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Abstract

A previouély derived expression [Ref. 13] for the energy of arbitrary perturba-
tioné about arbitrary Vlasov-Maxwell equilibria is transformed into a very compact
form. The new form is also obtained by a canonical transformation method for solving
Vlasov’s equation, which is based on Lie group theorS{. This method is simpler than the
one used before and provides better physical insight. Finally a procedure is presented
for determining the existence of negative-energy modes. In this context the question
of why there is an accessibility constraint for the particles, but not for the fields, is

discussed.




I. Introduction

A Vlasov-Maxwell equilibrium is said to possess free energy if, in a reference frame where
the energy is lowest, there exists a perturbed state that is dynamically accessible from the
unperturbed one, with an energy that is lower than that of the equilibrium. We denote
this energy difference by 6%F, i.e., §2F is the perturbation or wave energy. The notétion
is appropriate for linearized theories as treated in this paper, Wheré the wave energy is of
second order. |
If an equilibrium possesses free energy one can expect the existence of several kinds of
instabilities; these are either linear dissipationless instabilities Wi’_ch §2F = 0 or instabilities
caused by drawing out energy from perturbations with §2F < 0, in which case the amplitudes
of such perturbations must grow. This can happen either by dissipation or by coupliﬁg,of
“negative-energy waves” with §2F < 0 to positive-energy waves with §2F > 0 of the same
system via nonlinear terms in the equations. The latter is exemplified in a very transparent
way by Cherry’s nonlinearly coupled oscillators,"? which are described by the following

Hamiltonian:
1 1 @
H= _§w1(pf + )+ §w2(p§ + ¢2) + B} [2‘11291292 — g3 “‘P%)]

where thelconsta,nts a,w;, and w, are real, the latter two being positive, and (p;, ¢;)(¢ = 1, 2)
are the canonically conjugate variables. For a = 0 one has two uncoupled oscillators, of
negative and positive energy, respectively. This situation corresponds to a charged particle
on a “mountain” with potential V(z,y) = —(2? + y?)/2, whose equilibrium position z = 0,
y = 0 is stabilized by a superimposed constant vertical magnetic field. If wy = 2w; one has a

third order resonance. Cherry found for this case the following exact two parameter solution

set:
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where € and « are determined by the initial conditions, and « is an arbitrary parameter that
measures the effect of the nonlinearity. These solutions show explosive instability, whereas
the linearized theory gives only stable oscillations with the two real frequencies w; and
wy = 2w;. The assumed resonance corresponds to the conversation law w; + wy + w3 = 0 for
the three wave interaction in the Vlasov-Maxwell case.

In the past, discussions of such nonlinear electrostatic instabilities in homogeneous plas-
mas®>~7 and their relation to the exisfence of free energy were based on the well-known

expression®®

ow ’

§*F = L IE(k,w)]w

o w=uw(k).

This expression is a special case of
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(wng(k, w)) CE(k,w) , w=w(k)

which is valid for general electromagnetic perturbations of homogeneous equilibria. Here g,
is the hermitian part of the dielectric tensor, whose antihermitian part g , must be negligible.
To evaluate this expression requires. the knowledge of the Fourier transform of the peﬂ;urbed
“electric field, E(k,w), and the dispersion relation, w(k), and is therefore in general not easy
to use. We note that there is also an extension to inhomogeneous equilibria, in which case g
is an operator in z-space.'® .

A different kind of energy expression, which allows a much simpler discussion, is known for

one-dimensional Vlasov-Poisson systems with homogeneous monotonic equilibria,’* namely

ST O ey gL
PF =g [ 684 =30 5 / 573 2o

where v is the species label, 6 E is the perturbed electric field, f() is the equilibrium distribu-
tion function, and 6 f, is the perturbed distribution function. More properly this expression

should be written as

(0)
ag’; dvdz (1)

62F=8%/6E2dw—2 2 [
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with

o~ af:so) 6§V agu _ €y
=05 0 5 TV T Tm, (2)

my

(Below we will see that g, is the spatial derivative of a generating function.) The latter
form, contrary to the first, is valid for arbitrary distribution functions f ©)(v).1213 Since the
perturbed charge density
ofl
8o = / 5, v g
p ; eV gll av v
can be made zero for any G2, one obtains the minimization of 6F for §E = 0. Hence,

§?F < 0 is possible if

EYi0)
g’; >0 o (3)

holds for at least one particle species in some v interval, while in a frame of reference where

v

the equilibrium obtains its minimum energy.

