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Abstract

The ballooning formalism can be viewed, not just as an eikonal representation,
but as an integral transform, analogous to the Fourier or Laplace transforms, with a
uniquely defined inverse. Here, the inversion theorem is proved, and an error in the

previous literature is corrected.



A. Introduction

A field perturbation in an axisymmetric, toroidal confinement system is conveniently ex-

pressed in terms of its toroidal harmonics:

8(q,0,() = Y exp(in)ea(q,0)- (1)

Here g is the safety factor, which is assumed to provide a suitable radial coordinate; the
poloidal and toroidal angles are denoted as usual by € and (. [Sums over all integers are

indicated by omitting summation endpoints.] The ballooning representation is an assumed

expression for ¢,

©n = > exp|—ing (0 — 0o+ 27E)] fr (ng, 0 — 0o + 27k), (2)
k

in terms of the ballooning mode amplitude, f,, and the phase angle, 8y. It allows the linear

" eigenmode problem for ¢,

obtained by substitution.l:?34

The operator £ is typically more tractable than £, at least when 7 is large. The eigenvalue

problem is especially simplified because the periodicity condition

©n(q,0 + 27m) = pn(g,0)

is enforced by (2) and not applied to f,; indeed the #-domain for f, is the entire real axis.

At the same time, (2) enforces the “fute-like ordering,”

V”@ LV, (3)



where V)| is the gradient operator along the direction of the confining magnetic field:

0 0
V||0<B~VO<'8—0+Q-8—C.

This ordering generally characterizes the most dangerous plasma instabilities, including the
Ballooning modes from which the representation earns its name.

The ballooning representation can be understood in the context of WKB theory, the
amplitude f appearing as the coeflicient of a conventional eikonal. (Infinite degeneracy of
the lowest order WKB-problem allows formation of the periodic sum.) This point of view,
adopted in some early studies,® was emphasized and developed by Dewar and Glasser,® who
show that £ and £ have the same spectrum. Characteristic of the eikonal method is that,
while f evidently determines ¢, the series cannot be inverted: a prescription for finding
a unique ballooning mode amplitude corresponding to a given physical disturbance is not

available, nor even deemed useful.

An alternative viewpoint also appears in the early literature*: one can view (2) as

defining a ballooning transformation,

fr — ©n,

in the same sense as the Fourier or Laplace transform. Just as the Fourier transformation,
for example, is useful in the case of translation symmetry, so the ballooning transformation is
appropriate when the flute-ordering, (3), is satisfied. The ballooning transformation in this
second sense appears very naturally in analysis of the MHD energy principle.® Furthermore,
it would seem potentially useful in nonlinear studies of flute-like disturbances: the study
of dynamics, including, for example, correlations among different modes, involves more than
spectral theory.

Of course, this point of view demands the existence of an inverse transformation,

O = fn,




providing a unique f, for any given ¢,. The inverse transform prescription provided in
Ref. 4, however, was found to be incorrect,’ although the scale-length separation requirements
allowing a unique inverse were recognized.! Such scale-length orderings were later used to
obtain the correct inverse transform,” but the uniqueness proof provided then has since been
found® to be in error.

One purpose of the present note is to draw attention to the above distinction between
ballooning representation and ballooning transformation, emphasizing the special usefulness
of the latter. But our main purpose is to put the transformation on firm mathematical ground
by providing a sound and explicit derivation of the inverse transform formula (Sec. B). In
particular, the present derivation clarifies the constraint on f, necessary for the inverse
transform to exist. We finally explore issues of intrinsic mathematical interest, raised by the

previous analysis (Sec. C).

B. Derivation of Inverse Transform

To simplify notation, we now suppress the subscript n and introduce the variables
T =ng, y=0-—0.
Then (2) becomes

o(z,y) = Zk:exp [—iz(y + 27k)] f(2,y + 27k), (4)

while the inverse transform is”

f(z,y) = /ds

sin s

1y(z+s)
— V(e + s,y). (5)

Here and below, integrals without endpoints are to be taken from —oo to +oo.
The ballooning mode amplitude, f, is essentially a filtered version of ¢. That is, if F' is

a displaced Fourier transform of ¢,
Flty) = [doexplioly+1)¢(a,y), | (6)
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then f is the inverse Fourier transform of a truncated version of F":
foy) = o= [ dtexp(-itew( P (L) G
Here w is a window function, defined by
w(t) = 1, —wm<t<m,
= 0, [t|>m~.

