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Abstract

Hydromagnetic aspects of confinement of a high-beta linear plasma

column, including in the reverse field configurations, are

investigated. = The previous theoretically predicted - diverging -

confinement time of a sharp plasma column as B + 1 is removed by
properly taking into account the magnetic tension effect near the
column throats. The obtained endloss rate is tested through
simulation: the present simulation results in slab geometry excellently

agree with theory and is also close to other simulation and

e

experimental values. The confinement time T of a plasma with thickness
a and length L at 8 = 1 is found to be T = %—(3/2n)l/z(L/ch)(L/a)l/Z-
When the magnetic field inside the column is reversed, the plasma
endloss much improves: the endloss induces the reconnection of the
field lines mnear the throats, which produces closed field lines
(islands). Those islands are found unstable against the tilting

instability. The tilting-induced reconnection of the island field line

and the mirror field line is a very fast process even for negligibly

resistive plasmas and this helps rapidly spill out the plasma confined
in the islands. Significance of these processes for the spheromaks and

reversed field (theta) pinches is discussed.
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I. Introduction

The hydromagnetic time applies to the confinement of long 1linear
systems with open field lines such as a theta pinch and a long solenoid

configurationl"'2 (heated by lasers, electron, or ion beams), while much

" slower times are believed to be characteristic of the confinement of

these systems with closed field lines. Endlosses from these linear
systems are, therefore, crucial to consideration of these devices as
fusion reactors. There have been many proposals to reduce the endloss
of the linear system, which include multiple mirrors, a tandem mirror,3

5,6 and, of course, a whole set of proposals

solid plug,4 and rf plug;
for closing the field lines by creating reversed field configurations.
These include the spheromak,7 the reversed field theta pinch,8 the

10 the reversed

reversed field mirror,9 the reversed field ion ring,
field electron ring.11 However, the fundamental endloss process of the
simple long linear system particularly at high B is not yet fully

understood, much less with reversed field configurations. In fact,

there has been considerable discrepancy between experimental results
and theories for even the hydromagnetic confinement.12

In most of the reactor design for linear system, the endloss time
T 1is calculated from T = L/2cs, where L is the system length and cg is

12,13 and previous simulationsll”15

the sound speed. Most experiments
show a value of n ~ 2, where the normalized confinement time
n = (L/zcs)_lr. Their result does not seem to be as sensitive to B as
most theories claim to be, where B is the ratio of the internal plasma

pressure to the external magnetic field pressure: a typical theoretical

behavior of 1 as B >+ 1 has been n « (1-8)1/2.
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In the case of a sharp boundary plasma, Taylor and Wesson16
derived confinement time proportional to (l—E»)"l/2 assuming a steady

flow. Their argument goes as follows. When the plasma pressure

decreases in the throat region due to the endloss, the plasma radius

contracts in order that the inside magnetic field B, at the cusp

maintains the perpendicular pressure equilibrium. The endloss is
proportional to T « L/accs, where a, is the plasma cusp radius. The

perpendicular pressure equilibrium at the cusp at B=l is satisfied only

. ; . . . 1
for a. = 0, which in turn means a diverging confinement. Wesson 9

argued that a similarity wave propagates at the speed u = cs(l-B)l/2
and the plasma is almost completely rempved behind the wavefront in a

high beta. Such a picture gives a confinement similar to Taylor and

16

Wesson, although T is larger in lower beta. A simple derivation of

an area wave velocity propagating on a plasma column was derived by

Steinhauer!® as u = cS(l—B)l/z. Using the guiding center

19

approximations, Morse showed that a general improvement in the

confinement results due to the inclusion of the mirroring effect. The
theoretical divergence of T at B = 1 for a sharp boundary plasma still
remains. It is, however, known that a diffuse boundary plasma does not

give rise to such a singularity, as shown by Freidberg and Weitzner20

" using the magnetohydrodynamic theory. The disappearance of the

singularity at B8 = 1 (where B is now defined locally on the column
axis) is due to the simple fact that average over the whole column
section cannot reach unity anymore because of the diffuse profile.

