmetry implies (5.9), and forces (5.12b) to fail. Replacing (5.12b) by

(5.16), we majr rewrite (5.11) as

. 0V - 53V z3 )
¢ = 5atn (0,0) g [L+ Ok, 2)] + 5 (0,0) = [+ Ou,2)] - (5.18)
Now truncating higher-order terms and rescaling variables appropriately leads to the normal
form
F=3|afited’ | (5.19)
where
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5V |
€1 = sgn <0y 2 (0, O))

3

(O
€3 = sgn (@ (0,0)) :

The analysis of (5.19) differs from transcritical in that the second factor in (5.19) contributes

two branches of equilibria,

- e\ - '
() =+~ (2) 7, (520)
. €o
which only exist for sgn (5;—}) = ——l The stability of the solutions may be worked out as

before, and the four possibilities are illustrated in Fig. 10. The bifurcation diagrams resemble
pitchforks in the (i, %)-plane, hence the name.

We conclude this discussion of steady-state bifurcation by indicating how perturbations
of transcritical or pitchfork bifurcation can restore the expected “generic” behavior, i.e.,
saddle-node bifurcation.'® Suppose ‘V( #t, ) describes a transcritical or pitchfork bifurcat’ion

at (#,2) = (0,0). We can perturb V(u, z) by including a small term V; (g, z) in the dynamics,

z="V(p,z)+eVily,z), , | (5.21)

where 0 < € < 1. The perturbation V4 may be chosen arbitrarily in the sense that it need not
respect any special assumptions such as (5.17), (5.9), or (5.1b). For transcritical bifurcation,
when € # 0 one expects the bifurcation diagram to be modified in one of two ways, see
Fig. 11(a). In one case the perturbed diagram contains two saddle-node bifurcations; in
the other case there are no bifurcations at all. With pitchfork bifurcation there are four
possibilities expected for the pérturbed diagram, Fig. 11(b). There is one important new
feature: the possibility of finding hysteresis in the bifurcations of the perturbed pitchfork.

This effect can be understood intuitively by noting that when € = 0 the outer branches of

13In the presence of such perturbations the transcritical or pitchfork bifurcation is said to be imperfect.
A rigorous and systematic theory of such imperfect bifurcations can be developed using the techniques of
singularity theory (Golubitsky and Schaeffer, 1985).
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the pitchfork meet the middle branch with an angle of exactly 90°. A small perturbation

will split and join the branches as shown, and also perturb this 90° angle slightly. This latter

effect leads to the appearance of hysteresis.

2. Hopf bifurcation: a single conjugate pair of imaginary eigenvalues

The normal form is two-dimensional, and in polar coordinates (7, §) may be written as

F=r [fy(p) + i a;(p) r”j' =9r 4 a; r° + O(r®) (5.22a)
0 =w(u)+ i bj(g) ri (5.22b)

~(0)=0 w(0) #£ 0 (5.23a)
dy - '
% (0)>0. (5.23b)

The conditions (5.23a,b) simply mean fha,t the conjugate pair crosses the imaginary axis at
# =0 in a nondegenerate Wa,j.

A characteristic feature of (5.22) is the absence of # on the right hand side. This means
that the dynémics of the normal form is invariant with respect to the group of rotations of
the phase 4. In the liferature, this invariance is called the S phase shiﬁ.symmetry,l‘* and it
allows the dynamics of (5.22a) to be analyzed indeéendently from (5.22b).

For (5.22a), we assume that at criticality (u = 0) the cubic coefficient does not vanish,

a:(0) #£0, (5.24)

14The phase shifts in 6 are described mathematically by the rotation group SO(2) or equivalently as the
action of the circle group S. It is conventional to use the latter terminology for the Hopf normal form

symmetry.
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then the solutions to dr/dt = 0 near r = 0 are determined by the sign of a1(0); see

Fig. 12(a,b). Consider a4(0) < 0 for example, then from (5.22a) the radial equilibriaA sabisfy
r (v(4) + aa(p)r?) m 0, (5.25)

and there are two branches: r = .O and rg(p) = y/—v/a1. The latter solution only exists
for () > 0 since ry must be real. When (5.22b) is taken into account we see that this
new solution in fact describes a periodic orbit of amplitude rg and frequency wy ~ w(p) +
221 bi(u)ry. The plot of 7 vs. 7 in Fig. 12(a) makes it clear that the periodic orbit is

asymptotically stable; this can be checked analyticaily by linearizing (5.22a) about r = rg
and determining the linear eigenvalue. The bifurcation diagram is also drawn in Fig. 12(a);
since the new branch: of solutions is found in the direction of increa%ing 1, above the threshold
for instability of the equilibrium, the bifurcation of r is said to be supercritical.

-The analysis for a1(0) > 0 is similar but the results are siightly different. Now the 7y
solution is only found for ’)/(/J,.) < 0 or p < 0. In this case the branch of periodic solutions is
subcritical and unstable'®; see Fig. 12(b). 4

Hopf bifurcation is a richer phenomenoﬁ than steady-state bifurcation in the sense that
it leads to time-depeﬁdent nonlinear behavior. In an experiment, a supercritical Ho;l)f bifur-

cation manifests itself in the spontaneous onset of oscillatory behavior. Often this oscillation

corresponds to the appearance of a wave in the system.

B. Maps

1. Steady-state bifurcation: simple eigenvalue at +1
The normal form is one-dimensional

ziy1 = f(p, z;) pER,zeR, (5.26a)

15There is no consensus in the literature as to how the terms supercritical and subcritical should be defined
in general although all conventions agree with my usage in this context. For a didactic discussion advocating
one sensible set of definitions see Tuckerman and Barkley (1990).
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for 7=0,1,2,..., where

£(0,0)=0 | - (5.26b)
% (0,0) = +1. (5.26c)

Let V(u,z) = f(p,z) — z, then to find fixed points for f we need to solve

V(pz)=0. (5.27a)
Note that |
V(0,0) =0 (5.27b)

and
‘;_Z (0,0)=0 .. (5.27¢)

follow from (5.26b,c), respectively. This problem corresponds to finding the branches of
equilibria in'a steady-state bifurcation for fows, Le., (5.27a,b,c) are equivalent to (5.1a,b,c).
Consequently, in so far as the branches of equilibria are concerned, we have precisely the

cases already studied.
a) Saddle-node bifurcation

As before, this occurs if

oV 5V

From (5.28), and our previous discussion of saddle-node bifurcation for flows, we are led to

the normal form
i =l +&+ e = f(§i) (5.29)
for this bifurcation in the rescaled variables (5.5) with

—oen [ 9
€ =sgn ((’Tu (0, O))
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o2 f
€z = sgn <5§ (0, O)) :
Since the analysis of branches of fixed points for (5.29) is equivalent to finding.equilibria for
(5.6), we need only check the stability of (%) = &+/—f. The linear eigenvalue at 7. is

simply

o (1,5s) =1+ 205.(7) (5.30)

from (5.29), hence (i) is stable (unstable) if €, ..(fi) is negative (positive). Thus the sta-

bility assignments for the branches of equilibria turn out to be the same as in the bifurcation

diagrams for flows, see Fig. 8. ¢
The interpretation of these diagrams depends on how we interpret the map. If we imagine
that the saddle-node bifurcation occurs in a Poincaré return map for a periodic orbit in a

flow, then the branches of solutions diagrammed in Fig. 8 correspond to collisions of periodic

;

orbits.
b) Transcritical bifurcation
This bifurcation occurs if (5.28) is replaced by
ov

-ﬂ (0,0)=0 | (5.31@)
and
6%V lia%
5204 (0,0)#0 —53;—2 (0,0)#0. (5.31b)

iFrom our previous discussion of the normal form (5.13) for flows, we obtain

S =5 (l+ai+ad)=fHE) (5.32)
as the normal form in this case. The bifurcation diagrams for the branches of fixed points‘
are shown in Fig. 9, and the stability assignments in Fig. 9 are also correct since the linear
eigenvalues for 7 = 0 and 7 = Z in (5.32) are (1+¢; i) and (1 — ¢ i), respectively. At i =0

the two branches of fixed points merge and exchange stability.
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c¢) Pitchfork bifurcation
This case occurs if (5.31a) holds while (5.31b) is replaced by

o0*V

= (0,0) =0 | (5.33a)
and .
82V %
555: G0#0 L G200 #0. (5.33b)

From (5.19) we obtain the normal form,
Fm=i[ltafited . (5.34)

The analysis of the branches of fixed points and their stabilities yields the same bifurcation

diagrams as in the pitchfork bifurcation for flows (Fig. 10).

2. Period-doubling bifurcation: a simple eigenvalue at —1

In Sec. IV we proved that this instability does not change the number of fixed point
solutions, thus any branches of solutions bifurcating from the equilibrium will necessarily

have different dynamical properties. The normal form is one-dimensional and has a reflection

symmetry,
ziy1 = f(p,z;) peR,zeR . ~ (5.35a)

F(1,0) =10 | (5.35b)

gg (0,0)=~1 (5.35¢)

—fp,2) = f(% —z) . (5.35d)

In writing (5.35b), we have made use of the fact that the branch of fixed points X (u) through

(pyz) = (0,0) must persist and have assumed a coordinate shift which places the branch at
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the origin. With these properties, the Taylor expansion of f(u,z) at the fixed point z = 0
takes the form, ‘ '

flnz) = M)z + oa(p) 2° + aa() 2° + O(a") (5.36)
where A(0) = —1. The trick is to notice that the twice terated map, f*(u,z) = f (1, f(p, z)),
is undergoing a steady-state bifurcation which is a pitchfork because of the reflection sym-
metry (5.35d) of the normal form. Following our discussion of pitchfork bifurcation, we take

V(u,z) = f?(p,2) — © and check the prerequisite conditions (5.31a), (5.33a,b) using (5.35)

and (5.36):
%(0,0) gf (0,0) [1 + %(0 O)J 0 | | (5.872)
| ZZZ 00 62f EF 0.0 f(O 0 [1+%(0,0)J ~ 0 | -(5.37b)‘
and
aizgm (0,0) —2%(0 0) a#é; (0,0) = —2%(0) (5:37c)

63V o 0,0)= (0 0) o2 63f 0.) (1 n (gf (0, 0)> ) — _1205(0)  (5.37d)

respectively. Thus to satisfy (5.33) we need only assume %(0) # 0 and o (0) # 0 in

(5.37c,d); each of these two conditions is compatible with (5.35a,b,c,d) and will typically be

satisfied. The normal form for the pitchfork in f2(y,z) is

B =5 (1 +efi+ed)

where

& = sgn (~Q(0)>

du
o = sgn (~a (0)) |
with the bifurca.tion'diagrafns for fized points of f2(u,z) shown in Fig. 10.
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These diagrams for f2(u,z) show thrée branches of fixed points z - 0 and z = Z4(f),
and we now consider the impiications for the original map f(u,z). Obw}iously, thez =0
branch is the fixed point for f(u,z) whose stability is lost at 4 = 0. The z4 (%) branches
. of the pitchfork for f?(u,z) cannot be fixed points for f((!zf,,:z:)~since the implicit function
‘theorem guarantees that z = 0 is the unique branch through (x,z) = (0,0). Therefore

(Z4,Z_) must represent a new bifurcating branch of two-cycles for f(u,z). More precisely,

denoting Z1 as z4 in the original variables of (5.35), we must have
z-=flpz) (5.38a)
zy = f(p,z-) . : (5.38b)

The conclusion that f(p,z) must interchange z4 and z_ can be understood as follows.
The fixed point equation f?(y,z+) = z4 implies that the image of :z:.,.‘, c! = f(p,zy), wil
also be a non-zero fixed poiﬁt for f2(p,z), ie., ¢, = f?(u,x!). But we know that the
pitchfork bifurcation for f? produces only two non-zero branches of fixed points",lso !, must
coincide with z_; hence (5.38a) follows. Moreover the reflection symmetry of f(u,z) requires |
z_ = —z4 when the dynamics is represented by the normal form.'® The stability of the two-
cycle (;z:v+,a;_) is determined by the stability of . (or z_) as fixed points for f2, and is
correcﬁcly indicated in Fig. 10. ‘

If we consider the bifurcation from the perspective that (5.35) describes an instability of .
a ﬁ;{ed point in the return map for a periodic orbit, then the bifurcating two-cycle represents
a bifurcating branch of periodic orbits with approximately twice the period of the original

orbit, (See Fig. 13.). This leads to the terminology period-doubling bifurcation.

16In fact the reflection symmetry of the period-doubling normal form implies that all new branches of
two-cycles can be calculated by solving f(u,z) = —=; it is not necessary to explicitly consider the second
iterate of f (cf. Crawford, Knobloch, and Riecke 1990). ' '
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3. Hopf bifurcation: simple complex conjugate pair at |A\| =1

The normal form in this case is two-dimensional, however, its structure depends on sub-

tleties not evident in the examples of steady-state bifurcation or périod-doublirig bifurcations.

Denote the complex eigenvalue by

M) = (1 + a(u)) 2ee-+406) (5.392)
where
0<fd<1/2 : (5.39b)
da .
a(0) =5(0) =0  and 7 (0)>0. (5.39¢)

AIf the eigenvalue at criticality A(0) = e satisfies the non-resonance conditions,
AM0P#£1  and A0 #£1, | (5.40)
thenAin polar variables (r,7) the normal form for the bifurcation is
rin = (14 a(p))rs L+ ax(p)r? + O(r)] (5.41a)

Yit1 = b; + 201 + b(p)) + bu(u) ri + O(r}) . (5.41b)

At this order in r;, the right-hand side is independent of 1, a feature analogous to the phase
shift symmetry encountered in the normal form for Hopf bifurcation in a flow. In Sec. VIII,
we will show that this ¢-independence depends on the non-resonance conditions (5.40). If -
these conditions are relaxed then t-dependent terms will appear in (5.41); when (5.40) holds |
the dependence on 1 will first occur in terms that are indicated as O(r*) in (5.41).

For émall r, we neglect the higher-order terms in (5.41), apd then solve the radial dy-
namips separately from the phase evolution. For this tactic to succeed the cubic term in

(5.41a) must not vanish at criticality, i.e., we require
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then (5.41a) describes a pitchfork bifurcation at g = 0. Only the positive bifurcating branch

rg = <—i>1/2 | (5.43)

ai
i§ relevant since r must be non-negative. In combination with (5.41b) the 7 g branch describes
a circle of radius rx that is mapped into itself by (5.41), i.e., the circle is snvariant under
iteration of the dynamics (5.41).
This branch of invariant circles may be either supercritical or subcritical depending on
the sign of (a/a;) in (5.43). With the eigenvalue in (5.39a) assumed to be leaving the unit

circle (5.39c), we have
da

sgn () = sgn ( o “((f) +O(u? )) = sgn (uax(0)) (5.44)

near y = 0. Therefore, if a1(0) < 0 the invariant circle is found when x4 > 0 (supercritical),
and if a;(0) > O then the branch bifurcates when y < 0 .(subcfitical). Using (5.41a), it can
be shévvn thatvthe supercritical branch is stable and the subcritical branch will be unstable.
Further‘more,i one can prove that these invariant circles persist and have the properties just
. described if the O(r*) terms in (5.41a) are restored (Ruelle and Takens, 1971; Lanford, 1973).
However (5.41b) is much less satisfactory as a description of the dynamics on the invariant

circle. According to (5.41b), the circle dynamics is simply a fixed rotation by
A 2 2(6 -+ B) + b () + O(ry) (5.45)

In the theory of maps of the circle (Guckenheimer and Holmes, 1983; Arnold, 1988a), it
is well known that such a uniform rotation is unstable if subjected to small perturbations.
Indeed, with the inclusion of small 1)-dependent perturbations present iﬁ the O(r*) terms of
(5.41b) we expect phenomena such as mode-locking to occur in the dynamics on the circle;

see Rasband (1990) for an introductory discussion.