In a previous paper'® we were able to derive a general expression for the energy of
arbitrary perturbations of arbitrary three-dimensional Vlasov-Maxwell equilibria, from which
we obtained a generalization of condition (3). Thus all interesting equilibria were shown
to be either linearly unstable or possess negative energy modes. In the present paper we
‘compliment the results obtained before in three respects. In Sec. II we transform the original
expression for §2F, Eq. (69) of Ref. [13], into a more compact form. In Sec. III we rederive
this expression by a new much more elegant method, which provides better physical insight.

The derivation begi_ns with the well-known general nonlinear energy expression
— My o 3, 73 1 2 2\ 73
H=Y" 5 fz,(x,v)cl:cclv+8—7r (B + B*)d®z .

This expression is expanded up to the second order in the perturbations. The occurring
first and second order distribution functions are represented by.the generating function for
a canonical transformation according to the Lie group formalism. The method allows in

addition a simple direct proof that the quantity obtained in Ref. [13] is the second order




- energy. In Sec. IV we describe a procedure for determining the existence of negative energy |
perturbations. In discussing this procedure we address the question of, under which circum-
stances one should introduce a norm for the perturbations and which norm is appropriate.
The section begins with an explanation of the question of why accessibility is a constraint
for the particles but not for the fields, i.e., why it is only necessary to relate §x and 6x, but

not §A and SA.

II. Simplified Free Energy Expression

In this section we begin with Eq. (68) of Ref. 13 and peform a sequence of manipulations that
result in a simplified free energy expression, the terms of which are physically identifiable.

The expression of Ref. 13 is
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where G, (x,V) is the generating function for particle displacement and velocity pérturba—
tions, the perturbed field quantities are denoted by &, and .equﬂibrium quantities by the

superscript (0). The operator d is given by

0 | 0 .
- © ©)
d=v- 3 +— (E + - va ) 5 (5)

X m, v




Since Eq. (4) is written so as to make gauge invariance obvious, we comment on this now

before altering its form. If we let

A 5 AO 4 vy
A 5 §A + V6

G,,—)G'l,—fcf-&,/), | (6)

Eq. (4) remains unchanged. The transformation of (6) that involves G, arises because the
canonical momentum is not gauge invariant (c.f. Ref. 1 Eq. (51)). Note that the transfor-

mation

o© _, g0 _ L oY
c Ot

1 96
c Ot

are satisfied since 9%(©) /Ot should vanish in order that our equilibrium quantities be time

§& — 60 — (7)

independent; the second expression is obvious since §%F' only depends on §® through 6.
Now we rewrite Eq. (4) by transforming from the variable v to the canonical momentum

p, defined as usual by
| p=m,v+ % A© o ®)

The generating function and equilibrium distribution function are transformed according to
gy(X,p) = G,,(X, V)

7O, p) = m3® fO (x,v) . (9)

We will drop the bar on 7,(,0) below. The chain rule implies

0Gy | _ . 09
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Using Egs. (8), (9) and (10), Eq. (4) becomes
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where v is to be thought of as a shorthand for m;(py — e, A,(CO) /c) and the operafﬁor d

becomes
Joy. 0 989 9 e 04D O
- *"ox Op ¢ ¥ Oz; Op;

0x
In Appendix A we simplify Eq. (11) by performing a sequence of integrations by parts. The

final result is

§?F = Z/dsmd3p{— [g f(o)][ HO, ]

€y
[0, 10] A (p - £ A9)

v

1
() 2 2 24 73
5 FVI6A] }J“_sw /(6E +6B)dx , (13)

where [ , ], the Poisson bracket, is defined by

[f,]—a—x'a—p'—gl;'gza (14)
and H is the unperturbed Hamiltonian
O = L |5 _A(O) 4, 00 (15)
2m,

In the next section the physical meaning of the various terms in this expression will become

clear.