L4 in a two—dimensional MHD simulation of a diffuse

Brackbill et al.
column found, however, that their simulation results were in much

better agreement with experiments. This suggests that there may be
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some important physical effects that have been overlooked in the
previous theories.

In the present paper, we study the hydromagnetic aspects of
confinement of a sharp boundary plasma slab in high beta wusing a
two—and—-a—half ~dimensional <(two spatial and three velocity and fields
dimensions) magnetohydrodynamic particle code.21’22 The first half of
the investigation focuses on the magnetohydrodynamic physics of the
endloss from a high-beta plasma column without fiéld reversal. In this
part we resolve the previous theoretical difficulty of divergence in T
when B+1l. The key physics here to undo this paradox are the relations
of the area wave progagatién and the plasma flow and the magnetic
tension effect>on the area Wavevpropagation.’ Our theory Whicﬁ properly
includes the magnetic tension effect agrees excellently with our own
simulations in slab geometry and is found to be close to the

12,13

experimental values as well as the simulation ones by Brackbill et

al.14 With the endloss process without field reversal firmly

understood, we proceed to thé Teversed field case.
The second half of the paper investigates the improvement of
confinement of the plasma column with field reversal and its possible

limit by the MHD tilting instability and subsequent rapid reconnection.

The confinement in this case is compared with the case without reversed

fields. It is regarded that if one can create a closed field
configuration, the particle confinement should much improve from the
hydromagnetic time scale to the cross—field diffusion time scale. In
the case of reversed field configurations there cam be another time
scale in between, i.e., the tearing time scale, which governs the

confinement of such systems. The tearing time scale, although it is
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still under active investigations, is generaly believed to be much
longer than the hydromagnetic time scale and much shorter than the
diffusion time scale. We  have, however, observed that the
magnetohydrodynamic tilting instabiliy26 becomes destabilized as the
reversed fiéidis££ué£urér(islands) éréiforméd (ﬁné bfﬁ the fiféfrrsuéh
tilting mode observations by fully nonlinear magnetohydrodynamic
simulations has been reported in Refs. 24 and 25). Upon tilting, there
seems to be an additional channel through which the tearing of field
lines and reconnection very rapidly take place.

The structure of the present paper is as follows. Section II
discusses our physical picture of the area wave on a sharp boundary
linear high-beta plasma column without field reversal, our simulation
model, and then the dispersion relation of the magnetohydrodynamic area
wave. Importance of inclusion of the tension term is mentioned in this
Section. In Sec. III the simulation results for the endloss problem

using the magnetohydrodynamic particle code are reported and then a

theoretical treatment which resolves the paradox of the diverging T as
B+1 is presented. Comparison with experiments and other theories are
also presented. Sections IT and III constitute the first half, while
the next Section, the second half. In Sec. IV we discuss the
development and confinement of the high-beta plasma in field reversal.
Here, the observation of island formation, island tilting, the
reconnection of island field lines, and the deterioration of plasma
confinement is reported through simulation studies. The final section
summarizes our research and discusses possible relevance of our

investigations to the long solenoid device, the theta pinch, the
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reversed field theta pinch, the spheromak, the reversed field mirror,

and other devices.

e ) e BT T ML L o i i oo R} e . . P o Tt 5 - A e e et



II. Area Wave

We first consider a high-beta plasma column immersed in magnetic
fields without endlosses in order to study the surface wave (area wave)
properties. We define a plasma slab in two dimensions with a wuniform
density for- |y] <-a; uniform -magnetic fields inside (|y| < a) and
outside (|y| > a) the slab along the =x—axis, where the x-axis is
parallel to the external magnetic field and the slab surface and the
y-axis is perpendicular to the slab surface. The thickness of the slab
is 2a. The jump condition on the plasma column interface is given by

the pressure balance equation

2 2
B-. B
ol oe

where Boi and B,e are the internal and external magnetic fields
respectively and P, is the plasma pressure in the column.