Finally, we consider this bifurcation from the perspective that (5.41) describes an insta-

bility of a periodic orbit as viewed in the return map to a Poincaré section. In this setting
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the invariant circle that appears in the section, corresponds to a two-dimensional invariant

torus in the flow; see Fig. 14.

C. Final remarks

If nérmal forms are to be generally useful, we must show that the bifurcation analysis
of an arbitrary high-dimensional system can be reduced to a simple normal form. It is not
obvious that we should be able to get as much information in one or two dimensions as-
we can in several, nor is it obvious that we will be able, even in ‘low dimensions, to find
coordinates in which our dynamical system is so simple.

The reduction in dimensionality is accomplished by observing that the interesting dynam-
ics near a bifurcation occurs on a low-dimensional subset of phase spé.ce called the center
manifold.)” The dimension of this center manifold determines fhe &imenéion of the normal
form. The simple structure of the normal form is established by the theory of Poincaré-

Birkhoff normal forms.

VI. Invariant manifolds for equilibria

A mathematically precise definition of manifolds and related geometric ideas may be
found in many places, for example Chillingworth (1976), or Guillemin and Pollack (1974).
Intuitively, a d-dimensional manifold in R™ should be visualized as a smooth surface forming .
a subset of R™. For example, a closed loop in IR? and the surface of a doughnut in R? are
one and two-dimensional manifolds, respectively.

Suppose M denotes a manifold in the phase space R™ of a dynamical system, (1.2a) or

(1.2b). Let m € M be an arbitrary point on the manifold, and let ©,, denote the trajectory

of the dynamical system through m, i.e., z(0) = m for (1.2a) and z;=0 = m for (1.2b). If

Y"Liapunov-Schmidt reduction is an alternative procedure for reducing the dimension of the problem. An
introduction to this technique may be found in Golubitsky and Schaeffer (1985); the connection between
center manifold reduction and Liapunov-Schmidt reduction has been explored by Chossat and Golubitsky
(1987) and Marsden (1979). :
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Om C M for allm € M, then M is an invariant manifold fér the dynamical system. More
concisely, an invariant manifold is a surface that is carried into itself by the dynamics.
IfMc ]R" is an invariant manifold, then the full dynamics on R" implies the existence
of a distinct autonomous dynamical system defined on M alone which can in principle be
studied independently. For example, if a map (1.2b) admits an invariant circle, then the’

dynamics on this circle is described by a one-dimensional map of the circle to itself, e.g.,
Oir1=f(8;)  mod(27) (6.1)

“where the angle § labels points on the circle. The invariance of the ciréle implies that f(6)
will not depend on the other phase space coordinates. Thus (6.1) describes an autonomous
one-dimensional dynamical system embedded in the dynamics ‘(l.2b) on a larger phase space.

Individual trajectories piovide very. simple examples of invariant manifolds. In a flow,
an equilibrium and a periodic orbit are invariant manifolds with zero and one dimension,
respectively. Much less trivia,i examples are the stable, center, aﬁd unstable manifolds as- |
sociated with equilibria.'® We first consider flows; the manifoldsfor maps are quite similar

and they are discussed briefly in subsection B.

A. Flows

For a flow (1.2a, 1.3a)
| 5 = V(u2) ~ (62)

the stable, center, and unstable manifolds for an equilibrium are generalizations of the in-

variant linear subspaces E*, E°, and E* that arise in the linearized dynamics

&=DV(0,0)-a. - (6.3)

18There is an extensive mathematical theory of invariant manifolds with application to sets far more
complex than the equilibria considered here. For a relatively introductory discussion see Lanford (1983)
and Irwin (1980); other standard mathematical references include Hirsch, Pugh, and Shub (1977) and Shub

(1987).
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These subspaces were described in Sec. (IL.A) (cf. (2.7)); hereafter we denote their dimensions
by ny, ne, and n, respectively..

For the linear systern (6.3), the subspaces (2.7) are in fact invariant manifolds. However,
they are atypical since these manifolds are also linear vector spaces; this special additional
property reflects the linearity of (63) When the nonlinear terms in (6.2) are restored, the
invariant manifolds just comstructed for the linear 'system are perturbed but they persist.
Their qualitative features also persist except that the vector space structure is lost. Intu-
itively, the nonlinear effects deform the invariant linear vector spaces into invariant nonlinear
manifolds.

For an equilibrium z = 0, we have the following definition. A stable mq,m'fold is an
invariant manifold of dimension n, which contains ¢ = 0 and is tangent to E* at z = 0. The
unstabié and center manifolds majr be similarly defined by replacing E°* With‘ E% and E¢,
respectively. We shall denote these manifolds by W, W* and W*<; see Fig.' 2(c).-

The stable and unstable manifolds are unique. Furthermore, trajectories in these man-
ifolds have some simple dynamical properties. If z(t) € W*, then z(t) — 0 as ¢ — +o0; if
z(t) € W*, then z(t) — 0 as t — —oco. This asymptotic behavior is indicated schematically
in Fig. 2(c).

The properties of center manifolds are somewhat more subtle (Lanford, 1973; Carr, 1981;
Sijbrand, 1985). In general, the center manifold is nof unique; we give an example of this
non-uniqueness below. There is no general characterization of the dynamics on W¢, not
even asymptotically as || — co. Nevertheless center manifolds play a distinguished role in
bifurcation theory because of two important properties. We discuss these properties here
and in Sec. VII we state a geﬁera.lization of the Hartma,n-Grobman theorem that justifies

our discussion.

For a center manifold W€, there exists a neighborhood U of z = (0 such that:
(i) if #(0) € U has forward trajectory z(t) in U; i.e. z(t) € U for all £ > 0, then as t — oo
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the trajectory z(t) converges to W,

(ii) if 2(0) € U has a trajectory in U; i.e. z(t) € U for —oo < ¢ < oo, then z(0) € W€ and

by invariance the entire trajectory must lie in We.

One does not know in general how large U will be, only that such a neighborhood exists;

the situation is illustrated in Fig. 15.

The first property (i) is sometimes referred to as local attractivity. Notice that there is no
claim here that a typical initial condition will satisfy the required hypothesis; in particular
if there is an unstable manifold then most points will be pushed away from W*°. Local
attractivity only holds for poihts z(0) € U whose orbits remain sufficiently close to z = 0

for all future times.

The second property is a special case of the first, and provides sufficient conditions for a
trajectory to lie in W¢. In particular, property (ii) implies that invariapnf sets of any type,
e.g. equilibﬁa, periodic orbits, invariant 2-tori, must lie in W if they are contained in U. For
this reason one hzay restrict attention to the flow on W*¢ when analyzing a local 5zfdrcation,'
this restriction provides a éetting of lower dimension with no loss of generality. We return
* to this point in Sec. VII.

There is an intereéting way to reformulate property (ii) so that it only refers to the
forward trajectory. A point z(0) is recurrent if, for any 7' > 0 and any € > 0, there exists a
time to > T such that |z(f0) — z(0)] < . In other words, the recurrent trajectory returns

arbitrarily close to z(0) over and over again — forever.

(ii)" if z(0) € U is recurrent and the forward trajectory a(t) is contained in U, then local

attractivity (property (i)) implies z(0) € We.

Thus one can say that the center manifold captures all local recurrence.*®

®Dynamical systems theory utilizes various notions of recurrent behavior. In addition to the recurrent
points, there is the larger set of nonwandering points. A point z(0) is a wandering point if there exists
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B. Maps

The invariant manifolds for an equilibrium (1.3b) of a map (1.2b) may be described in

very similar terms. We indicate only the necessary modifications in the discussion for flows.

The linearized map for (1.2b),
Tjp1 = Df(0,0) "5,

determines iﬁvariant linear subspaces E?, E¢, E* that were described in Sec. II.B. Obne defines
the stable (W?), center (W¢), and unstable (W“) manifolds relative to these subspaces just
as for flows. The manifold We(a = s,c,u) is an invariant manifold of dimension n, which
is tangent to E* at z =0.

In addition, the discussion of the properties of these manifolds for flows applies to the

case of maps as well as with the obvious modification of replacing continuous time by discrete

iteration.

VII. Center manifold reductibn

For the various bifurcations introduced in Sec. II, the goal is to detect and analyze new
brdnches of solutions, e.g., fixed points and periodic orbits. This analysis should determine
their existence, their dynamics, and their stzlibility. It is important to note that these branches
emerge from the given equilibrium in a continuous fashion as u va.rie; near .zero. For u
sufficiently srﬁall, the distance from the original equilibrium to the new solution can be made
arbitrarily small. Thefefore, these small amplitude (recurrent) solutions will fall within the
neighborhood of local attractivity for W¢; hence, ;chey are contained in the center manifold.

This conclusion is correct, but the argument just given ignores a subtlety: the bifurcation

analysis requires that we work on an interval in parameter space about x = 0; but our

some neighborhood V' of z(0) such that for ¢ sufficiently large the trajectory z(t) never re-enters V. A point
that is not a wandering point is a nonwandering point; all recurrent points are nonwandering. The local
nonwandering points in the neighborhood U are in the center manifold.
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locally a,ttl;a,cting center manifold is only defined at a single point 4 = 0 when the system is
critical. (Indeed for saddle-node bifurcation one does not even have an equilibrium when 4 is '
slightly supercritical.) This awkward discrepancy can be finessed by formally applying center
manifold reduction to the “suspended system” for (1.2a,b). This extension is described in
subsection C below, and it establishes the existence of a locally attracting submanifold-on a
full neighborhood of p = 0.

‘For the moment we shall accept the conclusion that all continuously bifurcating branches
of solutions will lie in an appropriately defined center manifold. Since the center ma.nifold
is invariant, the dynamics on the manifold is autonomous. That is, one has an independent
dynamical system of dimension dim W¢° = n, which describes exactly the trajectories of
points on W¢. In particular, this reduced dynamical system describes a].lllocal bifurcations

in We. Our goal is to derive the equations for this reduced dynamical system, at least

" approximately.

“A. Flows

In general, the nonlinearity of a center manifold prevents us from obtaining an exact
analytic description of its dynamics. However, near the equilibrium 2z = 0, it is possible to
accomplish this task with sufficient accuracy to obtain useful results.

At criticality (4 = 0) for an instability, the‘spectrum of DV (0,0) is contained in the left
half-plane (Re A < 0) except for the critical modes whose eigenvalues satisfy ReA = 0. Our
method of deriving the center manifold dynamics does not reqiuire the absence of unstable

modes however, and we shall describe the procedure without assuming E* is empty. Thus

consider DV (0,0) with a spectrum like that illustrated in Fig. 2(a), and write (1.2a) as
de A
= =DV (0,0) -z + N(z) (7.1)

for u = 0 where N(z) denotes the nonlinear terms. Without loss of generality we can choose
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variables z; € E¢, z; € E* @ E*, such that ¢ = (z(,z) and (7.1) becomes

d

’CEZE]. =-A'£E1 +N1(m1,:z:2) . (72&)
d
% Ty = B. T + Nz(ml, (Ez) (72b)

where A is an n, X n. matrix with all eigenvalues on the imaginary axis, B is an (n, +ny) X

" (n, + ny) matrix with all eigenvalues off the imaginary axis, and Ni, Ny are the resulting

nonlinear terms in (zi, z,) variables
Ni:R™ — E°

Ny R™ - E°@ E“.

1. Local representation of W¢

A center manifold associated with E° will pass through z = 0 and at z = 0 the manifold

will be tangent to E°. This tangency means that near z = 0 one can describe W*© as the

~ graph of a function h(z1),
h:E¢ — E* @ E* (7.3a)

h(z1) = 3

where for z; sufficiently small the point @ = (21, A(z1)) belongs to We. Since z = 0 is in the

center manifold, we require

K0)=0, (7.3b)

and the tangency condition at z = 0 implies?

20This follows from the observation that tangent vectors to W* at (0,0) must have the form (z1,0). Let
s(€) = (z1(€), z2(€)) denote an arc lying in the center manifold and passing through (0, 0) when ¢ = 0. Then
for small €, z2(¢) = h(z1(€)), and the tangent vector $(0) can be written $(0) = (£1(0), Dz, h(0) - £1(0));
hence Dy, h(0) - £1(0) = 0. Since £,(0) is arbitrary, we must require (7.3c).
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Do h(0)=0. (7.3¢)

The geometric interpretation of this representation is illustrated in Fig. 16 for the particular
three-dimensional example n, = 1, n, = 2, and E* empty.
The invariance of W implies an equation for h(z;). Let z¢(t) = (2$(¢), z§(¢)) denote

a trajectory of (7.1) that belongs to W* and has sufficiently small amplitude that we may

write
z5(t) = b (2()) - (7.4)
This implies immediately that |
%28 — Dh(a5(1))- 2E = Dh(af(t) - [4- o5 + N (a5, h(s5))] (7.5)

dt
from (7.2a) and (7.4). However, (7.2b) provides a second expression for 3,

' dz
dt

= B h(a) + Mo (a5, h(a5)) , - (18)

which must be the same as (7.5) if the trajectory remains on W¢. Combining (7.5) and (7.6)

yields the desired equation for h(zq):
Dh(z,) - [A- 21 + N1 (21, h(21))] = B - h(z1) + Na (21, h(z1)) - (7.7)

A solution to this equation, that also satisfles (7.3b,c), determines a center manifold near
-~z =0.

The dynamics on the center manifold h(z;) follows from (7.2a) and (7.4):

d . .
E T1 = A + L1 + Nl (ZB]_, h(ml)) . . (78)

By replacing z, with A(z1) in (7.2a) we have decoupled (7.2a) from (7.2b); thus (7.8) describes
an autonomous flow in m.-dimensions. These two results, (7.7) and (7.8), are the crucial

(exact) equations required to reduce a bifurcation problem to the center manifold.

42




The “invariance equation” (7.7) is in general a nonlinear partial differential equation for
h(z1) and cannot be solved in closed form except in special cases. However, we can solve

(7.7) approximately by representing h(z;) as a formal power series,

b)) = O dulok(oni + S funlan)ilen)(@k - (7.9)

1,7=1 i,7,k=1

where (2;); denotes the ;th component of z; and the coefficients ¢,-j,\ dijk etc. are (n, + ny)-
dimensional column vectors. It can be shown that if ¢(z1) satisfies #(0) = 0, D, $(0) = 0,

and solves (7.7) to O(«f), i.e.

Dé(z1) - [A ‘@1 -+ Ny (z1,¢(z1))] = B - ¢(z1) + Nz (21, 4(z1)) + O(af) ,  (7.10)

then

Wz) = d(z) + OF)  as @ — 0 | | (7.11)

(Carr, 1981). It is a straightforward calculation to insert ¢(m1) from (7.9) into (7.7) and

solve for the coefficients to any desired order. Examples of this calculation are provided in

Sec. VII.LA.3 and Sec. IX. -

2. The Shoshitaishvili theorem

In Sec. II, the Hartman-Grobman theorem for hyperboli/c equilibria demonstrated that
local bifurcations required a loss of hyperbolicity. In the present notation, the theorem
applies when there are no eigenvalues on the imaginary axis and (7.2a) is absent, then the

- flow of (7.2b) can be mapped onto the flow of

— =B ‘ (7.12)

on a neighborhood of z; = 0.
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For a non-hyperbolic equilibrium, the theorem was generalized by Shoshitaishvili to allow

for the effect of the critical modes (7.2a); in effect (7.12) must be supplemented by the center

manifold dynamics (7.8).