(12)



ITI. Canonical Derivation of the Free Energy

We now give a very simple derivation of the free energy expression of Eq. (13). The amount
of calculation required is far less than that of Appendix A. In Appendix B we calculate the |
first and second order perturbed distribution functions, which arise because the equilibrium
particle orbits are perturbed. Since the orbit equations are Hamiltonian the perturbation of'
the orbits is completely determined by a generating function g, that we expand to second
order. Thus the first and second order distribution functions are given, according to Egs. (B-

6) and (B-7), by

§Wf, = [gl(/l)afzgo)] (16)
595, = [g9, 50) + 3 [o2, [o89, 7] . (17)

With these relations one easily obtains the second order energy from the exact one.

The total energy of the Maxwell-Vlasov system is given by

H:Z/ L

2m,,
The second order energy is evidently

'52H=ZU:/{27~1,%

2
£, (x,p,t)dPz d&°p + 8i7r /(E2 + B*)d%z . (18)
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9 :
i SAA . (p - e_”A(O)> f,fo) + 5 Ey l5(1)A|2f£0)}d3:c d®p
(&

1
o= / {6WE? + 50 B + 26PE - E® + 252B - BO } &°z . (19)
For Hamiltonian systems it is always possible to write the second order energy in terms

of first order quantities.? The third term and the last term indeed cancel; this is seen by

integrating the last term by parts:

1 e e
— @A .30 48, — d / ( - (0)> S@A FO By By .
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> m,c
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Similarly, by making use of Poisson’s equation we obtain
1
= / §OB.-EOdz =Y e, / 0O§@ ¢, e &Pp (20)

which combines with the first term of Eq. (19) to give ¥, [ H(® §2f, d®zd®p. The contribu-
tion of [gl(,Q), fb(,o)] to 6@ f, in Eq. (17) yields zero after partial integration since [H ©), f,SO)] =
0. Thus all second order quantities cancel and Eq. (19) becomes

§*F = Z/ {%Hﬁo) [gm [gl/’fzgo)” - %5A : (P - e_CV-A(O)> [g”’f’EO)]

v

e 1
v52(o)33_/2523. : 21
+2muc2|A'|f” dwdp-{-gﬂ_ (6E* 4+ 6B*)d°z (21)
Here we have dropped the superscript (1) on the first order quantities and changed the name
to §2F, since now the Hamiltonian constraints are built in. Equation (21) is seen to be
identical to Eq. (13) upon integration of the first term by parts.

To conclude this section we show directly that Eq. (21) is conserved by the linearized

equations of motion. The fields satisfy

‘%E— = ¢V x 6B — 4763 (22)
-‘%é = —cfE — cV6D (23)

while the generating function g, satisfies

Bo 1 (g0 = 61, , (26)

the linearized Hamiltonian-Jacobi equation. In Eq. (24)

§H, = e, 88 — 2 6A - (p - e—”A.(O)) . (25)
[

myc
It is straightforward to show that if g, satisfies (24), then 6f, = [g,,, flgo)] satisfies the

linearized Vlasov equation. Taking the time derivative of §2F and inserting Eqgs. (22)-(24)

9




yields
Lopoy /{-; 10 B9 9] (19, ]+ & 515, 9] 59,5

5 D) (0 [ 0]+ o 19 [0,

'I"ec_y5A v ngaHzSO)] afzso)] - %'6A v [6-Huaf1£0):|

2

—2 (9, SO A v+ =

5 6A - 5A} ez dPp

+%/{5E - (—4783 4 ¢V x 6B) + 6B - (—cV x E)} d°z . (26)