To describe area waves propagating along the external magnetic

field, we consider the ideal magnetohydrodynamic equation for the first

order perturbation. After linearization
. 1 :
Pok = V(& * Tpo *+ 1oL * §) + 7 [(L x Q) x Bog + (L x Bog) x Q] (2)

with

Here & is the Lagrangian displacement of the fluid and Q is the

e s 4 e e e e o e e e e 4 A e
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magnetic field perturbation inside the plasma. With B,i parallel to x

and assuming §, = 0, we obtain after elimination of Q

A B2,
F o= 2 v . o1 2
Poly = YPo 35 L * &+ V%y

(3

W

.. _ a
Pofx = Ypo'gg ve

where Y is the adiabatic constant.

Let us assume the temporal variation of the form e *®t and take Fourier

transform of Eq: (3) with respect to x. Then Eq. (3), after elimination

of £ ., becomes
2 2
k“Yp 9E B. 2
2 - 3 ° 4+ vy ot [ K2 4
VRoty TP gyl 3y | dm 2 ty « (9
Y \w%, = vpk Ay

We are interested in the surface mode that is symmetric with respect to
the median plane at y = 0. So we assume a solution of the form

Ey(y) + Egsinh(k;y). Equation (4) then becomes

2 2 2
B-. wp B~
w2p0 T k2 =- 1Yp, ° + 2 K% . (5)
4 wzp - vp K2 by
o o

T 17T T
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Other equations are obtained by the matching conditions with the

extended magnetic fields which in the vacuum can be expressed as B =Vy

I
8

with V2¢ = 0. We choose a solution such that § vanishes at y s
icees, P(y) = exp(—Key) where K, is the vacuum value Ko = Ikl The

first matching condition is that the magnetic field is tangent to the

boundary. The surface is described by

S(y) = a+ £y(a) kX -y =0

The vector normal to the surface is given in the first order by

VS = [ikiosinh(Kia) eikx, ~1,0] and the external magnetic field is

expressed as By, = (B, + ikypelkx, -Keweikx, 0). The matching
condition B . ¢ VS = 0 yields
P = —iEosinh(Kia)Boe . (6)

The other matching condition is the pressure equilibrium, which may be

written in the first order as

B . B
o1 oe

Expressing Q;, with its definition (2), Box » using Eq. (6) and using

the first relation of Eq. (3) for V « &, we obtain

2 Boi 2 Bge
W po - F k“ =k -Z'T—r—- Ki tanh(Kia) . (8)

R
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The dispersion relation is obtained by solving Egqs. (5) and (8). In

the limit k;a << 1, it gives

K‘% = kc%e Kq tanh(Kia) = K% kcg\ea ’ 9

where ¢g and cp; are the sound and Alfvén speeds inside the plasma
_column (cg = Ypo/p0 and cii = Bgi/4wpo) and cp

Alfvén speed defined as c2 = B2 /4mp _ with p_, being the plasma mass
Ae oe o o}

e 1s the "external

density inside the column. Explicitly expressing in terms of w, we

obtain the dispersion relation for this surface wave as

w2 = EZkZ
with
~2._,45;§,(gﬁi,j:_qf\e_ak) cg(l-B +_ak) S
2, 2 2 T T ¥ (v-2)8/2 F ak °’ (10)

cg T ek T cge ak

where ¢ may be called the phase velocity of the area wave (the surface
wave) and B is the ratio of the column plasma pressure to the external
magnetic pressure B = po(Bge/Sw)—l. The validity condition ak; << 1 to

~ 1/2
derive Eq. (10) can be maintained if [ak(c2 - cﬁi)/cge] K1

o e e e e
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17,18 show a expression similar to Eq. (10) except

Earlier theories
for terms proportional to ak. These terms arise from the magnetic

curvature tension appearing in the perpendicular pressure balance as it

will be seen in the next section; these terms are responsible for the

~finite phase velocity for the surface wave at B = 1 as well as for

removing the singularity in the confinement time of a theta pinch via
endloss.