Theorem VIL.1 Let ¢s(z) denote the flow of (7.1) and ¢y(z1, ;) denote the flow for the

~ decoupled system

d
=t = A o1+ Ny (a3, k(o)) |
(7.13)
@ _ g
| a "
Then there ezists a homeomorphism®
TR —» R" (7.14)
and a neighborhood U of z = 0 where
b(z) =T 0 doU(z) (7.15)

for all (z,t) such that z € U and ¢:(z) € U.

This result was proved by Pliss (1964) in the circumstance that there are no unstable modes
(ny = 0). Shoshitaishvili (1972, 1975) generalized Pliss’ result to allow for both unstable

modes and dependence on parameters. This theorem is also discussed in Arnold (1988a) and

Vanderbauwhede (1989).

Heuristically, the change of coordinates U “straightens out” the nonlinear manifolds of
(7.1) locally; note that for (7.13) the invariant manifolds coincide with the linear invariant
subspaces, see Fig. 17. In addition, the flow @, off the center manifold is linear.

A useful feature of this theorem is the information it provides on the stability of solutions
in the center manifold. The first equation in (7.1‘3) describes stability relative to perturba-

tions within the center manifold and the second equation characterizes stability relative to
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perturbations transverse to the center manifold. Thus for the original nonlinear problem
(7.1) the stability to transverse perturbations can be inferred from the eigenvalues of the
matrix B in (7.13). |

The properties (i) and (ii) of center manifolds discussed in (VI.A) follow from the equiv-
alence in (7.15). Consider the decoupled system (7.13) and suppose z(0) € U is an initial
condition whose forward trajectory z(¢) remains in U. Since (0) = (z1(0), z2(0)) there are
two cases: if 2,(0) # 0 then m(O)'must lie in the stable manifold, otherwise the component in
the unstable manifold would grow without bound forcing w(t) to leave U; if z,(0) = 0 then
z(0) € We. In either case, the forward trajectory will converge to W€ as t — oo. .For the
second property, we assume that the entire trajectory z(t) remains in U for —co < t < 0. |
Now if 2,(0) # 0 thére must be components.of z(0) in either W* or W* (or both) which grow
without bound as |{| — co. Therefore the assumption z(t) € U for all ¢ requires z2(0) =0

which implies z(0) € W* for (7.13). Because of ¥, these properties for (7.13) will also hold

for the center manifol& of (7.15) described locally by h(z1).

3. Example
Consider the two-dimensional flow : 4
z 0 0 ‘m —z? | :
()= 6-1) )+ (F) n
whose equilibrium (z,y) = (0,0) determines E* and E° as

B’ = {(z,y)|z =0} : | (7.17a)

E° = {(z,y)ly = 0} . C (11m)

Note that in this example the stable manifold W* coincides with E° because £ does not

depend on y. The center manifold has a graph representation y = A(z) near (z,y) = (0,0),
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and the invariance equation (7.7) for this example is the ordinary differential equation -

| % [~2%] = —h(z) + 2* . (7.18)

- We first calculaté the asymptotic description ¢(z) as in (7.9) and (7.10),
9a)= a5’ + doa® + fua? + -,
and obtain ¢y = 1, é3 = 0, ¢4 = 2, so that
h(z) = o? + 20 + O(c®) . | (7.19)

It turns out that in this example (7.18) can be solved exactly by the method of variation

of parameters. Dropping z? in (7.18), we obtain the solution to the homogeneous problem
ho(z) = cye”57 | (7.20)

Then setting a(z) = A(z) ho(z) in (7.18) yields

dA  ewT
o= e (7.21)
with solution
L y/2 :
clA(a;) =c+ %Aaz e—y—" dy . (722)

Hence the solution to (7.18) is
h el P | 7 23
() = [c+5/1 = (7.23)

The prefactor e 37 enforces h(z) —0asz —0and K(z) — 0 as z — 0. Note that (7.23)
contains an arbitrary constant. Hence the solution is not unique and in fact the equilibrium
(z,y) = (0,0) has an uncountably infinite number of distinct center manifolds. However,
the term c e causing the lack of uniqueness vanishes to all orders at the origin, so these

manifolds all have the same power series repre_sentatioh (7.19). One can show that this
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circumstance is generally the case (Sijbrand, 1985): when the center manifold is not unique
the differences are too small to be detected in the asymptotic description (7.9). Thus in
practice one does not worry about possible non-uniqueness since it will not affect practical
calculations based on the power series representétion of the center manifold.

Finally, for this example the center manifold dynamics (7.8) is

z=-z°;
|

there is no dependence on A(z) because Z in (7.12) is independent of y.

B. Maps

The reduction procedure for a map is wholly analogous to that just described for flows.

With the splitting of z = (y, 2) wherey € E° and 2z € E*@® E*, the dynamics (1.2b) becomes:

Yir1 = Ay + Y (y5,25) (7.24a)

zjip1= Bz + Z(y;, 2) (7.24b)

in & manner equivalent to (7.2).

1. Local representation of W¢

A center manifold for (y,z) = (0,0) may be locally represented by a graph z = h(y) as

in (7.3a,b,c). The invariance of W implies that h(y) must satisfy
h(A-y+Y(y,hy)) = B-hly) + Z(y, h(y)) | (7.25)
by the same reasoning used before. Combining the solution to (7.25) with (7.24a) yields
Yirr = A-y; + Y (y;,h(y;)) - (7.26)
which describes the dynamics on W* near y = 0. In practice, the solution to (7.25) is
obtained appro;cimatel‘y using power series (7.9) as before.
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C. Working on intervals in parameter space: suspended systems

Let 4 = 0 be the critical parameter value for an equilibrium undergoing either steady-
state or Hopf bifurcation. At p = 0, there is a locally attracting center manifold W< which
contains all small amplitude equilibria and periodic orbits; these solutions can be detected
by analyzing a low-dimensional system on W¢. Unfortunately, the small amplitude solutions
of interest do not usually exist at 4 = 0; or rather they have “zero amplitude” at criticality.
These new bifurcating solutions become distinct from the original equilibrium only for non-
zero 11, and when p # 0 we have no center subspace £° and thus no center manifold to justify
studying the reduced dynamical system (7.8) or (7.26), see Fig. 18(a).

Ruelle and Takens (1971) pointed out that the reduction was justified not only at x = 0,
but in fact on a neighborhood of criticality 4 € (—po, to), in parameter space. Indeed, the
notion of locally attractivity defined in Sec. V implies the existence of such a neighborhood;
the procedure of Ruelle and Takens is to .apply center manifold reduction to the “sﬁspended
system”. This trick works equally well for flows and maps; we consider only the argument .
for flows.

It is convenient to split the variables in (1.2a) as was done in subsection A above. Let
R™ = E°® X where E° is the center subspace associated with the bifurcation at y = 0 and

X is the subspace spanned by the remaining eigenvectors. We choose variables z = (z1,z;)

such that z; € E° and a:z € X then (1.2a) becomes

d

cz&l = Va(p, 21,22) | (7.272)
d

(ZZ = Vz(/"’: ml)mz) . (727b)

At criticality, this splitting coincides with (7.2):

V1(0,0,0) = ¥3(0,0,0) = 0 | (7.28a)

D, V4(0,0,0) = Dy, V5(0,0,0) =0 (7.28b)
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Da, Vi(0,0,0) = A | (7.28c)
D, V3(0,0,0) = B . (7.284)

Instead of applying center manifold reduction to (7.27) at x = 0, we form the suspended

system for (7.27):

AP | (737a)
dmg n 7 o
= = Velwyzi,za)  (po1,8) ERXR (7.27b)
du : '~

and formally apply center manifold theory to the equilibrium (4,21, 2,) = (0,0,0) of (7.27).
Since (7.27) and (7.27) are obviously equivalent, the only virtue of this exercise is that certain
features of (7.27) are made explicit. Note that by appending (7.27c) the linear spectrum of
(7.27) at 1 = 0 now includes a zero eigenvalue not fou_ndvin the spectrum of (7.27) at p = 0;
.hence the center subspace E’c for (7.27) at (u,1,25) = (0,0,0) is larger than E° for (7.27)
and similarly the center manifold W¢ for (7.27) is lazger than the center maﬁifold Wein (7.27)
for (w1,22) = (0,0) at 4 = 0. More precisely we have ¢ 5 W and dim W* = dim W<+ 1.

Since (g, z1) provide coordinates on K¢, we can describe W¢ as a graph: z; = A(u, ;) where

h satisfies
Dy By 31) - Vil o1, B) = Valyan, B) (7.292)
subject to
R(0,0)=0 - (7.29b)
D, h(0,0) =0 : | (7.29¢)
-g%(o,O) = 0. | (7.299)
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The crucial observation is that local recurrent points belong to W¢ for p near 0 (rather
than simply at 4 = 0). Let 7 C R x R™ denote a neighborhood of (4, z1,22) = (0,0,0)
within which W¢ is locally attracting; the intersection of I with the py-axis defines an open
set containing y = 0. Within this open set we can find a value of y, denoted g, such thai;
the interval (—uo, o) on the p-axis is contained in U; see Fig. 18(bj. When p' € (—po, o)
it follows that a given point (u,’z!,z}) belongs to U provided z| and z} are sufficiently
small. If such a point is recurrent, then (p',z!,z}) € we. Furthermore, since 4 = 0, the
point (4', 2}, z}) is recurrent for (7.27) if and only if (!, }) is recurrent for (7.27). Hence,
if u' € (—po, po), all local recurrent points for (7.27) belong to We.

In addition, since i = 0, the center manifold Wwe is foliated by invariant submanifolds,
Wﬁ, obtained by taking a slice of W¢ at a fixed value of L When g = 0, the submanifold -
Wﬁ=o coincides with the original center manifold W¢ of (7.27), and each of these slices s
of the same dimension dim W; = dim W*. The geometry of the suspended system is most
easily illustrated when the equilibrium at (21,2,) = (0,0) happens to persist as u varies near
p# = 0 (as in Hopf bifurcation). In this case we can modify the definition of z; in (7.27)
so that z; € Fy where E, is the eiéenspace associated with the critical eigenvalue ) i.e.
E) = E° when p = 0. Now (7.29b) becomes h(u,0) = 0 and the manifold e is tangent to
the subspa.cé defined by E, and the u — axis as shown in Fig. 18(c).

Finally, the dynamics on Wﬁ is given by

dz = A
d—fl - Vi (,U,, Z1, h(/"'; $1)> K€ (-:U’OHU’O)' (730)

Thus on a neighborhood of criticality center manifold reduction gives us the autonomous low-

dimensional dynamical system (7.30); to rewrite (7.30) in normal form requires the methods

of the next section.
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VIII. Poincaré-Birkhoff normal forms

- At the conclusion of Sec. II, we remarke.d that the linear spectrum determines the normal
form. More precisely, we will show that the type of spectrum ot criticality determines which
nonlinear terms are essential and remain after inessential nonlinearities have been removed
by a smooth near-identity change of coordinates. We assume that the problem has already
been reduced to the appropriate center manifold, and accordingly the specific dynamical
systems we consider are one- or two-dimensional. |

For the bifurcations analyzed in Sec. V, normal form theory is most interesting for Hopf
bifurcation and period-doubling bifurcation. For steady-state bifurcation, the lowest order
nonlinear terms are in fact essential and no particular simplification results from performing
normal form transformations of the type considered here. For this reason after developing
the normal form procedure we work out the application to Hopf bifurcation and period-
doubling as examples. Finally we describe some recent theoretical work that expla;in»s why

normal forms often have greater symmetry than the original dynamical system.

A. Flows
1. Generalities

Center manifold reduction yields a flow

dz’ ' ' _
—C—;— = V(/L,:E/) = V(l)(ﬂ,w’) + V(Z)(,u,, x’) 4 V(’“)(Iu,’ m’) 4+, ' eR™ '(8.1)

where n. = dim E° and V(*)(y, z') represents all terms in the Taylor expansion of V{4, z')

of order & in z’. For example, at a Hopf bifurcation n, = 2 and -

P ) = < 7(0) wm)) () | 652

—w(p) 7(p) ). \ 23
is the appropriate first-order term. For simplicity we have assumed there is no constant

term on the right in (8.1); this need not be true for steady-state bifurcation, but as already
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~ mentioned the application to steady-state bifurcation is not of great interest.

Given (8.1) our goal is to simplify V(u,z’) by performing near-ident‘ity nonlinear co-
ordinate changes ' — =z that remove as many nonlinear terms as possible. This task is
accomplished in an iterative fashion. First we remove V() (u,z’), then V®)(y,2'), and so
forth. The entire procedure can be undefstood by attempting to construct, if possible, the

coordinate change to remove V¥)(p, z'), k > 2. Consider then the coordinate change

z=8(z") = o' + ¢*¥)(a) (8.3a)

with inverse

-2 =0"Y(z) = 2 — ¢F)(z) + O(z*1) » (8.3b)
where . | |
¢*): R — R™ |
is a homogeneous polynom_ial map of degree k; i.e., for a € R,
¢ (az) = aF ¢®)(z) . (8.4)

Aside from (8.4), we regard ¢(¥) as unknown and try to determine the choice of ) that
removes V(*) in (8.1). From (8.1) and (8.3a) one has (suppressing the dependerice on &),

%‘tf = Dd(z)- ‘Z—“t’/ _ Do (é‘l_(m)) -V (é‘?(m)) : (8.5) -

Now using the expansions,
V(27Y(z) =V (z - ¢¥)(z) + O(z*))
=V(z) - DV (z) - ¢F)(z) + O(z*+1) (8.6a)
D% (@“l(w)) = I+ D¢® (87(z))

=1+ D¢®(z) + O(2*-?), - (8.6b)
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we rewrite (8.5) keeping terms involving ¢(*) up to O(z*),

dz k k+1 :
= :AV(J;) — L(¢®) 4+ O(z*t1) (8.7a)

where

L($)(z) = DV)(z) - ¢¥)(2) — DM (z) - VN)(z) . (8.7)

Our notation is chosen to emphasize that the new terms of O(z*) in (8.7a) are linear in $*),
and have the form of a linear operator L acting on ¢*). Note that L, defined by (8.7b),
depénds only on the linear term V()(z) of the original flow, 2!

To remove all terms of O(z*) in (8.7a) we must solve
V®(2) - L(¢*)) = 0 (8.8)
for ¢(¥)(z). Formally, this is easy,
(@) =17 (v¥(a)) | | (8:9)

but our solution is only sensible if L—! is well-defined. The task of finding L1, if it exists,
is a problem in finite-dimensional linear algebra. That is, L in (8.7b) may be viewed as a
finite dimensional matrix, and L~! is well-defined if and only if det L # 0.