The first and third term of Eq. (26) can be shown to cancel, while the second and fourth
combine to yield
y
> / HO, 68, [9, 1] o d°p

Also the last two terms cancel. Using

—/6E-5J=Z/{%A- (e,,v[g,,,f,so)] —m6—3625Af'5°>)

B }d?’:v d®p

together with the above cancellations and combination, results in the following;:

Lsp = [ 1HO,68,) [, £O] + 2 8A - v [[g, HO, £
" c

+e,v - V6B [g,, fO] -

dt

: 2
-%"- [6A v, 8H,] £ + e,v - V83 [g,, £)] - # FO5A . 'v5c1>} Badp. (27)

Using the Jacobi identity, [a,[b,c]] + [b,[c,a]] + [c,[a,b]] = 0, on the second term, and

Eq. (25) we see that the terms linear in 9y cancel. We are left with

2 .
d 52F Z / { Y [SA v, 8H,] f© — Z:_c'z' SA - V6 f,E")} B dp . (28)
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Since [A v, 8H,] = e, [fA -v,60] = —e,V6® - & (6A - v) = —2 V5 - 6A, Eq. (42) is

seen to vanish.

IV. Extremization of the Free Energy

Examination of Eq. (13) does not immediately reveal conditions that are necessary or suffi-
cient for the definiteness of 62F. The first term can have either sign, while the sign of the
second term depends on both the magnetic field and particle perturbations. The remaining
terms are all positive definite, but it is not clear when these terms dominate. Further, things
are complicated because §E is not completely independent; it must ’b'e consistent with the
constraint imposed by Poisson’s equation. For these reasons we describe in this section a
procedure for determining the existence of negative energy perturbations.

In 6°F the quantities g, and SA, §A and 6® can be chosen independently, provided only
that 6@ and §A satisfy the constraint V - 6E = 4wép. It is évident by now that the particle
perturbations éx and ép are not completely independent; since we have insisted on the
Hamiltonian constraints, they are generated through the single function g,. Recall that this
guarantees §x and 6p will conserve phase space volume. For equilibria of interest this phase
space volume is finite, contrary to the case where all particles have zero velocity. One can
view the equilibria of interest as being states of minimum energy subject to the Hamiltonian
constraints. However, one may question why we have ‘gaken 0A and its canonical conjugate,
which in essence is 5A, to be independent. These quantities are independent of the particle
quantity g,, because Maxwell’s equations allow for the production of a displacement current
that makes a given particle-field configuration consistent. They are independent of each
other because Maxwell’s equations are second order in time, but since the field equations are
Hamiltonian, one could require that §A and §A be derived from a generating functional in
a manner analogous to the particle perturbations. We do not do this eXplicitly, but it will

be seen below that the constraints are satisfied. The reason is that the phase space volume

11




and other constraints for the equilibria of interest are identically zero. This follows because
generally AO =0, If the equilibrium state of interest were one where A (©) # 0, then one
might want to change this.

The first part of our procedure is to treat the Poisson constraint. We find it convenient
to take variations with respect to §E and use the method of I’agrange multipliers. Since the
positive semi-definite electric field energy contribution can be considered independently, we

vary as follows:

2 : .
5/{%—5U(x)(v-m—4w5p)}d% ~0, (29)
where 6U(x) is the Lagrange multiplier. Equation (29) yields §E = —V§U, which is satisfied
by
A=0 , $S¢=6U, (30)
with
V26U = —4nép|g,] . _ (31)

In Eq. (31) we have explicitly displayed the g, dependent. The reason for this is that one
should view Eqs. (30) and (31) as a means for eliminating §E in §2°F by an expression in
terms of g,. We write JE [g,] to indicate this.