Thé dispersion relation for the area wave, Eq. (10), is checked
against our own simulation. Our simulation model is based on the

21,22

magnetohydrodynamic particle code in two—and-a-half dimensions. A

plasma column with a thermal energy with a sharp boundary is immersed

in a magnetic field Boe parallel to the x-direction under pressure
equilibrium. To ensure the magnetohydrodynamic approximation valid in
the entire system, we also put in a low density plasma in the external
area where the magnetic field is B .. The field as well as particle

boundary conditions are those of the periodic boundary conditions: for

‘example, any particle which gets out of one of the boundaries is put

back in from the other corresponding boundary (no endloss in this
case). The thermal agitations by the particles excite surface modes as
well as bulk modes. When we analyze the dispersion relation by taking
the correlation functions of different modes, we discriminate the bulk
modes from the surface modes by symmetry properties in the y-direction.
The resultant relation for the surface (area) wave dispersion for the
case B = 1 is plotted in Fig. l. Here, the spectrum S(k,w) is obtained
from correlations of the density perturbation averaged over the column
diameter. The theoretical area wave dispersion relation Eq. (10) and

the simulation result agree reasonably well.
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I1I. Endloss from a Plasma Column

We consider endloss from a high-beta plasma column in two
dimensional slab geomery. As we discussed in the Introduction, the
particle confinement time in high-beta is expected to be considerably
different from a conventional simple estimate of T = L/2c . In order
to also resolve the paradox we saw in Sec. I and to gain some insights
into what kind of processes are involved in the endloss process, we
carry out a series of computer simulations wusing the aforementioned

21,22 o

magnetohydrodynamic particle code. geometry is the same as

Fig. 1, except that we now take out plasma particles which touch the
x =0 or L and ye [-a,a], which simulates the particle loss at the
ends. The other boundary and initial conditions stay the same as in

Sec. II. Because of the exact conservation of mass due to the particle

21

nature of the code“" the endloss process is accurately described. The

22

low magnetic diffusion due to the Lax-Wendroff algorithm““ allows the

sharp plasma boundary to be maintained throughout the simulation. As

we shall see, the magnetic fields should be purely in the x direction

at the throat pointe. The periodic boundary condition in the =x
direction we adopted is therefore justified, even though the field
pattern beyond the throat point 1is mnot incorporated in our model.
Although our particle handling fof endloss on the boundary (the throat
point) is most natural and perhaps a  unique choice for a
magnetohydrodynamic particle simulation, any disturbance (such as the
one due to the particle discreteness) which might be created by this
procedure would not propagate back into the system, because the plasma
outflow speed becomes sonic at the throat point and becomes supersonic

beyond it.

e T e e e et e e s — — . o ——— e b



—Although--the waves-with—shorter-wavelength propagate faster; reach the
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Typical parameters for the simulation are: the grid size
L x Ly = 128A x 64A, the number of particles N = 32768, the Alfven

speed outside of the column 2.83 Cgs the column with 16A, and the size

of the particle a, = a

% = 1A, where A is a unit length of the grid

y
cell. We have varied - the- plasma B and the plasma column length
L(= L.); in the simulation B is defined as the ratio of the internal

plasma pressure to the total external pressure B (Be2/8ﬂ + poe)—lo

= Poi

Figure 2 shows the temporal change in the density contours and the
magnetic field intensity contours for a B = 1 case. For early times
the density contours exhibit a surface modulation (area waves) of short
wavelength as well as a general concave pattern due to rarefractive
wave in fﬁe buik plasma. The area Wéves are generated as particles aﬁd
are -lost from the end and the wave signals propagate toward the center
of the plasma. As time progresses, the most prominent area wave

becomes the longest wavelength, eventually leading to a cigar type

shape, which corresponds to the fundamental wave sitting on the column.

plasma center earlier and progress toward the other end, these damp out

- fast leading to the cigar shape which appears to be a steady state

self-similar configuration. The width of the high density plasma
region at the end is quite narrow. On the other hand, tﬂé magnetic
contours, Fig. 2, or field lines show that although the magnetic field
lines are mnarrowing at the ends, the magnetic throats remain widely
open. This suggests that the surface tension due to the magnetic field
line curvature tends to open up the throat. In Fig. 3 the plasma mass
decay in the column as time shows approximately exponential with a