To make this interpretation precise, we go back to (8.4) and define H(*)(IR™),
H®(RM) = {(]SIR" . R*|¢(az) = af¢(z) foralla € IR} , (8.10)

the space of all homogeneous polynomial maps on R™ of degree k. For fixed % and n,

H*)(IR™) is a finite dimensional linear vector space. The vector space structure is obvious,

!In connection with (8.7b) and (8.8) there are a variety of characterizations in the literature. The linear
operator is simply related to the usual Lie bracket of the two vector fields ¢(*) and V(1) i.e. L(g(*)) =
—[V), ¢(¥)]. Arnold (19882) refers to (8.8) as the homological equation associated with the linear operator
DV()(z). Guckenheimer and Holmes (1986) write the Lie bracket as adV(1)(4(*)) since this vector field is
induced when V(1) acts on vector fields through the adjoint representation (cf. Olver 1986).
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and an example serves to make the finite dimensionality clear. .Consider H()(R?) with

" coordinates (z,y) € R? then any ¢(z,y) € H®(IR?) may be written

_ [az® 4 bzy + cy?
¢($;y) - (de + emy_l__ fy2

_ [a? Ty y? 0 0 0
=o(5)0(3) e (F)e(2)oe(a) +s () o
Obviously, H()(IR?) is six-dimensional and one possible choice of basis is given in (8.11).

In terms of the spaces H*), (8.4) asserts ¢(¥) € H(*)(IR™) and (8.7) implies
LiHE (R ) — HB (R,

thus L is a linear transformation acting on a finite dimensional vector space. Once a basis
for'H(k)(IR’“) is chosen, then.L can be written down in matrix form.

Any cclmvenient basis may be selected since det L is indepeﬁdent of this choice. Recall
that det L # 0 means that ¢(*) in (8.9) is well-defined and the resulting change of variables
(8-3a) will remove all terms of order & in (8.7a). More generally, however, one finds that
det L depends on k and on whether or not the system is critical; at criticalityi there will be
values of k such that det L = 0 because L has at least one zero eigenvalue.

Since L is given in terms of DV(lj(O), it is reasonable to investigate what the condition
det L = 0 implies ébout the eigenvalues of DV(1)(0); this is most easily done if we assume
that DV(I)(O) can be diagonalized with eigenvalues (o4, 05,...,0,,). Once (8.75,) has been
written in coordinates that diagonalize DV(1)(0), then the eigenvectors of L are easily found.
Let ¢(¥)(z) have only a single non-zero component (cf. 8.11), (¢®)(z)) = 5[j¢§'k)(m>7 which
we take to be a k-degree monomial: ¢§k)(m) = z* where 7 = 1,...,n. labels the component

and the multi-index?? a is arbitrary except |a| = k. Then applying L to ¢F)(z) gives
Ug¥e) = 036(e) - (S ) $90c)
=1

»In this notation, @ = (a,03...,@,) denotes an n-tuple of non-negative integers and z% =

zitzy? - --zim.  In addition we define notation |o| = @1 4 a3 + -+ + @, and, for future reference,

ol = aglagl-rayl.
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= [aj -y azaz} 6*)(2); (8.12)
=1
hence vectors ¢(*)(z) of this form are eigenvectors and the eigenvalues have the form [0; —

S, agoy]. If we can satisfy the condition
oj =) o (8.13)
I=1

for any choice of j and « then L has a zero eigenvalue. Oﬁe can see by inspection that
when critical eigenvalues (Rec = 0) occur there aré always choices of o which satisfy the
“resonance condition;’ (8.13). We analyze the case of imaginary eigenvalues in Sec. VIIL.A.3
below.

In the presence of such zero eigenvalues, the range of L, denoted L (H(k)(']Rm)),'is a

proper subspace of H(*)(IR™), and we can specify a complementing subspace C'¥) so that _

HO(R™) = L (HO(R™)) + 0 . (8.14)
Once CF) is chosen (and the choice is not unique) then the k™-order terms V() in (8.7a)
may be split accordingly: V() = V*) + V() with V*) ¢ [, ('H(k)-(lR"f) and V() ¢ 0k,

The component in the range can be removed,
$B) = -1 (V;(k)> ’ ' (8.15)

leaving behind the “essential” nonlinear terms at order k, namely V.(*). In this way ¢(® is
first specified then ¢(®) and so forth so that one generates a power series? representing the

desired normal form transformation to all orders:
z=8(z") =z + D) +O)+--- . (8.16)

The normal form resulting from this procedure has the structure

d |
B VOE) 4 V() 4 VOe) - 817)

“3Because of the iterative process used to construct &, the full series in (8.16) is not of the form ' +

2h>1 ¢<k)(‘ﬂl)'
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if at order k, det L # 0, then of course V(*) = 0.

There is an important subtlety in this procedure. The series (8.16), representing the
transformation ®(z') required to put the original flow (8.1) into normal form to all orders,
typically diverges. Thus while we can describe which terms can be removed at any given
order, the change of variables required to remove them to all orders does not generally exist.
In practical applications one implements the transformation to normal form only up to some
finite order and this finite order approximation to the original flow (8.1) is studied. The

possible effects of the ﬁeglected higher order terms can then be considered in reaching final

conclusions.

2. Steady-state bifurcation on R

For steady-state bifurcation with a simple zero eigenvalué, Ne = l in.(8.1), and V(u,z)
has the form described in (5.2). If we try to simplify (5.4) by applying the coordinate change
(8.35) to remove the z? term, then the required change of variables is singular at critiéality
(# = 0). For this reason, the rlnethod'of Poincaré-Birkhoff normal forms is not particularly

useful in this case. A similar limitation holds for steady-state bifurcation in maps. |

3. Hopf bifurcation on R?

Generically for Hopf bifurcation, n. = 2 in (8.1), and we take V(1)(y, z') as given by. |
(8.2). Let (z,y) € R? denote the coordinates, then ¢(*) € H(*)(IR?) has the form,

¢F)(z,y)
(32
= ie))

and in these variables L($(*)) is expressed as
84 o4

<)z, bz 0 +
I(¢®) = (L:) , (z,(f)gz;) - a¢§k> 3¢§k> : (32—53) : (8.18)

Oz 6y
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As noted in Sec. VIII.A.1, to determine the eigenvalues of L it is more convenient to use the

complex coordinates (2, %) that diagonalize DV()(0), i.e.,

@-CI0=6
(4
f(25) =3 0)

In terms of (z,2), the same vector ¢(¥) € H(*)(IR?) is re-expressed

gk = (qbgk)(z’E)) =5 (¢:(ck) (fc(zyi);y(Z,z)))
#(z,2) B ¢ (z(2,2),y(2, 7))

so that

57 =

DN —

and

" and the action of I on ¢k is

. g8 HpH)

» [y —iw 0 p(k) 0z 0Oz ,(’y'—iw)z
L(¢™) = < 0 'y—l—z'w) <¢§k)> - 5o 94 <('y+iw)z> . (8.20) |
"8z 03

- By inspection from (8.20) we see that the eigenvectors have the form (4,,0) or (0, ¢z) so we

2t Fk—L

@672 (7]

f(-k’l’)(% z)= (zz Eok—z)

which are eigenvectors of L and also provide a basis for H*)(IR?). From (8.20) we calculate

introduce the vectors ' ‘ )

£=0,1,...,k | - (8.21)

the eigenvalues

L (gf9) = 2D () e (8.22a)

where

57




MO () = (1= By() — iw(u)(b— 22 £ 1) © (822b)

Since det L = 0 implies at least one zero eigenvalue, and a zero eigenvalue in (8.22b)

requires that real and imaginary parts vanish separately, we must satisfy

(1—Fk)y(p)=0 (8.23a)

(k — 20 £ Dw(p) = 0 (8.23b)

to obtain A¥Y = 0. Because k > 2, (8.23a) fails unless 4(p) = 0 which requires that we are
at criticality 4 = 0 (recall (5.23)). At p = 0, w(0) #0 so (8.23b) requires k — 2{ £ 1 = 0.
Since 2£ £ 1 is odd, for k even we will never satisfy (8.22b) and for k odd there are exactly

two null eigenvectors at criticality

. Et1 z|z]F-1
fik'+)=( l.(lJ )

(k52) _ 0
& —(z]zlk—l,)

These two vectors are a natural basis for the complement C(*) to the range of L,

k=3,51,.... (8.24)

C'(k_) = span {ff’k’i) ,f(_k’kz;l)} k=3,57....

The implication for (8.1), written in complex coordinates (8.19), is a normal form with
all even nonlinear terms removed,

G0 Q2] e

Rewriting (8.25) in polar variables, z = re™*, yields

F=r {7(,&) + i a 7'2’} } (8.26a)

b=w(p)+> bjr¥ (8.26b)
7=1 . : .
where a; = Re(e;) and b; = —Im(e;). This is precisely the normal form introduced in
(5.22).
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4. Normal form symmetry

Although normal forms may have fewer nonlinear terms, the discussion above does not
explain why this should simplify the nonlinear analysis. For example, the one-dimensional
logistic map has only one nonlinear term and the Lorenz equations have only two nonlinear
terms, yet the immense dynamical complexity of these two systems is well known.

There is a more intrinsic explanation for the practical uti_lity of normal form theory:
normal forms can have greater symmetry than the original system and this makes them
. simpler and therefore useful. The phase shift symmetry of the Hopf normal form; i.e. the
covariance of (8.26) under § — § + ¢, illustrates this point. Note that this symmetry was
not assumed to hold for the original vector field (8.1) rather it is introduced by the normal
form transformation (8.16). As already discussed, the normal form procedure is formal in
the sense that (8.16) may not converge if carried to all orders. When the series diverges
then a symmetry introduced by (8.16) describes only an approximate property of (8.1) even
though it is exact for the normal form. |

In the case of Hopf bifurcation we constructed the normal form (8.16) first and then
noted the phase shift symmetry. This order can be reversed; the theory of normal forms
can be formulated by identifying the relevant symmetry first and defining the normal form

by its symmetry. The advantages of this second approach were noted by Belitskii (1978,

1981), Cushman and Sanders (1986) and Elphick et al. (1987). The results of Elphick et al.

(1987) are clearly discussed in Golubitsky, Stewart, and Schaeffer (1988) whose presentation

is summarized here.
The key result is that the complementing subspace C*) in (8.14) may be defined by
a symmetry I' which is determined by the linearization at criticality; i.e. DV (0,0). More

precisely, let M = DV(0,0) and M7 = (transpose of M), then M7 generates a one-parameter
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group of transformations with the obvious multiplication rule .
exp(s1 M7 ) exp(ss MT) = exp ((31 +,32)MT)' :

The closure of this one-parameter group defines the normal form symmetry?

I' = {exp(sMT)|s € R} . (8.27)

Let '}-(l(f) (IR™) denote the subspace of H*)(IR™) comprising.those maps with I'-symmetry;

i.e. those V(k)(m) € ’H(k)(]R”) such that

(&) (exp(sMT) . :z:) = exp(sMT) . V(k)(m) _ (8.28)

for all s € R.
We will prove that Hg’) may be taken as the complement C(®) to the range of L so that

(8.14) becomes
HE(R™) = L (HE(R™)) & HO(R™). (8.29)
In words, this splitting implies that the normal form transformation (8.3a) can remove all

k** order terms except those with I'-symmetry.

The argument relies on a clever definition of inner product on H®)(IR™). This definition
is based on the following product for monomials: for z € R™, let z* and z# denote two

monomials in multi-index notation and define
[z%,2°] = 64p0!
which can be conveniently re-written as

flelz8
a 0] —
[:1! T ]_ { (9(3“ }

24By defining I' as a closed group of matrices we ensure that it is a Lie group.

(8.30)

=0
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This bracket extends to polynomials in the obvious way: let p(z) = 3, paz® and g(z) =

Y5 gs@” then

| olelg(x

z)] = ZpaQﬂ[wa;mﬁ] = Zpa { B:D‘E‘ )} (8:31)
o,f @ | z=0
Finally given ¢, € H*)(IR™) we define their inner product by
= > [¢i(z), ¥5()] (8.32)
. L g=1

where ¢; and 1; are the jth components of ¢ and 1 respectively.

At criticality, the operator L in (8.7b) becomes '
Le(¢)(<) = M - $(z) — Di(s) - M - = (8.33)

where Ljs has been written with a subscript to emphasize the dependence on M. Given the

inner product (8.32), we define the adjoint of Ly as that operator satisfying
(Lie$,%) = (6, Laatp) (83¢)
for all ¢ and ¢ in H*)(IR™). We shall determine L}, as |
Lif($)(e) = M" - ¢(¥)-— Di(z)- M7 o = Lz (4)(z) (8.35)
by applying two identities,

($(), AT - 4(z)) = (4~ §(=),9(=)) (8.36)

($(z),$(A” - 2)) = ($(A - 2),9(2)), (8.37)
that hold for any linear transformation 4 : R™ — R™. The first identity follows immediately
from (8.31) and (8.32):

(#(c), AT p(2)) = 3 [b(a), (AT)jidi(=)

iy=1

2_1 ij ¢J )] '

= (4-§(2),¥(a)). ‘ (8.38)
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For the second identity, we express the jth-component of ¢ as pj(z) = X, dijaz™ (and
similarly for 1;(z)) so that the left hand side of (8.37) becomes
(¢(e),p(AT - 2)) = D 3 biathsale®, (AT - 2)P]. (8.39)
‘ j=1 a,B

Then with (8.31) we have

[ma, (AT . :I:)ﬁ] — {W}

%) i

= [(4-2) 2%} . (aa0)

z=0

in the second step the change of variables y = AT - z and the chain rule,
oy - 0
‘ oz~ Oy
{

|
were used to justify the substitution ?°

(=)= {va) 7}

With (8.39) and (8.40), the second identity (8.37) follows directly.
These identities are applied by choosing AT = exp(—sM) in (8.36) and AT = exp(sM)

in (8.37) to obtain
(9(a), &M 2) = (e~ (e ) ¥(a). (8.41)

By differentiating (8.41) with respect to s at s = 0, we ﬁnaily arrive at
(8(), Lae()(2)) = (Larr($)(2), () (8.42)

which establishes (8.35).

Z5Here (4 - a—ay)“ = (Alllﬁ)a‘(!izl: 35!:

Yaz o (An, a;i )%~ (summation on repeated indices).
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The argument leading to (8.29) can now be summarized. The vector space HF)(R™) is
first written as the direct sum of the kernel of Ll and the orthogonal complement of the
kernel: .

H®(R™) = (ker L},)* @ (ker Lt,); (8.43)
then the Fredholm alternative® for Ly implies (ker L1, )t = L(H®)(R™)) and (8.35) implies

ker LRI = ker Lpsr. Thus (8.43) may be re-expressed as
HE(R™) = L(H®(R™)) @ (ker Lysr). (8.44)

Finally with the aid of the identity,

d—ds (e 97" 2)) = &M Laga (9 - a), (8.45)

we can identify ker Ly with HE(R™). If ¢ € H¥(R") then the left-hand side of (8.45)
vanishes which implies Lysr¢ = 0; hence ¢ € ker Lysr. Conversely if ¢ € ker L4z then the

~ right hand side is zero and the left hand side must be independent of s. This implies

e M. (e M" . g) = ¢(z) (8.46)

since ¢(z) is the value at s - 0; hence ¢ € 'ch)(]R"). Thus kerLMT = H%k)(IR"j and (8.29)
is established. |

Note that when M can be diagonalized then we may assume M7 = —M and consequently.
ker Lpsr = ker Ly, In this case, the definition of I' can be based directly on M, it is not

necessary to use the transpose.