The equivalence of (5) and (7) is easily deduced from the Fourier representation of the

window function,

w(t) = /dsemsm—ﬂ-s. ‘ (8)

S
Convergence of the series (4) is guaranteed under rather mild conditions on the function ¢.

Suppose, for example, that ¢ satisfies

/1"

$(z,y
where M is independent of y. Then, after an integration by parts in (6), we obtain

M
F(t <
|F(t,y)] < (y+t)2
and therefore
M _
[f(z,y)] < W=O(|y| ?) s y — £oo.

The series (4) then converges uniformly in both variables.

The filtered nature of f corresponds to scale-length orderings that were recognized in
the early ballooning literature, sometimes with emphasis.® It was the basis of the previous
derivation of the inverse trénsform,7 hereafter referred to as I, and its pivotal role was
explicitly demonstrated in an analysis of the MHD energy principle,® hereafter referred to
as II. The physical statement is that f must have nearly the same value on the nearest-

neighbor rational flux surfaces corresponding to any given toroidal mode number, n; variation

5



of ¢ from one rational surface to the next is accounted for explicitly, by the exponentigl
factor. The mathematical point is that to specify f uniquely, given ¢, we must restrict
the bandwidth of f. Regarded as a function of z, for fixed y, it is required to have radian
bandwidth no larger than .

The relations (4) and (5) differ only in notation from those in I; an equivalent version is
given in I]. However the following proof is new.

To show that (4) and (5) are equivalent, we first assume (4) to hold. Then (5) follows if

and only if the function

flle,y) = /dSSIIlﬂ'Seiy(a:+s)Ze—z’(x+s)(y+27rk)f(m_I_S’y_l_zﬂ_k_)
k

TS
= / ds—— 37 &4 f(a 4 5,y + 2mk) 9)
k .

coincides with f. At this point we apply the bandwidth requirement, expressing f in the

form

L oy= .
fay) = o [ dtexp(=ita)G(ty),
or, in other words, assuming the Fourier transform @ is identically zero for |t| > 7. Then
1 ™ . 1 .
Floy) = =3 [ atGlty+2nkjeetrm) [gs 2RI mistam (1)
™ r VT

The s-integral reproduces the window function, (8); then, since [¢| < =, the £ = 0 term is

selected and we have
Fley) = o /d (—isz)w(s)G(s,y) = f(2,9)
z,y 5 sexp(—isz)w(s)G(s,y z,Y),

as desired. This replaces the incorrect part of the proof given in I.
To complete the proof we assume (5) and deduce (4). Thus, following I, we show that

©' = ¢, where
sin7s

¢'(z,y) =D / ds W ™o(z + 5,y + 27k) :
k

T8




Now invoking the periodicity property of ¢, we rewrite ¢ (z + s,y + 27k) in the integrand

as ¢ (¢ + s,y) and apply the sum rule

Zk: exp(2niks) = > 6&(s—n).

This introduces a factor

Zsmw?z _ Z6n0 -1

n N n

into the integrand, yielding finally

as claimed.

Thus (4) and (5) are indeed a transform pair;u the bandwidth constraint gives the bal-
looning transformation a unique inverse. In other words, we have established a one-to-one
mapping between the space of functions ¢(z,y), 27-periodic in y, and the space of functions

f(z,y), bandlimited in z, of radian bandwidth < .

C. Alternative Proof

The uniqueness of the inverse ballooning transformation is established in the previous section.
The alternative proof given here is presented for intrinsic interest, and because otherwise the
error of [ is left mysterious. Indeed, it is not at all obvious that I is in error; moreover, once
the error is appreciated it is rather surprising that a rigorous version of the argument can
after all be constructed.

We recapitulate the (incorrect part of the) argument of I. It uses a version of (9) in
which the finite bandwidth of f, expressed by Eq. (7), is replaced by a “smoothness require-
ment”: that f should be entire, in the sense that its Taylor series in z has infinite radius of

convergence. Suppose we substitute the Taylor series into (9) and integrate term by term.



Then (10) is replaced by

, sin 7s . sm o™ f(z,y + 2mk)
fl= Zk: %:/ds exp [—i27k(z + s)] — oy . (11)

s

Here the obvious problem with convergence is addressed in a conventional way,
exp(—12wks) — exp (—i27ks —¢|s|) .