small oscillatory structure superposed on it. This structure is due to
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transients associated with the finite length of time required to set up
the steady flow. When the plasma chunk close to throat leaves the
system, it excites an area wave of wavelength roughly corresponding to
the size of the chunk. As more plasma is lost, the excited wavelength
Becgmés longér; | furthermofé, raréa waves of éﬁo?tef waveiength
propagate faster toward the center. As we explain later, because the
plasma flow velocity is determined relative to the area wave frame of
reference, the earlier inward propagating area waves make the outward
plasma flow slower on the laboratory frame of reference. This may
yield upward deviation from the straight exponential decay of mass in
early times as observed. On the other hand, after these shorter area
waves pass the cenﬁer of the plasma andrpropagate toward the other end,
the flow velocity relative to the laboratory frame is increased by the
added area wave phase velocity. This may explain that after a while
there appears downward deviation from the exponential and repeated

structure in the plasma mass remaineds In the case where a mirror

field is applied at the cusp, we see in Fig. 3 that for the case R = 3
(R is the ratio of the magnetic field at the cusp with respect to the
one at the center) even if the confinement time T dincreases
(simulations show T roughly proportional to R), the departures from the
exponential decay have still approximately the same frequency and are
due to area wave oscillation.

Up to this point important results observed in our simulation are:
(i) the confinement plasma mass decay is exponential in time and (ii)
the endloss time remains finite at B = 1 even for a sharp boundary
profile. In addition, we shall show in the following that the plasma

inside the column flows with a velocity equal to the area wave phase

. ———

-
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velocity described by (10) has a nonzero velocity even at B = 1 is due
to the magnetic field line tension. From our simulation finally, if
the plasma flows out at the area wave number because of the cigar shape
taken by the column; this is equivalent to a stationary surface wave
“with the'fundaméntal wavelength that builds up and reaches a steady
state.

The endloss flow is described for a plasma slab where the boundary
has a sinusoidal deformation as shown in Fig. 4. The

magnetohydrodynamic equation may be written as

9
gpua =0 N v v » (11)
2wty 21 (12)
39x 2 5 p 3x ’

2 2
9 B B
—(p+p, +>) =-— 13
dy (» Pe 4ﬂ) 4rR, ° (13)
2 0 ) 14
3% (aB) = ’ (14)
L = const . (15)
pY

We assume 9/9x << 3/3y, a_l, so that the coordinates x and y which
are in the directions along and perpendicular to the magnetic field
remain almost cartesian. Equations (11), (12) and (l4) represent the
conservation of the mass, parallel momentum and magnetic flux. a(x) is
the radius (half of the cross—section length) of the slab. Equation
(15) is the equation of state with p being the plasma pressure.

Equation (13) describes the perpendicular pressure balance. The term
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right-hand side of Eq. (13) represents the tension effect due to the
curvature of the field line, where Rc is the curvature radius. On the

left-hand side of Eq. (13) we also added an external pressure Po which

is introduced in order to describe the throat (cusp) region; this term

allowsrthe thréat to remain open while the plasma pressure goes to zero
oLtside the throat region. This procedure may be understood if we
consider a realistic case such as a finite length theta pinch where the
throat is defined at the point where the field lines are forced to turn
back. In this case the "external pressure" is supplied by the fixed
external coils. We assume that Pe takes a form p, = p.(l-a(x)) where
Py - is the total pressure pg = p + Pe and 0 < a < 1j inside the column
(x?O) faf from thé thfoat we héve a =1 Wﬁile outside the thréat 7(x<b)

we have o = 0.

Integrating Eq. (13) with respect to y we obtain

L2 2 2
BS B © B
P N i e r e g
i e g 1
a(x) ™ 8m 8n Ja dy 4'rrRc (16)

To evaluate the integral in Eq. (16) we use the fact that the boundary
has a sinusoidal deformation described by a(x) = a, - Aa cos kx and
that the magnetic field is parallel to it, a, being some constant value
or average column radius. The unit tangent vector to the boundary is
£ = (1,kAa sin kx,0) where we assume kAa << 1, and the radius of
curvature is given at the boundary by ﬁ/Rc = 9t/3s = 9t/ox =
sza cos kx Ey where n is a normal unit vector normal to t. In order

for the outside magnetic field to be tangent to t, there must exist an

external magnetic perturbation such that SBY/BeX = kAa sin kx on the

T T T T T T T T T e e e e ——————
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boundary. But GBY can be expressed as GBy = 39/dy, where the potential
P in the vacuum satisfies Vzw = 0. A solution for ¢ and SBy which

vanishes at y = @ and satisfies the plasma boundary condition is given

by SBy = BykAa sin(kx)exp(-ky). The magnetic curvature may therefore

be expressed as R;l = k2Aa cos kx exp(~ky). In the  approximation.