In our example of Hopf bifurcation, the linearization at criticality gives

ur=| 0 w0 | 47
_~<—w(0) 0 ' (8.47)

so that an element of " has the form

265ee Stakgold (1979), pp. 321-323.
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' Ty cos(sw(0)) — sin(sw(0)) | ' , ;
exp(sM*™) = (sin(sw(O)) cos(sw(0)) ) ' (8.48)

As expected, this identifies the normal form symmetry for Hopf bifurcation as rotations in
6 or I' = 5. Note that for steady-state bifurcations DV(0,0) = 0, so the associated I' in
(8.27) is trivial consisting only of the identity matrix. This explains why Poincaré-Birkhoff
normal form methods do not significantly simplify the analysis of a steady-state bifurcation.
B. Maps
1. Generalities
On the center manifold we find a map that may be written
zie = fz3) = ) + fOaf) + -, o' € R™ (8.49)

in a notation modeled on (8.1).. We suppress explicit parameter dependence and ignore
constant terms as before. The goal remains the same: remove f(*)(z), if possible, using the

 change of coordinates (8.3). In the new variables (unprimed) we find |
Zip1=f (@—1@)) +¢® (F(27Y(zy)))
= (@) - L($%¥)(ay) + O(a**)  (8.50)
where now L is defined by
1(g¥)(w) = DFO(0) - 9¥(a) — 4 (£9(a)) . (350

Note that (8.50b) differs crucially from (8.7b) in the second term; nevertheless we are again

seeking to solve an equation of the same form
f®(e) - I (¢%) (=) =0, (8.51)

by constructing L~'. When det L = 0, there are zero eigenvalues and some nonlinear terms

cannot be eliminated. As for vector field normal forms, if we assume coordinates can be found
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which diagonalize D f(1)(0) then the vectors ¢(*)(z) having a single monomial component

qﬁg-k)(m) = z* will be eigenvectors for L. Let (01,03,...,0,,) denote the eigenvalues of

Df1)(0), then we find
L(¢®)() = 0;6¥(z) — 5%¢*(a)

= [oj — o] ¢*)(z) ’ (8.52)

¢ !

from (8.50b) where 0® = o052 09n; hence for maps the resonance condition required

for a zero eigenvalue is

oj= 0% (8.53)

for some choice of 5 and «.

When zero eigenvalues occur then the nonlinear terms that cannot be removed may be
characterized by their symmetry. Let M = Df(1)(0) denote the linear map at criticality

(cf. (2.10)) and define the group generated by M7T,

I' = {(MT)" | n = integer} , . (8.54)

so that H¥)(R") now denotes elements of HE(R™) with symmetry (8.54); ie. ¢(z) €
'H%k)(IR”) requires M7 - ¢(z) = (ML - z). With T' and Hg\k) redefined in this way the proof

that H®)(IR™) may be expressed as
HE(R™) = L (HE(R™)) @ HE(R") © (8.55)
is quite similar to the argument leading to (8.29).‘With
Lac(6¥)(z) = M - 6 (z) — (1 - o) (8.56)

denoting the operator L (cf. (8.50b)) at criticality, the identities (8.36) and (8.37) imply
LY = Lyr. Therefore (ker LIt = Lyg(H®) and ker L}, = ker sz hold as before and we

obtain

HE(R™) = Lyr(H®(R™)) @ ker Lysr (8.57)
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by the same reasoning that led to (8.44). It is only necessary to check that ker Ly =

H%k)(I'R"“A) still holds. This follows by noting that ¢ € ker Ly if and only. if
MT . §(z) = p(MT - z) : (8.58)

which in turn is also necessary and sufficient for ¢ € H&’“) (R™).
The splitting (8.54) has the same significance here as in the vector field case: only when
I’ defines a non-trivial symmetry should we expect the Poincaré-Birkhoff normal form to be

simpler than the original map. In addition the normal form for the original map (8.49) will

have the form

#(o) = fO() 4 FO@) + fOa) - - (859)

where f®)(z) € H®(R™).

2. Period-doubling bifurcation on R?

Typically n. = 1 for a period-doubling bifurcation and (8.49) ié a map in one dimension
with
O (p,2) = Mp)a © (8.60)
where
‘ dA
A0) = -1 , ZZ;(O)<O'
The space HF)(IR) is one-dimensional for all £ and the single basis vector,
¢®)(z) = o |
is an eigenvector for L: H*)(IR) — H*)(R); from (8.50b) we find |
o |

L) = M) (1 2 ) €9) - (80) i
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Since A(0) = —1, eigenvalue A(1 — A*~1) will vanish at criticality when k is odd; thus terms

of even degree can be removed, and only odd terms,

will remain in the normal form. If we consider the expected symmetry I' in (8.54) then
M = D, f1)(0,0) = —I so I' = Z,(=1I), the two element group on R generated by —I. Thus

we are again led to the conclusion that for period-doubling the normal form,
ziv1 = Mp) z; [1 + a2} + op T + O(ws)} , (8.62)

for (8.49) will have a reflection symmetry as claimed in (5.34) and (5.35).

3. Hopf bifurcation on R’

As for flows, one expects n. = 2 for Hopf bifurcation and with coordinates (z,%) on IR?
we have for 0 < § < 1

(1 +a(p))cos2n0(1 +b(p)) —(1 4 a(w))sin278(1 + b(p))\ [z
N (e,y) = (8.63)
(1 + a(p))sin276(1 + b(u)) (l+a(g))cos 2m(1 4+ 5(w))) \y

in (8.32) where a(u),b(p) satisfy the assumptions in (5.39). At criticality, a(0) = 5(0) = 0

so the expected symmetry (8.54) will be generated by

U = (cos 276 —sin 27r9> ’ ' (8.64)'

sin 2md cos 2wl

the rotation matrix for the angle § determined by the critical eigenvalues.

As before it is convenient to introduce complex coordinates (8.19) so that (8.63) becomes

| Alu) 0
SDfM(z) 57t = ( )
0 Aw)/

(8.65)

where A(p) = (1 + a(p)) e (+¥K). From (8.50b) we obtain
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A0\ (80(2,2)) [0z, 02)
L (¢®) = ( _) - . (8.66)
0%) \#(:2))  \ 8902, 72)
The eigenvectors of I are again given by (8.21), and (8.65) yields

L () = 2wy | (8.672)

where

Ag,z)(#) = (1 + a(p)) eX2mo+HR) [1 — (1+a)? e—i2r9(1+b)(k—2li1)] . (8.67b)
By inspection det L 5 0 unless 4 = 0 in which case A ’t)(O) = 0 if and only if
e i2md(k—24E1) _ 1 (8.68)

The solutions (k,£) to (8.68) vary depending on whether 4 is irrational or rational.

(a) 8 irrational

To satisfy (8.68) requires
f(k—20+1)=m, ' (8.69)

with m an integer, and when 8 is irrational \We must have k — 2+ 1 = 0. This leads back to

the null eigenvectors (8.24) found for the Hopf normal form for flows. The 'resulting normal

form in this case is

i =55 M) + Yl (5.70)
=1 : .
In polar variables, z = re*¥, we have
rir1 = (14 a(p))r; [1 +> a; rfi} (8.71a)
1=1 .
Yivr =t +2m0(1 + b(p)) + D bird (8.71b)
; =1

where a; = Re; and b; = Im«;. This agrees with (5.41) in Sec. V.
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The fact that the dynamics of the amplitude (8.71a) decouples from the phase (8.71b)

reflects the symmetry I'. For 6 irrational, the matrices,

M™ = (cos 2mnf — sin 27rn6> (8.72b)

sin 2mnd cos 2wnd .
for all integers n, provide a dense subset of the group of rotations in the phase. Thus I' = 5*
is precisely this rotation group and corresponds to the phase shift symmetry of the normal
form (8.71). |
(b) @ rational

Let § = p/q with 0 < p/q < 1 where the integers p and ¢ are relatively prime?7,

Now in addition to the solutions £ —2{ + 1 = 0 for (8.69) we have an additional set of

solutions represented by
k—2{+1=ng , n=41,42,... , (8.73)

so that pn = m. We are primarily concerned with solutions to (8.73) that introduce new

low order terms into the normal form (8.71). Examination of different cases for (8.73) shows.

that if ¢ = 3 or ¢ = 4 then we get new terms at quadratic and cubic order respectively. For
g > 5 the new terms in the normal form are at least fourth order and can be shown to have

negligible effect on the analysis of Sec. V. The low order “resonant” terms are as follows: for

g =3,
9e7) = (7 )

%) (2, 2)

Il
TN
NN o
N—

are null eigenvectors, and for ¢ = 4,

669(z,2) = @3)

2TTwo integers are relatively prime if they have no common divisor besides 1.
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963)- (1),

~are the null eigenvectors. Provided g # 3,4 (or equivalently assuming the non-resonance
condition (5.40)) the normal form up to third order is given correctly by (5.42).

When 6 is rational, the symmetry I of the normal form is reduced to T' = Z,, the discrete
subgroup of 5? generated by rotation through 27/q. For the cases of “strong resonance”,
g = 3 and g = 4, we are thus led to study maps that are covariant under rotations by 27/3
and /2, respectively, and the structure of the bifurcation is much ri;her (Arnold, 1988a).

In particular for ¢ = 4, there are at least 48 different local phase portraits possible (Arnold,

1989).

IX. Applications

The normal form equations provide the most elementary examples of the bifurcations we
have considered. However, in practice lengthy calculations may be necessary to extract the
relevz;,nt normal form coefﬁéients from the initial equations'expreséed in’ physical variables.
In this section we analyze bifurcations in two equations that illustrate both the power of
center manifold reduction and the computations required to obtain detailed predictions f(')l‘
specific problems. In addition ea,ch.of these applications illustrates new features of the theory
that can arise when one encounters equations that have symrﬁetry or that depend on more
than one parameter.

The first problem considers a simplified model in plasma physics for the three-wave inter-
action between an unstable plasma wave and two damped waves. The amplitude equations
for the waves lead us to a Hopf bifurcation in a three-dimensional flow that depends on two
parameters. The calculations required to obtain the Hopf normal form (5.22) are carried out
in detail. Because this model contains two free parameters, the cubic coefficient a, evaluated

at criticality (cf. 5.24) is a function of the remaining parameter. By varying this additional
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parameter we are able to locate a degehemte bifurcation where the néndegeneracy (5.24)
fails, and higher order terms in the normal form must be considered. This degeneracy allows
us to detect and analyze a secondary saddle-node bifurcation for the Hopf limit cycle.

In the second application, we study steady-state bifurcations in the (real) Ginzburg-
Landau equation. ‘This analysis illustrates center manifold reduction for bifurcations in
infinite dimensions; i.e. for a partial differential equation. Because the Ginzburg-Landau
equation is relatively simple we are able to calculate not only the initial bifurcation from
the “trivial” equilibrium but also the secondary bifurcations from the resulting “pure mode”
solutions. These secondary bifurcations are the mechanism for the Eckhaus instability which
plays an irﬁportant role in the theory of spatially extended pattern forming systems (Eckhaus
1965). The center manifold reductions in this case are complicated by the fact that the
Ginzburg-Landau equation is highly symmetric. In the simplest case — one dimension and
periodic boundary conditions — the symmetry group is O(2) X O(2). Although one typically
éxpects one-dimensional center manifolds at a steady-state bifurcation, in this example the
initial bifurcation has a four-dimensional center manifold and the secondary bifurcations lead
to twd-dimensional center manifolds. In each case the symmetry forces the zero eigenvalue to

have multiple eigenvectors (four and two, respectively) and this multiplicity leads to larger

center manifolds.

A. Hopf bifurcation in a three-wave interaction

Nonlinear plasma theory invol%zes, in part, an analysis of the interactions between the
various waves supported by the plasma. In this example we examine the saturation éf a lin-
early unstable plasma wave via a “three-wave interaction” in a simplified model considered
originally by Vyshkind and Rabinovich (1976), Wersinger et al. (1980), and others. Physi-
cally, an unstable high frequency wave is coupled to two damped waves of lower frequency.

Under suitable conditions an overall balance results between high frequency growth and low
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frequency decay. This produces a stable equilibrium in the dynamics of the three waves and\
the wave amplitudes are time-independent. If however the parameters of the interaction
are varied to produce less damping or less effective coupling, then this stable balance is de-
stroyed and some form of time-dependent state emerg’es. For the model consideréd here this
transition occurs via a Hopf bifurcatioq. In addition, if the damping of the stable modes is
decreased sufficiently one expects on physical grounds that they may fail to arrest the growth
of the unstable mode. In the model, this failure is marked by a shift from supercritical Hopf
bifurcation (a; < 0) to subcritical Hopf bifurcation (a; > 0). The calculatioﬁ of ‘a; allows
the location of this transition to be predicted, and the normal form analysis yields a detailed
understanding of the dynamics near this critical region.

For simplicity we assume the two stable waves have equal damping rates I' and equal
amplitudes a; = as. The dynamical variables are then (a1, az, ¢) where a4 is the amplitude of
the unstable wave and _gbl: ¢1 — ¢2 — @3 is the phase difference between the waves. Following
Wersinger et al. (1980), we introduce the coordinates (m, y,2) = (a1 cos ¢, a; sin ¢, a2) so that

the wave interaction is described by

i [ 1 -0 1 z\ [ —y?
v = Q 1 0 y|+2| =y |, o (9.0)
z 0 0 =2T z —zz

where () = w; — wy — w3 measures the detuning from the resonance wy = wy + w3. Both
parameters ) and I' are nonnegative. For additional background on the plasma physics
ancestry of (9.1) see Wersinger et al. (1980). The chaotic dynamics of the model in the
regime of large damping (I' — oo and Q/T" fixed) has been analyzed by Hughes and Proctor
(1990). The analysis of the Hopf bifurcation in these equations follows Crawford (1983).
Let V(z,y, 2) denote the two-parameter family of vector fields defined by the model (9.1),

leaving the dependence on (£2,I') implicit. The divergence of this family is
divV =2(1-T). (9.2)
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For I' < 1 the flow expands volumes in R® and there are no stable bounded solutions; for
I' > 1 the flow contracts volumes (Verhulst 1990). Since the equations are unchanged by the

shift (Q,y) — (=Q, —y) we may assume Q to be nonnegative.

1. Linear analysis
V has two fixed points.vThere is a trivial fixed point at (z,y,2) = (0, 0,0) corresponding
to no waves; this solution is unstable since the high frequency wave is unstable. There is a

nontrivial fixed point at

(20,70, 20) = (—P : —_QTPl T <1 + (_2%1)2» (9.3)

whose stability depends on Q and I'. If we shift the origin to (zo,yo,20), z = 2’ + mo,'
Yy =Y + Yo, 2= 2'+ 2o and drop the primes, then
1 (I+up 1\ [z —y

d [° i
Z|v]= —p I—p  Of|y|+2] =y (9.4)
z —u(l 4+ p?) 0 0/ \z —zz

where 4 = 2I" and p = Q/(p—1). The eigenvalues A of the linearization at (z,y, 2) = (0,0,0)
satisfy |

X (p—2)0 + [14 (1 +2p)0°] A + #(é SN+ =0, (9.5)

For p > 2, all coefficients are nonnegative and the constant term is positive; this implies that
any real root mlust'be negative; in particular A = 0 cannot occur in this region of parameter
space. If eigenvalues with Re X = 0 occur, they must form a conjugate pair +iw. Thus in
the regions of parameter space where the stability of the fixed point changes, there will be a

negative real eigenvalue and a conjugate pair. From the characteristic polynomial, a complex

root, v + 1w, satisfies
37 —w? +2(p = 2)y + 1+ p*(1 +2u) =0 (9.6)
V(7 =3+ (p=2)(V =)+ [L+ P21+ 20)] v+l — 1)1+ 4% =0.  (9.7)
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Although (2, u) are the physical parameters, v and p are more convenient as < directly
measures the distance in parameter space from criticality for a2 Hopf bifurcation; i.e. v = 0.