In order to illustrate the remaining portion of our procedure we first consider the min-
imization of a simple algebraic exarnple Wheré things can be worked out explicitly. The |
following quadratic form will serve our purpose:

f(e,0) = 2+ poa+ 2. (32)

Here 2 is analogous to the generating function g, and a plays the role of §A. The parameter
v in our example is assumed to be positive, while o and S can have either sign. Unlike the
real problem, here it is trivial to see that f has a minimum only when

a>p/y>0. - (33)

12




In the case of 6°F we have a quadratic form with both differential and integral operators
and therefore it is difficult to use the straightforward approach. Instead we extremize with
respect to a norm. The first step is to look at the sign of . If it is negative a minimum-
“does not exist and we are through. If it is positive then we do two things: first we extremize

with respect to a and solve for a(m). This yields
a(z) = —Pz/a . (34)

Second we insert Eq. (34) into Eq. (32) and extremize with respect to z subject to a norm.
A norm is introduced for the purpose of probing the vicinity of the equilibrium point. This
artifice allows us to find the extremal value of the function f at a fixed but arbitrarily small
distance from the equilibrium. Only if this extremal value is positive does the equilibrium
correspond to a minimum.

A convenient norm is provided by a2 /2, since we have already ascertained that it is
positive semi-definite. We thereby get an eigenvalue problem upon variation of the following
quantity:

B2z? az?
% + A 5 (35)

g(/\,:z:) = -

in particular, variation with respect to z yields
oA = B2/ 2 =0, (36)
which has a nontrivial solution if the solvability condition

2
A= % (37)
is satisfied. |
Using Eqgs. (32) and (36) we evaluate the extremal value of f subject to the constraint.
This yields
f*=°‘7$2(1—A). (38)

13



Inserting Eq. (37) yields

2 C\!:E2
f*=(1—a) - (39)

This quantity is positive, and therefore possesses a minima, when

a> %2- >0,
the same céndition as that obtained previously.

Now return to the real problem. The second step of our procedure is to examine the
first term of Eq. (13), the one quadratic in g,. If there exists a g, that makes the quantity
negative, then we have a negative energy perturbation and our procedure ends. (We assume
here that the reference frame is one of minimum energy.) If there is a g, that makes the first
term negative, then there exists a perturbation where this term dominates the stabilizing
SE? term. Thus picking §A = 0 we see that §2F < 0. This is analogous to the case.in our
simple example where o < 0.

Assuming the first term of Eq. (13) is positive semi-definite, we turn to the third step of
the procedure: extremization with respect to §A. Recall that in Eq. (13) 6E = —Vé® and
6B = V x 6A. Thus variation with respect to §A yields

V x V6A = 4?” 63 [g,,6A] (40)
where
2
_ 3, ) v ©) ( _& (0))___&_ ©) 1
oJ Zy:/dp{my 9., £9] (p SA 2mycfu 6A ¢ . (41)

Observe that the extremal 6A is a neighboring equilibrium state. In Eq. (40) we have
explicitly displayed the g, and §A dependence. The reason for this is that one should view
Eg. (40) as a means for eliminating §A in §2F by an expression in terms of g,. To indicate
this we write 6A [g,] or 6B [g,].

The fourth and last step of our procedure is to seek a minimum of the quadratic form

in g, that results upon inserting 6A [g,] and éE[g,] into Eq. (13). Upon making use of

14



Eqs. (25); (30), (31), (40), and (41), Eq. (13) becomes
FF =35 / &z dp{[9., 1] [HD, 0] + 8H, [9., 1]} (42

where the prime denotes that we have already extremized with respect to the fields 6A and
6®. Since evaluation of purely quadratic expressions like Eq. (42) at their external points
always yields zero, we resort to the norm technique used in our simple example. Recall that
the first term of Eq. (42) is at this point assumed to be positive semi-definite, otherwise
our procedure would have ended at step two. Thus, this quantity, reminiscent of the kinetic
energy norm of the usual MHD energy principle, is a natural norm. lThe quantity analogous

to Eq. (35) is
G\ 9] /\Z / Pz dp (g, fO) [HD,g,] + Z-;- / Pod®péH, (g, f7] . (43)

Recall that 6 H, = —-2- (p — & A(o)) 6A [g,])+e, 6D [g,]. G[), g,] is therefore a real bilinear

ve

functional of the g,’s. Thus after variation of Eq. (43) with respect to g,(x, p), the following
hermitian eigenvalue problem is obtained:

>3 / &P & '521;‘(( )) |9 (', ), FOK, )]

—% [6H,,, (x,p), fO(x,p)] - A [0 (x,p), [gu(x,p),Hﬁo)(x,p)]] —0.  (44)

Multiplication of this equation by g,(x,p), integration over x,p, and summation over u
yields, ) :
> [ dodpsh, [, /0] = 2% [ 2 d [, £O] [HO, 0] - (45)
p p
When this is inserted into Eq. (42), the following expression for the stationary values of §2F
results: :

§F =(1-)) 2 %— / Eadp [g,, F0) [HD,g.] - | (46)
The minimum of §2F is therefore obtained for the largest eigenvalue A = A\pax, and 62F is

negative if A > 1.

15



To proceed further one can either attempt to find Ap.x directly by solving the eigenvalue
problem (44), or one can use trial functions in the following way. Because of Eq. (45) one has
G[A, gv] = 0 when ), g, are solutions of the eigenvalue problem (44). Upon writing Eq. (43)

as

G=\A+B, (47)

the eigenvalues A can be expressed as
A=~—B/A. (48)

Varying this relation around the solutions of §G = 0 yields with (48)

1 B 1
A=—s (53 - Z&A) =~ (6B +)84) . (49

Thus 6(B/A) = 0 is equivalent to §G = 0. Hence if —B/A can be made larger than unity
by the insertion of some trial function, then there must exist a true eigenvalue with A > 1.
In this case we have negative energy modes.

Before closing we comment on the expression (42). Making use of Eqs. (16) and (24)

results in

2 /‘_l 3., 73 agu_i 3. 73
6F_2zu:/da:dp6f,,8t_2;/dwdp6f,,AH,,v (50)

where A H, is the first order difference between the exact Hamiltonian evaluated on the exact
trajectories and the unperturbed Hamiltonian evaluated on the unperturbed trajectories.
0g,/0t = AH, results because g, is to first order the time independent part of the mixed
variable generating function for the canonical transformation from the perturbed to the
unperturbed system. The minimum energy state therefore depends only on the particle
configuration, it is independent of the field quantities. In particular, in light of Eq. (30)
there is no radiation field. This makes sense since given any configuration with a radiation
field, one can obtain a lower energy state by keeping the particle configuration the same and

eliminating the radiation.
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Concluding Remarks

The generally valid expressions for the wave energy in the framework of Vlasov-Maxwell

3 can be used in a manner similar to the

theory obtained in this and the previous paper,’
.potential energy expression of MHD, i.e., §W. §°F < 0 does not, however, immediately tell
you that the system is linearly unstable, but indicates the possibility of nonlinear instability.
The presented energy expressions are preferable to previous expressions not only because
they are not restricted to particular types of equilibria,; but in general they are far more
practicable. We end with the remark that, since the class of equilibria admitting negative
energy waves is much larger than the class of equilibria admitting linear instability, and
since there are many more negdtive energy modes present in linearly unstable equilibria
than linearly unstable modeé, it might well be that the explanation of anomalous transport
requires that the potential nonlinear instabilities associated with the negative energy modes
be taken into account.

Note added after the completion of this work: We would like to mention that Vernon

Wong has independently found the expression of Eq. (13), but by a different method, and

he has shown that it is a constant of motion for the linearized dynamics.
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Appendix A