Then the exponential decay of the integrand for large |s| is supposed to justify the term-by-

term integration, with the result

1 0™ f(z,y + 27k)

f,(may) = ;;Imkexp[_i‘?”km]m Hr™ )’
where
. sinms , m
Ink = 215% ds — exp (—i27ks —¢|s|) s™

From this form it is not hard to show that
Imk = Omodro ' (12)

so we have

f=y) = flz,y). (13)

To see that this argument has to be wrong, we note that, since the left-hand side of
(9), like (sin7z)/mz, has bandwidth 7, (13) would imply that every entire function f has
bandwidth <. Evidently the error lies in the improper interchange of integration and
summation orders—a difficulty that can also occur in more elementary contexts.®

The argument leading to ('13), while fallacious regarding its original intention, correctly
verifies a useful fact. It shows that, if the sum over m can be interchanged with the integral,

then f has bandwidth < w. We repair the proof of 7, while preserving its essential method,

by also showing the converse: that bandwidth < 7 permits the interchange.



It is convenient to consider a slightly generalized problem. Let

() = /d Sll‘l?';S_;-)t)
/ds Sl:lr:sgo(.s +1)

be the filtered version of some absolutely integrable, entire function ¢; let

sin 7s '
£i(t) = [dsTexp (=elsl) (s + 1) (14)
and let
P k s

It is clear that
tim £.(2) = £(2),

. and, since ¢ is entire, that

/dssmﬁs ‘E’S'Z sF cl’”(,o(t). (16)

dik

Then two issues remain: ﬁrst, whether term-by-term integration is permissible, so that

fs(t) = QS(t)a (17)
and second, whether the € — 0 limit can be taken term-wise, so that
. 1 dk(t)
lim g.(t) = ; %k = ¢(?) | (18)

[see (12)]. Note that (17) and (18) together would imply that ¢ = f, or in other words that
¢ was unaltered by the filtering operation. It must have been of bandwidth < 7 to begin
with.

We next show that the finite bandwidth assumption indeed allows term-by-term treat-
ment. The proof depends on the Lebesgue convergence theorem, which permits the inter-
change of summation and integration provided, roughly, that the integrand series defines an

absolutely integrable function even after replacement of each term by its absolute value.©
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Consider, more generally, a function ¢ of arbitrary bandwidth W:
w , '
o(t) = /  dse™ 0 () (19)

The derivatives of ¢ can be bounded, as follows:

d*o(t)

| S WL (20)

where
I i ds|®
= [ dsle(s)|.
(We are assuming, of course, ] < o0.) The integrand in (16) is then dominated, term by

term, by the series

—els IW‘Slk We—e)ls
Te ”Z_k!——:k( sl
Thus the term-by-term integration is permitted, verifying (17), provided
e>W.

Of course this lower bound is not acceptable: we must show that (17) holds for all
e > 0. This is accomplished by demonstrating that both members of (17) are analytic in
the right half e-plane, and then using analytic continuation. In other words, we note that
term-by-term integration is permitted if the functions f.(t) and g¢.(¢) are analytic in € for
Re(e) >0

Analyticity of f.(¢) in the right half plane is clear from (14) and the boundedness of ¢.
The analyticity property for g.(t) is more interesting. Returning to the definition (15), we

note that terms with odd & vanish trivially, and that the even, k = 2n, terms are given by

1 d®m( /cl o Sin TS o—elsl.

My =55 2n)‘ d¢2n

But

/d nSinTs ekl = (2) (2n —1)! (71'2 + &:2) “"sin(2n8) (for n # 0),

T
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20
= — f N = O
? (torn=0),
where
f = tan! (Z) .
€
Since § — 7 /2 for e — 0, this result reproduces (12); it also yields the e-independent estimate

1
Ml = B

B ___I__(EZ)%L
o \7 )

Assume first that W < 7. Since the series

Iy (E)zn 1

W%I%(zn -t (=)

n
then converges, we may cénclude that the series in (15) converges uniformly with respect
to €. Moreover, since its individual terms are analytic, we have shown that g. is indeed
analytic in the right half e-plane. Thus Eq. (17) is confirmed for any real positive e.

Furthermore, uniform convergence of the series for g. suffices also to justify term-wise
evaluation of the ¢ — 0 limit: Eq. (18) is established.

The foregoing argument fails if W = 7, since the comparison series 3 n~! diverges. Let
us assume, however, that the function ® is not only absolutely integrable, as assumed above,
but also bounded. We can then strengthen the esfimate (20) (for W =) to

d*(2)
dt

27.‘.k+1

<371 max(®)

and thus obtain the convergent comparison series >.n~'(2n + 1)7! in the place of Y n~t.

The same conclusions will follow as before.
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