 We may express the dependence of Q on (v, ) by solving (9.6) for w?, eliminating w? from

(9.7) and solving for p*:

2

(=292 =2+ tr(y =D+ 2l (b 8y +5)] (9.8)
p2—2(1 = 27)u—2(1 —7) ' |

Now given parameters (7, 1) we can determine p and hence Q from Q = p(u — 1). The
(2,v) parameter space for > 0, 4 > 0 corresponds to v < 0.5 and p > 0 as shown in
Fig. 19. The curve v = 0 determines the Hopf bifurcation surface where a complex conjugate

. pair of eigenvalues reaches the imaginary axis.

The center manifold reduction for this bifurcation requires that we determine the two-

dimensional center subspace. For the eigenvalues (A1, Az, A3) we have eigenvectors (vy, v, vs):

—Aip(1+p)
v; = —A(N) i=1,23 (9.9)

pu(l+p*)(1 + 1)
where A(A) =A% — A +pu(1 + p?). For the real eigenvalue Aq, the.eigenvector is real; for the
conjugate pair Ay = Az we ha%re |
| Va3 = vy £y | (9.10)

where

7oL+ 1)
v, = w? — A(%)
pi(l+p*)(1 + p)

—p(1 + p)
v = W 1—2w
0
span E° at v = 0. The linear transformation
S = (vr v; v1) ~ (9.11)
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puts the linear problem in block diagonal form:
v w 0 ‘
-w g 0 |=8"'LS ' - (9.12)
0 0 XA

where L is the matrix in (9.4) and S7! is given by

aw(l — 2) afw wlA(A1) + A (1 = 27)]
7= (def S> —afw? + A(A1) = A(p)] @B =) MA(Y) —7A(A) = Aw?
aw(2y — 1) —afw  wlw? = A7) - (1 - 27)]
(9.13)
with:
a=u(l+p%)
B=p(l+p)

det § = af’w [A(\) = A(7) +w? + (M - 1)1 - 27)] -

Next we implement the linear change of variables

(:’) = 5! (5) | (9.14)

in (9.4), to express the vector field in the standard form of (7.2):

d (z'\ _ AW Ri(z,y', 2")
E <y/) - (_w ,7) <y/> + (Rz(m’,y’,z’) (9'15)
/ |
Ccli_zt = M2 + Ry(e',y', 2') _ (9.16) |
where : . ;
' Ri(z',y',2') ' —y? |
Ro(z',y',2") | =257 | =y (9.17)
Ra(z',y', 2") —zz
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with (z,y, z) expressed in terms of (z',y’,2’) using (9.14). For convenience in our discussion

below, the result of fully expanding the right-hand side of (9.17) will be denoted
Ri(z',y',2") = Ry a® + Ripy”® + Risa'y' + Ris2'2' + Risy'2' + Rig 2" (9.18)

for each component 72 = 1,2,3. The coefficients R;; are readily worked out but we shall not

require the detailed expressions which tend to be unwieldy, e.g.

—2afw
det S

(1= 27)(w? — A(7))* + B*(w* — A(7)) T 527(,4@1) +a(1-27) .
(9.19)

Rll =

2. Approximating the center manifold

Near (z',y', 2') = (0,0, 0) we represent the center manifold by a function A:IR?> — R de-

scribing the 2/ coordinate of the manifold; i.e. 2’ = h(z’,y’). This function satisfies (cf. (7.7))

oo h :
[vz' +wy’ + Ri(a',y', h)] + a_y’ [~wz' + 9y + Ro(2',y', h)] = AL h(2',y") + Ra(z',y', h)

% . .
| | (9.20)
with
A(0,0) =0
oh oh '
59;7(070)— 3_1/(0’0) =0.
An asymptotic solution for h(z’,y’) near (z/,y') = (0,0) has the form
Mz, y') =k 2 + hoy? + haz'y' + - - ' (9.21)

where terms in (z/,y’) of third degree or higher have been dropped. A straightforward

evaluation of the quadratic coefficients yields

_ 2’w(Rsz — Ra1) + (27 — A1) Ras
R ) N T (522)
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whs + Ra1
_ 2
—whz + Ray

(9.15), (9.18), and (9.21)

7

Given A(z',y') the two-dimensional vector field on the center manifold follows directly from

(2 ) () + ()

_ v ow) [z n Riy 2 + Ry y” + Ryz 'y’
C\—w v y' Ry 2" + Ry y” + Roz z'y’

Riysa’ + Risy'
2 2 10 14 15
+ (12 + hay” + haz'y') <,R24$,V+R25y,> + (9.25)

€

where terms of fourth degree and higher have been omitted.

3. Determining the normal form

The quadratic terms in (9.25) may be removed by a near-identity normal form transfor-
mation to new variables (z,y) = (2/,y')+¢()(z',y') with inverse (z',3') = (z,y) — 6@ (z,y)+
O(3) (cf. (8.3)). From (9.25) and (8.8), the equation for ¢(?) is

(2) — Rl]_ 232 +lR12 y2 +R13 Ty
L™ <R21 22 + Rpay® + Roszy ) (6.26)

where L(¢(?) is defined in (8.16). Following the discussion in VIL.A.2, we solve (9.26) by

rewriting it relative to the basis {6:({:2,1)} defined in (8.19). Thus

Ri12® + Ry + Risay | _ < [p(2d) 20) | p(2t) 2(20)
<Rz1 z? + Rasy® + Raszy ) — 4:20 [R+ GRS ] (5:21)
with
) . _
Rg-z’O)A: 4 (Ri1 — Rip — Rgs) + % (Riz+ Ro1 — Rpo) = R (9.282)
1 ' o(2,1)
REY = 5 (Rar + Rua) + % (Ra1 + Rpp) = R&Y (9.28b)
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1 oy b BG0) 5
RS—Z’z) ~ (Ra1 — iz + Raa) + % (Ra1 — Raz — Raa) = RE9 (9-28¢)

and
69 = 3[40 4 o0l (0:29)
=0
hence from (8.22) and (9.26):
| $20 = B | (9.30)
N2

for £ = 0,1,2. This change of coordinates must now be carried out in (9.25) to obtain the

‘transformed vector field up to terms of fourth degree:

T — Y w T 3 2 3 2 3 R14$ 4+ R15y
(y) (—w 7) <y>+( 1@+ hay” 4 hozy) <R24-’B+sty-
Ri1 2%+ Ry y? + Rz oy
~Dg® A 12 13 o(4) . 9.31
D¢ (2,9) (R21w2+Rzzy2+stmy +0() ( )
Here we see the additional terms of third degree generated by the nonlinear coordinate
change removing the quadratic terms. The final task is to consider the terms of third degree

in (9.31) relative to the basis {¢**)} and determine the coefficient ay of £ (cf. (8.25)).

This calculation Yields
o = RYY — ¢V (RGP + REY) — 2 (489 REY + ¢ RE) (9.32)

where Rs_a ?) is the component of the “original” cubic terms in (9.25) along the basis vector
&8,
1 ’ '
Rﬂf"z) = 3 [3(h1 Ria + Ao Ros) + hy Ris + h3 Ris + hy Ras + ha R24]‘

d
8

We now have the normal form for this bifurcation to leading nonlinear order (cf. (8.26)):

+< [3(h1 Roe — ho R14) + ho Ras + ks Ras — hy Rys — h3 Ri4] . (9_-33)

7 =97 + Re(an )r® + O(r°) (9.34a)

§ =w—Im(as)r? +O(r*) . (9.34b)
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The dependence of o on parameters is corhplica,ted, and the behavior of the cubic coefficient
Rea; along the critical curve v = 0 in parameter space is best examined numerically. The
graph of a; = Rea; vs. p for v = 0 in Fig. 20 indicates a region of supercritical bifurcation
a; < 0 and a region of subcritical bifurcation a; > 0 W.ith the transition a; = 0 occurring at
pe ~ 3.29. Thus for damping rates greater than u. the instability will saturate at r = rg
in a small stable oscillation of the wave amplitudes (cf. (5.25)). For p < p., the analysis
implies that there is no stable solution in the neighborhood of » = 0 when 7 is positive; in
fact, numerical studies indicate that the Wa,x'fe amplitudes grow without bound.

These conclusions indicate that the stable Hopf periodic orbit must be destroyed in a
separate bifurcation in the parameter neighborhood of (4 = e,y = 0) since there is no
periodic orbit in the neighborhood of the fixed point for g < g, 0 < v < 1. Thus in
parameter space the 'curve or bifurcation surface at v = 0 corresponding to Hopf bifurcation
must intersect at least one additional such curve at (u = g, v = 0). The instability of r = 0
at this point is termed a degenerate Hopf bifurcation becausé the non-degeneracy condition
(5.24)_fa,ils, and the discovery of ad'ditioﬁa,l bifurcations at this point illustrates the value of
analyzing such degenerate cases. This particular degeneracy is one of the simplest examples
of a codiﬁzensian—two bifurcation meaning that to locate it we must simultaneously adjust
two independent parameters x and .

The comprehensive analysis of degenerate Hopf bifurcation by Golubitsky and Langford
(1981) shows that in this case there is only one additional bifurcation surface which intersects
the Hopf surface. This second surface marks parameter values at which the stable Hopf
periodic orbit merges with an unstable periodic orbit and both disappear. In the return
map for the Hopf orbit, this merger is a saddle-node bifurcation which annihilates-two fixed
points. For th?s reason, this second surface may be referred to as the saddle-node (SN)
surface; it was discovered numerically by Meunier et al. (1980).

To determine how the SN surface approaches the Hopf surface requires an analysis which
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includes both periodic orbits. Since the SN surface intersects the Hopf surface at vy = 0,
the saddle-node bifurcation occurs for arbitrérily small poéitive values of 4. This means
that the two orbits can merge while the Hopf orbit is still in a very small neighborhood of
r = 0. Under these circumstances the local attractivity of W¢ near » = 0 will not permit a
periodic orbit which is not in fact contained in W*°. Hence both periodic orbits must lie in
We and their merger is a feature of the center manifold dynamics (9.34). Since the phase
éhift symmetry decouples. § from 7, the radial equation (9.34a) is adequate to describe the
saddle-node bifurcation provided the fifth order term a;® is included.

At cﬁtica.lity for the saddle-node bifurcation the linear stability of the Hopf orbit is lost,
but the orbit still exists. Near v = 0, the SN surface is determined by these two facts. The
existence of the Hopf orbit at critic’ality means that r = rg is still a solution to dr/dt = 0
which implies

y+airk+ary=0. (9.35)
In addition, linearizing (9.34a) about the Hopf orbit determines the orbit’s linear stability
within W¢; setting n =r — rg we find - |
dn _ 2 4 2
Pl »(’Y +3a17my + 5az 7 )n + On) -
Linear stability of =0 changes when
g+ 3ay 7% + Bay = 0. : (9.36)
Equations (9.35) and (9.36) suffice to determine the SN surface at small v. Subtracting

(9.35) from (9.36) yields 7%(2a; % + a1) = 0 hence 7% > 0 requires

a1
| P <0 | | (9.37)
for a valid solution r} = —a1/2a, to exist. Substituting this solution into (9.35) or (9.36)
yields
: 42
dy =2, : (9.38)
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Taken fogether relations (9.37) and (9.38) locate the SN bifurcation surface for 0 < v < 1.
There are two cases debending on the sign of ay at (= pe,y - 0). From the point of
degeneracy the saddle-node surface branches to the right (a; < 0) if a; > 0 and to the left
(a3 > 0) if a3 < 0. These cases are indicated in Fig. 21. “

The actual calculation Adf ag 1s a straightforward extension of the calculation of a;. The
calculation of h(z,y) must be carried to fourth order so that (9.25) can be extended to
include fifth order terms. Then second, third, and fourth degree terms need to be removed
to obtain the normal form through fifth order. The details of this are not of interest here;
the resulting expression for a, as a function.of p for v = 0 is also plotted in Fig. 20. At the
| degenerate Hopf point (a; = 0) we find a; > 0 and conclude that the saddle-node surface
branches to the right. |

The results of this bifurcation analysis may be tested numerically. Figure 22 shows the
Hopf bifurcation to a stable oscillation for p > p.. As p decreases at fixed v = 0.01, the
stable periodic orbit loses stability near p ~.3.55. This transition appears in Fig. 23 and

reveals the dramatic effect of the saddle—node bifu;catidn.

B. Steady-state bifurcation in the Ginzburg-Landau equation

For the complex-valued function A(z, 7) we consider the Ginzburg-Landau (GL) equation

in one space dimension,

8A 82 A
=uAt o —AAP, (9.39)

with real coefficients and with boundary conditions that ensure finite-dimensional center
manifolds (Tuckerman and Barkley 1990). This equation arises in a wide variety of settings;
in particﬁlar (9.39) models the behavior of a spétiélly exteﬁded system-near criticality for
a steady-state bifurcation (Manneville 1990; Collet and Eckmann 1990). In fluid dynamics,
a well-studied example of such a bifurcation is the appearance of Taylor vortex flow in a

Taylor-Couette apparatus (Ahlers et al., 1.986; Ahlers, 1989) where one observes the motion
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of a fluid confined in the gap between two ‘concentric Cyliﬁders. Taylor’s original investigation
(1923), in which he rotated the inner cylinder with frequency {1 and fixed the outer cylindér,
established a critical frequency (), above which the steady and (nearly) featureless flow
develops a pattern of vortices characterized by a well-defined axial wavenumber g. The
fluid mechanisms that determine the wavelength 27 /g of the vortex flow have been carefully
investigated as a 'pa,rticula.rly simple paradigm for non-equilibrium pattern formation (Ahlers,
1989; Langer, 1986).

Analytic theory often assumes either cylinders of infinite length or periodic axial bound-
ary conditions?®, then in linear approximation one finds an eigenfunction with axial wavenum-
ber g. whose (real) eigenvalue approaches zero as {) tends to from below. Slightly above
this threshold all wavenumbers within a band of width ,/u about ¢. are linearly unstable
where u = (Q—Q.)/Q. defines the bifurcation parameter. However, only those wavenumbers
within a sub;ba.nd of width i are actually realized experimentally because of a secondary
instability that arises for g values‘ outside the sub-band. This latter instability is known as
the Eckhéus instability and it modifies g by adding or subtracting vortex pairs.