The purpose of this appendix is to fill in the steps between Eqs. (11) and (13). This is
done by a sequence of integrations by parts and neglect of surface terms. It is important
to remember that v is a shorthand for (p — -ef-A(O)) /m. Thus g%; # 0 and g—;’% # 0. Also
the fact that f(© is an equilibrium distribution function implies df® = 0. Working out the

square and combining like terms yields for Eq. (11), the following:

d’z d°p dg |* dg9, ,0g, dg, dg, 9°0©
20 — _ (0) .
o°F Z/ oy 0 {‘ x| T2 ox T T O™ B Bp; oz
2e Bg 2e2 Bg 0A 2e, m dg
2 25 v, v y oy . v
|6A[ o AR A A d
o tumy Oy, (084, 06A)\ | € By AL g, AL
c Bpi vk Oz; Oz, c® Op; Oz; Op; Oz
L g 00, 09, 0AD | mye, 89, (047 24P g,
c Op; Oz Ox; c Op; Oz; Oz; Op;
_mye, 89,85, 8 (04D 24P
c Op; Op; Y Bz Oz; Ozy,
+ L /(5E2 +6B)dPr =L+ L+ I | ' (A-1)
87" =41 2 3 -

In Eq. (A-1) we define I; to be the sum of the first three terms; I, is the next six terms, the
ones that depend on §A; and I3 is the last six terms. In the rest of this appendix we neglect
the field contribution.

Consider first I, which can be written as follows:

d®z d®p ag 09 dg 99© 9g
= [ —LOx 99 .
L 2m ! { ‘ ‘ +2m 8 83:, Opx — 2me Oz, Oz; Opy Op;

+

ag 9y 10 me Og 3A(0) d%g |
A-2
5pz BpJ Bz; Oz; Oz; T2 c Oz Yi 8:62 8pz Oy, (A-2)
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Here for convenience the species label has been dropped. Integrating half of the second term
of (A-2) by parts in z; and the other half by parts in p;, performing a cancellation and a
combination yields

[ dz d3p Bg dg 0f© 0 (99 09
1= Tom ) T ™ MY Bk \ Ba; Opr

3f® 8g 8g e . Bg 0g OAY 8g 890© §2g
&g 09 B9 04T,
Bmz apk 8wk c Opy, Oz Oz; Oz Oz; Op; Opy

f(O)

dg 09 0*®©

2 7 (0)
Op; Opy Oz; Oy, A

-+ me

©
me 09 0A;" 0% f(o)} . (A-3)

¢ Oy am. Bp: O

Now integrating the second term of (A-3) by parts in zj, and combim'ng the terms involving

®O results in

3,, 73 ©)
I = clwdp{_mm%[f(o)’] ORI (5_95‘1’ )

2m apk a.’l:k 0p¢ 8331
me f© dg 000 9§ e £O 8@” 9 (09 99 R af® 9g dg
Oz Oz; Op; Opy, Oz; 8p1 Bz, Op ' Oz; Opr Oxp
() (0)
4270 AP 89 09 e 0 0AD 09 0y | me o, 047 g g |\
Ba:i apk 0:I:k C 8wk amz apk vi 6:!:, 8mk 0pz Bpk

Integrating the second term by parts in z; and then combining with the third term, and
integrating the fourth term by parts in p; and combining this result with the fifth term and

making use of the identity df(® = 0, yields

- /d3$d3p{m[f(°),g] 0, HO) = T2 [0, 5] o, 22 20

2m Oz; Op;

— Vg
Oz;

)8A( dg 6g me g Og 0O 8Ak FO
c dzr Oz; Opy = ¢ Opg Ozy Ap;

me (o), 245 99 0% _
+2 c 7o Oz; Oz; Op; Op; (4-5)
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Now we combine I; and I3. Exploiting a couple of combinations yields

s

Oz; Op;

f(O)

09 09 24P 0 09 0 () 04D
Opr Oz; Oy, ¢ Opy Oz, Op; Yk

0A{) 89 g ¢ g by 0AY 94D £

e
9 = £(0)
+ cf vk Oz; Oxj Op; Op;  mc? 8p; 8pJ Oz 8:12]

_f(O)
op; Ow; 8, c dp; Bwj dp;

2 4(0) 2 4(0)
e 29 09, OA €009 O 04 } (A-6)