The competition between different linearly unstable wavelengths can be studied near
criticality (0 < | p < 1) by developing the fluid equafions in an expansion in x. How this
expansion leads to the GL equation can be briefly sketched by avoiding the complexity of a
realistic model and assuming the system is described by a single field u(z,t) such that u = 0
corresponds to the featureless equilibrium. For small u, one defines rescaled space and time

variables by ¢ = /i z and T = put and seeks solutions of the form
u’(z: t): :uuo(%mﬂ-)+/"'2u’1(zam77)+"' (9'40)

which are independent of the fast time scale ¢ and describe the slow evolution of the pattern

28There has also been interesting recent work on the necessity of allowing for finite end effects in order to
describe some features of the experiments in long cylinders (Edwards 1990). ]
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about the basic length scale g;1. The leading order balance determines the form of u,g
uo(2,z,7) = Az, 7) "% + c.c. (9.41)

in terms of a complex amplitude function; at higher order the GL equation (9.39) for A
arises as a “solvability” condition which must be satisfied to avoid secular behavior. The
basic equilibrium A = 0 for GL corresponds therefore to the spatially uniform state one

observes if 4 < 0; in addition for y > 0 there are spatially periodic equilibria (“pure modes”)

Aq(a; 9) = Ju — Q2 e &0 (9.42)

that describe patterns with wavenumber g = ¢, + N2

As p varies there are bifurcations from A = 0 and Ag that can be studied using center
manifold theory, however, this analysis is more subtle for two reasons. First, the GL equa-
tion (9.39) is highly symmetric. The group of symmetries is generated by reflections and

translations in z, complex-conjugation, and phase shifts; these operations we denote by «,

T4, C, and Ry, respectively:

(- A)z) = A(_;) | (9.43a)
(Ti- A)(e) = Alz + d) o (9.43b)
(C- A)(a) = A(2) | (9.43¢)
(Ro- A)(z) = e A(z) . (9.43d)

Thus if A(z,t) is a solution then (v - A)(:z:,‘ t) is also a solution for '7 = k,Tq4,C, Rg, or
any combination of these operations. For bifurcation problems with symmetry there exists a
generalization of the theory presented in Sections II-VIII that incorporates a variety of group-
theoretic techniques. We do not require this generalization for this examiale, but we will
indicate how the symmefry (9.43) affects the bifurcation analysis. Golubitsky, Stewart, and

Schaeffer (1988) provide a comprehensive introduction to equivariant bifurca.tion theory and
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there are also the more concise reviews by Stewart (1988), Gaeta(1990), and Crawford and
Knobloch (1991). A second novelty arises because (9.39) describes an infinite-dimensional
dynamical system; i.e. it defines a flow on an infinite-dimensional phase space — the space
of functions A(z). Center manifold theory can be rigorously extended to partial differential
equations, but this generalization is :ather technical for the present discussion (see the
recent review by Vanderbauwhede and looss, 1990). However, if we assume there are center
manifolds associated with the bifurcations in (9.39), then the corresponding reduction and
bifurcation analysis can be carried through just as for an ordinary differential equation.

The assumption of a finite-dimensional center manifold requires‘ a consideration of bound-
ary conditions for (9.39). This necessity is clear if we analyze the linear stability of 4 = 0.
Linearizing (9.39) defines the operator L, |

Oa=par T a=1a, (9.44)
Bt T HEAT B '

with eigenvectors and eigenvalues given by
Ya(z) = &9 A=p-Q? | (9.45)

where —co < @ < oo. For u < 0 all eigenvalues satisfy A < 0 and the uniform state is asymp-
totically stable; for p > 0 there is a continuous band of wavenumbers 0 < @? < p whose
eigenvectors 95 describe linearly unstable perturBations of A = 0. This continuum prevents

. us from isolating a finite number of critical modes that determine the time-asymptotic be-

havior, and represents a serious technical obstacle to center manifold reduction (Coullet and

Spiegal 1988). This difficulty does not arise when boundary conditions are imposed on A(z)

such that the eigenvalue spectrum becomes discrete.?® The periodic boundary condition

A(~7) = A(r) ’ (9.46)

*%The contrast between a finite set of critical modes and a continuum of critical modes is not merely
a matter of technical difficulty. In spatially extended systems one finds a rich variety of new phenomena
(Brand 1988; Manneville 1990; Collet and Eckmann 1990). »
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1s a simple choice that enforces the discretization @ = integer in (9.45) and also respects the
full set of symmetries (9.43) allowing.us to observe their effecté on the bifurcations.?® With
periodic bounda‘ry conditions the translations Ty act 4s rotations on the periodic coordinate
z, consequently Ty and « generate the symmetries of the circle; i.e. the group 0(2). In
addition Rg and C' generate a second O(2) action on the phase of A(z); since these two O(2)

actions commute the full symmetry of (9.39) and (9.46) is O(2) x 0(2).

1. Bifurcation from 4 =0

As p increases through p = @2, Q% = 0,1,4,9,..., the eigenvalue A = p — Q2 crosses
zero and the linear mode 95 becomes unstable. Because of the symmetry there is in fact
a four-dimensional center manifold associated with this instability. If we rewrite (9.44) in

terms of real and imaginary parts, ¥\ = u(z) + 1w(z), then L1y = M)y becomes

()

and for fixed @ # 0 there are four linearly independent real-valued eigenfunctions with

eigenvalue A = y — Q%

() = <é) cos Qa
() = Beep-t(e) = ) cos 0z
) =Tope hla)=f)onee (e

Ya(z) = T rjaq Brja - a(z) = (g) sin Qz .

The three “extra” eigenvectors 13, 13, and 44 are forced by symmetry; thus the steady-state
blfurcatlons at 4 = Q? involves a four-d1men51onal center subspa.ce The b1furcat10n at =20

when @ = 0is an exception with only a two-dimensional center subspace: E° = span {11,}

800ther boundary conditions have been considered in the literature; see for example Hall, 1980; Graham
and Domaradzki, 1982; Ahlers et al., 1986; Tuckerman and Barkley, 1990.
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since Y1 = 13 and 9, = 4. Returning to complex notation and introducing two complex

amplitudes (o, §) for the critical modes (9.48) we have
Az, t) = oft)e® + B(t)e™9® + S(z, ) (9.49)
where 5(z, 1) is orthogonalbto the critical modes
/_: do % 5(s,) = 0. (9.50)

Note that the decomposition in (9.49) corresponds to the choice of variables in (7.2) with
(a, B) corresponding to z; and S corresponding to z;. Near A = 0, the center manifold for

(9.49) may be represented as the graph of a function h: B¢ — E* @ E¥; i.e.

S(a,t) = h(z, o, 8,3, B) (9.51)
such that
| h(z,0,0) =0 (9.52)
and » . ’
i h =0 —a—ﬁ =0
a&' («,8)=0 3a (e,8)=0
. (9.53)
oh Oh

A% =0 == =0.
BIB (ayﬁ)=0 aﬂ (a,ﬁ):O

This exactly parallels the representation for W¢ introduced in (7.3) modified only by the

fact that E* @ E* is now infinite dimensional; i.e. the function A depends on z.
The reduced equations for the center manifold dynamics depend on whether Q = 0 or

@ # 0 because the manifold dimension changes from four to two when @ = 0.

() Q=10 |
In this case the decomposition in (9.49) can be simplified to

Az, t) = a(t) + S(z,t) , (9.54a)
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where

/_ " deS(z,t)=0. (9.54b)

In addition one finds from (9.39) that if 04/8z = 0 at ¢t = 0, then the solution of (9.39)
is independent of z for all ¢; hence the center subspace is invariant under the full nonlinear
dynamics which implies that E° and W* coincide. Consequently (z,t) = 0 for solutions

in the center manifold and the dynamics on W¢ follows immediately by setting $ = 0 and

inserting (9.54a) into (9.39):

d%a = pa — |al’a . (9.55)

As p varies near y = 0, this equation describes the bifurcation of the pure modes with zero

wavenumber (9.42),

Agmo = /i e® . (9.56)

Since the unstable subspace is empfy at this bifurcation these solutions are stable in the
directions transverse to the center manifold. In addition, linearizing (9.55) around o =
/I € shows that these solutions are stable to perturbations in the amplitude |Ag=o| but

that perturbations in the phase ¢ correspond to a zero eigenvalue or neutral linear stability.

This zero eigenvalue reflects the fact that (9.56) describes a continuous family of equilibria

parametrized by the phase ¢; such eigenvalues are a general feature of bifurcations that break

a continuous symmetry. In this case, the O(2) symmetry generated by R, and C has been
broken. |

(b) @#0

This bifurcation is only slightly more complicated since the nbnlinearity of the center
manifold does not affect the lowest order nonlinear terms in & and 8. By inserting (9.50)
into the GL equation and projecting with [T dz e*iQe We obtain a system of equations

analogous to (7.2): ,
T d , ’
b= (4~ Q%o — / = &% Al (9.57a)

- 4T
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. ‘"’dm.
f=(u-QY— [ 5= AP (9.57b)

. T d .
8,5 = (1 + 62)S — A|AJ? + €92 / S e Al (9.57¢)

, ™ d:z; .
+e—sz /;W é? eszAlAlz .

On the center manifold near A = 0, § is expressible in terms of h (9.51) which is at least
second order in the critical amplitudes as ||, || — 0 (cf. (9.52) and (9.53). Hence, on the

center manifold
AJAP = (a9 + Be9%) [[of? + |B] + aBe 29" + fae™2%"| + O(4) (9.58)

where O(4) denotes terms of fourth degree or higher in (@, 8). Since the cubic terms (9.58)
do not involve A it will not be necessary to calculate the leading coeflicients in its Taylor
expansion. Combining (9.58) with (9.57a,b) yields the center manifold equations to third

order:

a=(u—Qa— (2P +leP)a+06)  (9.5%)

B=(u—Q"8~ (2lal + |88 +0) . o (959b)

In this four-dimensional system there is no longer any coupling to S(z,t) and the neglect-
ed terms on the right-hand side are at least fifth order in (e, B) because first non-zero terms
in the expansion of h would appear at third order in this case rather than second order.

Introducing polar variables & = p; ¥t and 8 = p, ei¥2 (9.59) reduces to a two-dimensional

system
| b= (1= Q%o — (208 + #2)ps + O(5) " (9.602)
pz = (b —Q")p2 — (201 + p3)p2 + O(5) (9.60b)

Py5=0 | (9.60c)

since the amplitude p;, decouple from the phases 75 ;. One can show that this decoupling

is a feature of the symmetry and extends to all orders; this however requires an analysis
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of the full normal form for this bifurcation; see Golubitsky, Stewart, and Schaeffer (1988)
Chapter XVII, §2 for a relevant discussion.

The bifurcating solutions are obtained by setting p; = p, = 0 and neglecting higher order

terms:

prlln— Q%) — (203 — p3)] =0

pal(p — @ (—(202+ p})] =0
there are two types of new solutions in addition to the trivial equilibrium at (0,0). The

(9.61)

pure mode solutions, (p2 = p—Q%ps =0) and (p; = 0,02 = p — @?), correspond to the
bifurcation of the states Ag and A_g respectively for g — Q% > 0. In addition there is a
“mixed” mode solution given by p1 = p; = p and p? = 1 (p — Q?).

From (9.60) the linear stabilities within the center manifold of each of these states may
be calculated. With respect to perturbations in the amplitudes (p1,p2) the pure modes are

stable but the mixed mode is unstable; in each case there are also two zero eigenvalues

corresponding to perturbations in the phases (9.60c). The phase portrait Fig. 24 for 1, P2 .
) g p1,pP

sumnmarizes this analysis.

In addition, for all of these solutions (pure and mixed modes) there can be unstable
directions transverse to the éentér manifold because of the unstable directions for 4 = 0.
The number of these unstable directions is equal to the dimension of E* at critica.lity,‘see
Table 1. We shall see that these initially unstable pure modes A.Q regain their stability as u

increases further above u = Q2.

2. A digression on phase dynamics

It is instructive to analyze the stability of these equilibria by introducing the phase and

amplitude of 4 and defining a local time-dependent wavenumber k(z, )

Ale,7) = pla,r) e (9.62)
0
k(z,7)= % .
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Table 1 Dimension of the unstable subspace for A = 0 as a function of p.

value of d_lm_E“

p <0 0

O<p<l 2
QP<p<(@+1)?,Q@=1,23,... = 2+4+4Q

In these variables, (9.39) becomes

0 d%p '

a—i =(u=Fp+5 ¢ 3 (9.632)
8k & (2kdp , Ok

E = 5 ('p— % + %) . (9.63b)

If we restrict our attention to solutions that are slowly varying in z, then for p > k2% we

expect p(z,T) to approach a quasi-static equilibrium
xpect p(z, app q

plz, 7))~ \/pu— k?(z,7) | (9.64)

since the sz/amz term in (9.63a) can be neglected and k(z,T) evolves on a time-scale set
by the slowly varying = dependence. When p is given by ‘.(9.64), the equation (9.63b) for the

wavenumber reduces to a nonlinear diffusion equation,

ok 0 d '
with diffusivity D(k) given by .
D) = 23K (9.65b)
-k e

For a pure mode with p = /g — A? and k& = @, consider thé dynamics of a small

fluctuation in phase k(z, 7) = Q+6Q(z,7) (relaxing the periodic boundary condition (9.46)).
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Inserting this ansatz into (9.65a) and linearizing in §Q yields a linear diffusion equation for

the fluctuation

5‘9; §Q = D(Q) 7,:.‘ 5. (9.66)

If the wavelength of the pure mode ¢ = g. + @ satisfies,

Q% < u/3, (9.67)

then D(@) > 0 and 6() decays; the pure mode is stable. The loss of phase stability when Q2 >
1/ 3 is known as the Eckhaus instability; its physical interpretation as negative phase diffusion

was suggested by Pomeau and Manneville (1979). Subsequently more general theories of

phase dynamics have been developed (Cross and Newell, 1984; Brand, 1988; Newell et dl., ‘

1990).

3. Bifurcation from the pure modes

We now develop the bifurcation theory of this instafbility with the periodic boundary
condition (9.46). | |

(a) Symmetry |

The O(2) x O(2) symmetry of the A = 0 equilibrium is partially b‘roken in the pure mode

state; to’ describe the remaiﬁing symmetry define composite “translation” and “reflection”
transformations Ty and & by

To(Q)=R_gaTs . (9.68a)

K(Pp)=RsCrR_y . (9.68Db)

These transformations generate a representation of O(2), which we denote by 0(2), and the

Ag(z; ¢) state is invariant with respect to this O(2) action:

v Ag(e;9) = Ag(z;¢), v =TuQ), &(4) . (9.69)
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In addition the discrete group Zg generated by 27/Q spatial translations.(Thr/q) is a sym- .
metry of Ag(z; ).
Let a(z,t) be defined by

Alz,7) = Ag(a; ¢) (1 + a(z,7)) , (9.70)
then (9.39) implies
a—iazﬁa—(p—— Q*)N(a,a) (9.71a)
where |
0? 0 2 2\=
ﬁaz%%+2zQa—:—(g—Q)q—(y—Q)a.. (9.71b)
N(a,3) = [a? + 2[a)® + alal?] . : - (9.71¢)

From (9.46) and (9.70) we ﬁnd'that a(z,) also satisfies periodic boundéry conditiqns on
[—, 7] and with (9.71) we can calculate the induced 0(2) action on a(z, )

(T2 £)o,7) = Aa(ei ) 1+ (Ta-0)er7) o

_ (k(¢) - 4) (2,7) = Aq(e; ¢) (1 + (Ck - a)(=,7)) ;
thus the 6(2) action on a(z,7) is generated by Ty and Ck. Note that the Zg éction requires
only symmetry with respect to Tyr/g and this is contained in (9.72). The covariance of
(9.71a) with respect to Ty and Ck -is easily checked; this remaining O(2) symmetry— will
introduce non—géneric features into the secondary bifurcations.
(b) Linear stability for a =0

The linear operator (9.71b) is self-adjoint

(Laq,as) = (a1, Lasy) (9.73)

with respect to the inner product
( —l/w—m[ @) () 5] 0.74
a1, Gg) = 5 ) 5 o z) as(z) + ai(z) az(z) (9.74)




so we expect real eigenvalues A in the spectrum determined by

: Lv=)v. (9.75)

By inspection the eigenfunctions v are of the form
v(z) = 21(A)e*™ + 2,(N)e ™ £ =0,1,2,3,... (9.76)
with complex coeflicients (21, 2,) that satisfy
A+ k4 25Q + (n— @) 21 = — (1 — Q*)Z

DA k2 = 2kQ + (k= Q)20 = —(u— Q)21
The real and imaginary parts of 2, 1 = 1,2, satisfy (9.77) separately since A is real; this