¢ Op; Op; k 9z, Oz; ¢ Op; Op; * 0z; Oz,
The seventh, eighth and tenth terms cancel, the sixth and ninth combine, and we integrate

the fourth by parts to obtain

L+1I3= / d3w2d3p{ [f(o),g] [g,H(O)] _% [f(o),g] - aA,(co) dg

Oz; Op;
;009 99 040 %y aAk s B9 09 e 04D o B9 g
me Opy, Oz, Oz, 0z; Op; Op; Oz, ¢ 0z; Oz, Op; Ope
()
_t02 99 0 [ 94 _
c f 8pi apg a:cg vk axz ) (A 7)
The last four terms of (A-8) combine as follows:
Ex Py 0 0 0 aA( ) Og
L= [ {Vwﬂpiﬂq £ [105) w20 20
0AY dg
©) A-8
vy [ e (4-5)
After cancelling the second and third terms, Eq. (A-8) reduces to
1
= [ BzdPpl=[fO ©) -
11+Is—/dwdp{2 £, 6] o, H ]} (A-9)
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Now consider the integral I, after cancelling its fourth and sixth terms,

€2 e O e2 g 0AD e 8y O6A,

mc? 5}: dz; 7T ¢ Op; vk 0z,
(A-10)

Equation (A-10) is evidently equivalent to

L= [ Eoap{ 2 50 AR =S FO [v. A, g]
3 P =/ 6AF =~ g

2m
2
- / Podpl 2 FO AP = v - 5A [¢, FO] } . (A-11)
2mc? c

Combining (A-9) and (A-11) we obtain Eq. (13), our desired result.
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Appendix B

In this Appendix we derive the expressions of Eqs. (16) and (17) for the first and second
order distribution functions. The derivation uses some basic elements of Lie group the-
ory. We start with the observation that there always exists a canonical transformation from
the canonical variables x, p, which obey the equations of motion generated by the pérturbed
Hamiltonian H(x,p,t), to the variables x(®), p(®), which obey the equations generated by the
unperturbed Hamiltonian H(© (x(o), p(o)). This follows from the group property of canonical
transformations and from the fact that the eqﬁa,tions of motion for any Hamiltonian generate

canonical transformations. Thus going backwards for a time ¢ with the perturbed Hamilto-

nian H and forward again by the same amount of time ¢ with the unperturbed Hamiltonian

HO (X(O),p(o)) results in a canonical transformation leading from x,p to X(O), p(®. Since
these transformations are elements of a group it is evident that a single time dependent
transformation relates x, p directly to x(@,p©).

Instead of constructing such a transformation by a mixed variable generating function
we use a basic result of Lie group theory (see for example Refs. (14-16); i.e, that an element

of a group can be represented by exponentiatihg an operator:

x© = Pt Iy O — JK@®PH) Iy (B-1)

\
Here K(x,p,t;¢) is the generating function for the transformation, € is a small parameter,

and [K, ]is a differential operator, which is defined by
[K(x,p,'t; g), |= oK : o 9K . i : - (B-2)
This operator has the following property for any function F(x,p)
P (dF Ik, o5 Ip) = 1R(x,p) . (B-3)

The unperturbed distribution function, f© (x(o), p(o)) , is constant along the unperturbed

orbits, which is equivalent to being a solution of the unperturbed Vlasov equation. Upon
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inserting into this function x(, p© from (B-1) we obtain with the property (B-3)

FO (e el Ip) = o 170x, p) = £(x,, 1) (B4

where correspondingly now, f(x,p,t) is constant along the perturbed orbits. It is thus an
exact solution to the perturbed Vlasov equation. -
We are interested in small perturbations characterized by the small parameter €. We

begin by expanding K as follows:
K(x,p,t;e) = e KMV (x,p,t) + & I{(2)(x, pPyt)+ - . (B-5)
This a,llbws us to expand Eq. (B-4) and obtain

Flxp,t) = FO(x,p) + [K, O] + % &, [K, fO)] + -+

= fO(x,p) + & [K®, O] + ¢ ([K<2>, O] + % (KD, [K®, f<°)]]> + o (B-6)
Equations (16) and (17) follow upon defining

gV = 51{(1) , ¢@=eK® .‘ : (B-7)
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