(9.77)

decoupling is due to the symmetry and forces the eigenvalues to have double multiplicity:

when k 5 0. More precisely let (r1,72) € R? be a real solution to (9.77) for eigenvector
v(z) = ri(N)e?® + T;(A)e_ikml, : ' (9.78a)
then the translated eigenvector
w(z) = (Tojme v)(@) = irs(\)e*® —iry(N)e™= (9.78b)

has imaginary coeflicients and is linearly independent of v(z); thus. A has multiplicity two.
(The other symmetry Ck leaves v(z) invariant.) When &k = 0 then (9.76) and (9.77) yield

only one (linearly independent) solution:
v(z) = 1 R A==2(p—-Q%. (49.79).
For a pure mode Ag té exist requires .
AglP=p—Q*>0,  (9.80)

so the k = 0 mode (9.79) is always stable. The possibilities for instability arise from (9.77) for
k>1. Wlthout loss of generahty let (zl, 23) be real then a nontrivial solution (7"1 # 0,73 # 0)

requires A = A, or A = A_ where

o= (k4 p— Q) £ /(- Q22+ (2kQ)7 . - (9.81)
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The A_ eigenvalue is always negative (cf. (9.80)), but A4 satisfies A, <0 if and only if
1
p—QF > 2Q2—§k2. | (9.82)

With periodic boundary conditions kmin = 1 so the pure mode Ag will be linearly stable

provided
|[4g)? >2Q%* 1. (9.83)

Stated slightly differently, as u increases above u = 0, all pure modes with wavenumbers in

the band
@ <3 (wt3) (9.84)
3 2

are stable. Comparing (9.67) and (9.84) we see that the ﬁﬁite length periodic boundary
condition is stabilizing in the sense that at fixed p there is a wider band of allowed Q values
(Tuckerman and Barkley, 1990). With periodic boundary conditions, the Eckhaus instability
corresponds to the & = 1 instabilityrthat sets in when (9.83) fails. As p decreases further
below the Eckhaus boundary (9.84). there are additional instabilities of higher k-values as
shown by (9.82). ' o

(c) Center manifold reduction for A, =0

For fixed k and @), as u decreases below 302 — %kzl, the A, eigenvalue (9.81) crosses
through zero moving from the left haif—plaﬁe into the right half-plane. At A4 = 0 there a.ré

two critical modes corresponding to this eigenvalue

v (2) = ri(Ay )6 4 rp(Ay JeHhe

' ' (9.85)
wy(z) = iry(A)e™ — irg(Ay)e™®
so that the expansion of a(z,1) (cf. (7‘2)) requires two real amplitudes (¢, 8) € E©
a(z,1) = oftyos(2) + B(t)wi(z) + Sz, 1) (9.862)
where .
(s, 8) = (wy, §) =0, (9.86b)
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(Recall that L is self-adjoint, otherwise the projection in (9.86b) would require the appro-

priate adjoint eigenfunctions.) The center manifold dynamics for (e, ) is more conveniently

expressed by defining the complex amplitude

2=a+if (9.87)
and rewriting (9.86)
a(e,t) = 2(t)v:(a) + 2(t) vs(a) + S (9.88a)
w(z) = 7 (v4(a) —it4(2)), (9.88b)
va(a) = % (vi(2) +iwa(a)) . (9.85¢)

With this notation z(%) is analogous to z; in (7.2a) and S(z,t) is analogous to z; in (7.2b);

the equation for z follows from (9.87) which can be rewritten as

_ (v,0) +1(wy,a) '
‘= 7"1Er)\+)2 + T2(2\L+)2 ' (989)

using (vy,vy) = (wy,wy) =7} 4 r3. Differentiating (9.89) and using (9.71) Iyields

=z = B o N(a,a) 4w, N(a,3)]

(rf+r3)
_ (k=@ ™ de 4, _ Y —
= A2 (T 12) Jr 2 e [7‘1 N(a,@)+ry N(a, a)] - (9.90a)

then from (9.88) and (9.71) we obtain

=5 — (-0 Wan)+ Lo ue) [T Lo (e, a) 47, N(e3) }
-I—vg(vw) /_7r ;l_; gtke [7‘1 N(a,a) +r; N(a, 'a',)} . (9.90b)

The center manifold near a = 0 is described by

S(@,) = h (2,4(2), 20) | (9.91)
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where the function h satisfies (cf. (7.4) and (7.7))
Oh  .0h 08S

— — . 9.92
%2 7752 = Bt lsen (892)

The Taylor expansion of A begins at second order in (2,%)
Mz, 2,2) = hi(z)2® + ho(z)|2]* + ha(z)2? + O(3) . (9.93)

with coefficients hi(z), ¢ = 1,2,38, that are determined by applying (9.93) to (9.92) and

requiring that the second order terms balance. This procedure yields the following equations

20 2~ (- @) 20 o)~ (s~ @)
= (u— @*)(r} + 2riry) (9.94a)

|Z+50 2 - (s = @)= 20| o) - (4~ Q)
| =24 — Q*)(rira + 7 +73) | (9.94b)

[ - 2zQ —=(p—Q%~ ?MJ h(2) = (4 = @°)Fu(a)

= (p— QY (72 + 2ryry) e7 %= | ' (9.94c)
which in turn yield solutions .
hi(z) = np €25 (9.95a)
_ N2 2 .2
o el oo
hs(z) =73 N (9.95¢)

where (71, 72) satisfy

. (2k)2+4Qk+(ﬂ’—Q2)+2)‘+ /‘I’——Qz (771) :_( -—Qz) (7‘%—{—27’17‘2>
b (2)2 — 4Qk + (4 — Q7) + 2, g it onrs)
(9.95d)
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This approximation for h(;'v, z,%) is adequate to determine the leading nonlinear terms in

(9.90a). On the center manifold

a=zv,+3v; +m; 227 4 holz|? +mae k=32 4 ...

so the nonlinearity in (9.90a) yields

T dx

2T

etke [rlN(a, @)+, MJ = o 2|z -l— O(z]2]*) , (9.96)
where

| o = 4hy(r2 417y +72)+4dry ra(m+m2)+2(n v +n3r3) +r2(r? +2r§)_—|—r§(r§ +2r2) . (9.97)
Thus the steady-state bifurca,tiop from the pure mode branch i.s described by

s __(//'—Qz)kgzzz 21212
g=Asz ) |2 + O(z]2]*) (9.98)

and there are new branches of equilibria (z = 0) satisfying

(rf +73)As
(b — Q%o

with an arbitrary phase reflecting the translation symmetry T that has been broken.

-

(9.99)

The sign. of o determines whether these new equilibria occur for A, < 0 (subcritical) or

Ay > 0 (supercritical). It is enough to determine this sign at A, = 0, in which case the

expressions for r; and rp from (9.77) simplify:

ry = —(20Q — k :
1= (29 k) (9.100)
Ty = 2Q + ]C ’
(up to an overall normalization). In addition, at Ay =0
® = Qz = —=2r1 7y
from (9.82) and the center manifold coefficients (9.95) reduce to
2
g = —172 (9.101a)

T+ T
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hy=—(ri4+rira+r2) (9.101b)

2
T4
= ——. 9.101
N3 . ( c)

With these formulae at criticality the expression for o (9.97) simplifies .considerab'ly
0= —3(r +r)2 (P +72) (A =0) - (9.102)
so‘that (9.98) may be rewritten
| z=Arz+ 3@ — Q%) (r1 +72) 2|22 + O(X42]2)?, 2|2|*) . (9.103)

Since (u — @*)(r1 + 72)? > 0, the new equilibria (9.99) are subcritical and unstable.

X. Omitted topics

The ideas of center manifold theory and Poincaré-Birkhoff normal forms are discussed
by many authors. An introductory ‘account is provided by Rasband (1990); for the reader
seeking a more sophisticated treatment, both Guckenheimer a,nd‘ Holmes. (1986) Chapter
3 and Arnold (1988a) Chapter 6 are suggested. The recent review by Vanderbauwhede
(1989) provides very detailed proofs for the finite dimensional theory and a careful review
of center manifolds in Banach spaces is provided by Vanderbauwhede and Ioess (1990).
Additional material on the infinite dimensional case in particular can be found in M.arsden
and McCracken (1976), Hassard, et al. (1978), Ruelle (1989), and the encyclopedic volume
by Chow and Hale (1982). Finally, there is the monograph by Iooss and Joseph (1989),

which develops local bifurcation theory without using center manifolds.

In one-parameter systems, the Feigenbaum bifurcation and global bifurcations involv-
ing homoclinic and heteroclinic phenomena are important topics outside the scope of this
review. References for the former topic include Cvitanovic (1984), Collet and Eckmann
(1980), Lanford (1980), Vul et al. (1984) as well as the original papers Feigenbaum (1978,
1979, 1980). Global bifurcations, especially Silnikov-type bifurcations and Melnikov theory,
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are discussed by Guckenheimer and Holmes (1986) and Wiggins (1988, 1990). In addition,
the paper by Glendinning and Sparrow (1984) provides an accessible introduction to the
Silnikov bifurcation.

The recent lecture by Arnold (1989) touches on many current research topics, in par-
tiéular, multiparameter bifurcation problems and bifurc‘ations in symmetric systems. The
examples in Section IX were selected in part to illustrate the importance of these subjects.
An introduction to codimension-two bifurcations (i.e. bifurcations typical for two parameter
systems) is provided by Guckenheimer and Holmes (1986) Chapter 7, and Arnold (1988a)
Chapter 6, but much of the work in this area is scattered in the research literature; Golu-
bitsky and Guckenheimer (1986) and Roberts and Stewart (1991) are two recent conference
proceedings. Bifurcation theory for symmetric systems is likewise an actively developing
subject. .In addition to the recent reviews by Stewart (1989), Gaeta (1990), and Crawford
and Knobloch (1991), there are the more extensive treatments in Sattinger (1983), Vander-
bauwhede (1982) and Golubitsky, Stewart, and Schaeffer (1988). |

Hamiltonian bifurcation theory is ‘an important subject that is neglected here altogeth-
er. Unfortunately, there does not appear to be a systematic discussion of this theofy for
non-mathematicians at a level comparable to this review and the literature is extensive. For
bifurcation from equilibria of flows chapter 8 in Abraham and Marsden (1978) is a possible
starting point in addition to the brief overviews by Meyer (1975, 1986). Up-to-date discus-
sions of Hamiltonian normal form theory can be found in Bryuno (1988) and van der Meer
(1985). This latter monograph treats the so-called Hamiltorian Hopf bifurcation in detail.
Howard and MacKay (1987) give a nice discussion of the linear instabilities encountered in
symplectic maps; Golubitsky and Stewart (1987) describe a generic setting for bifurcation
in symmetric Hamiltonian systems. |

Finally, we mention the authoritative volumes emerging from the ‘Kolmogorov’ school: Anosov

and Arnold (1988), Sinai (1989), Arnold (1988b) and Arnold and Novikov (1990) which pro-
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vide many references to the Soviet literature. In particular, Anosov and Arnold (1988) treat

normal forms and invariant manifold theory, and Arnold (1988b) discusses Hamiltonian nor-

mal forms and bifurcation.
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Figures

1.

2.

Poincaré return map for a periodic orbit.

(a) Linear spectrum showing stable modes, neutral modes and unstable modes for an
equilibrium z = 0 in a flow; (b) invariant linear subspaces; for the spectrum in (a) we
would have dim E* = 3, dim E°¢ = 4, dim E* = 3; (c) invariant nonlinear manifolds;

for the spectrum in (a) we would have dim W* = 3, dim W*° =4, dim W* = 3.
A stable linear spectrum for a fixed point of (a) a flow and (b) a map.

Asymptotic stability of z = 0 for the linear system (a) implies ¢ = 0 is asymptotically

stable for the nonlinear system (b).

Basic instabilities for an equilibrium in a flow: (a) steady-state bifurcation and (b) Hopf

bifurcation.

Basic instabilities for an equilibrium in a map: (a) steady-state bifurcation, (b) Hopf

bifurcation, and (c) period-doubling bifurcation.

Given G(b, 0) = 0 and det [D,G(0,0)] # 0 at a point (a), the local structure of the

solution set for G(u,z) =0 is & single branch (b).

Diagrams for saddle-node bifurcation with normal form (5.6) (a)er =€ =1(b) & =
€2 =—1(c) —e;1 = €, =1 (d) e = —ep = 1. Solid branches are stable; dashed branches
are unstable.

Diagrams for transcritical bifurcation with normal form (5.13): (a) ez = e, =1(b) & =
e =—1(c) —e; =€ =1(d) ¢, = —ep = 1. Solid branches are stable; dashed branches

are unstable.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Diagrams for pitchfork bifurcation with normal form (5.19): (a) e, = —fz =1(b) —e =

e2=1(c)eg =€ = —1(d) & = &g = 1. Solid branches are stable; dashed branches

are unstable.

Perturbing non-generic diagrams (a) transcritical bifurcation (b) pitchfork bifurcation.

Radial dynamics and diagrams for Hopf bifurcation with normal form (5.22): (a) su-

percritical bifurcation a1(0) < 0 (b) subecritical bifurcation a4(0) > 0.
Period-doubling bifurcation in a Poincaré return map.

Hopf bifurcation in a Poincaré return map.

Neighborhood U within which Wc'is locally attracting.

When there are no unstable modes, a center manifold W¢ may be represented as the
graph of a map h(z;) from E° to E°. For the linear spectrum shown in (a) we have

the situation illustrated in (b) where dim £¢ = 2 and dim E* = 1.

The local change of coordinates ¥ in Shoshitaishvili’s theorem maps the flow ¢; of the

original system onto a simpler flow @, for which nonlinear effects are confined to the

dynamics on the center manifold.

Illustration of the suspended system: (a) the center manifold for the original system;
(b) the enlarged center subspace E° and a neighborhood of local attractivity U for
We (We is not shown); (c) schematic appearance of We when the fixed point is not

destroyed by the bifurcation. The original center manifold W© is recovered by slicing
We at w=0.
Surfaces of constant v in the (Q,T') parameter space. The Hopf bifurcation surface is

q = 0; for 7 < 0 the fixed point (9.3) is stable.
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20. At criticality (y = 0) the normal form coefficients a; = Re(a;) and a2 = Re(a,) in

21.

22.

23.

24.

(9.34a) are plotted against u using the function f(z) = sgn (z)log(1.0 + |z]).

For the degenerate Hopf bifurcation corresponding to a; = 0 and a; # 0 there are
two possibilities depending on the sign of a, at criticality. For a; > 0, the SN surface
branches toward negative values of a;. For a; < 0, the SN surface branches toward

positive values of a;. The unstable periodic orbit which collides with the stable Hopf

orbit is not shown. -

Evolution of z(t) versus ¢ for (9.1) from an initial condition (—1.0,0.0,0.5): (a) with
v = —0.1 and p = 6.0 when the fixed point (9.3) is stable; note that the trajectory
is initially repelled from the unstable fixed point at the origin. (b) With v = 0.1 and
¢ = 6.0 when the fixed point is unstabie and the solution is attracted to the stable Hopf

periodic orbit. The final point on this trajectory segment was (—4.486, —2.886, 4.499).

Evolution of z(t) versus ¢ for (9.1) with the final point given for Fig. 22b used as the
initial condition: (a) for v = 0.01 and ¢ = 3.7 when -the Hopf periodic orbit is stable;
(b) for the same initial condition with v = 0.01 and u = 3.5, after the Hopf periodic

orbit has been destroyed no stable orbit remains and the solution grows without bound.

Notice the difference in the vertical scale.

Phase diagram for the flow on the center manifold associated with bifurcation from

A = 0. The pure modes are the stable fixed points on the p;-axis and the py-axis. The

unstable mixed mode lies on the diagonal.
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