ak << 1 and Aak << 1 the integral in Eq. (16) is performed by
neglecting the spatial dependence of Bg(x) and by extending the
integration path from [a,®] to [0,»]. Then taking the derivative with

respect to x, we obtain

B. 9B, B2

0 P i 71 e 2 _.
2 + 2 2= 2 pak? sin kx . 17
57 e i Pl (7

Expressing 0B;/3x with the help of Eq. (l4), wusing the fact that
Aak sin kx = 39a/0x and the fact that Eq. (15) yields 3p/dx = cg dp/9x,

we obtain from Eq. (16)

C2
R (18)

9 19
9 = a(cﬁi + Cie ak) — a

2
c oa
5 X a 9x

O |~

where Ca{ and Cpe are defined as in Sec. II.

Finally we combine Eqs. (11) and (12) to give
C2 1
l3a, (-8 Lld_y, (19)

As we demand that Eqs. (18) and (19) be satisfied simultaneously, we

obtain the following condition for u:

VU

S VU
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2 2
2 - c2 a(x)(cAi + che ak) + § (20)
= cf ,
cg + a(x)(c%i + cﬁe ak) + §
where
13ay~1 1 50
§=(=2) 2.
a 9x 9x

At the throat where 9

term § in Eq. (20) is dominant and that u = ¢

0 and o~} 9a/3x > 0 we notice that the

a/dx

g* Slightly inside the

throat region where 8a/39x > 0 we have u $¢g but outside where

9a/8x < 0 the fluid velocity becomes supersonic u > cge The throat

conditions are thus well
remain localized where

negligible, 1i.e. o~ 3a/d

satisfied around the minimum radius point but
the '"external" pressure term P, 1is ot

x > 0. The throat conditions are thus in a

————————steady state anddo not seem to propagate inward toward theé center of

the column. As we go
negligible, ol sa/0x = 0,

u = ¢ as given by Eq. (10)

inside where the "external" pressure is

the fluid flows at the area wave velocity

To describe the overall end flow of the column we use the

integrated form of the continuity equation

9
3t Poo

=

anyy = — P
oo T Poo

850 = "2P121u1 (21)

where according to (i) we have assumed an exponential decay in time

with the decay time T.

The total mass inside the column is given

R et i o = A ey oy S oo n e o

0 B | (e vt S e DI e B
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initially, before any endloss processes begin, by the product of the
length L, the dinitial radius a,,» and the initial density Poo® The
endloss may be evaluated through any cross section one may choose along
the column, because of Eq. (1l1), but still far from the center is due
to a term 9(pa)/dt which must be added on the left—hand side of
Eq. (11) and becomes important at the center of the column; in order to
make it a solvable problem this term has been neglected in solving for
the fluid velocity in the column. Also for reason of simplicity in the
calculation the fluid quantities with subscript 1 are evaluated at the

quarter point where the magnetic curvature radius becomes infinite as

shown in Fig. 4, and are related to the quantities at the center of the

geometry with  subscript O through the integrated form of the’

magnetohydrodynamic equations (12), (14), (15) and (17), and the fluid

velocity equation (20). These equations now read

2
u P P
S+ X 1. =2, A (22)

2
ul
75-+ cg fnpy = cg inp,, (y=1), (23)
2 2
Pt Pe (24)
P1 8m 8r °’
'+___B%° = 5 + kA b (25)
o 8m Br & % e

21811 = 30810 » (26)

e e
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P1 Po
— =, (27)
ol o}
and
2 2
Bi1 Bo
— + —— ajk
9 2 4np1 4wpl
uty = ¢4, - " . (28)
2 il e
S o S
©s bipy  4mpy apk

Equations (22) and (23), that represent the parallel momentum

conservation- between the region 1 and 0, yield for (]
P1 = pg f(u%/cho) , (29)

where

j [1-(y-Dx]Y 1 a5 vy #1

l exp(=-x) if y=1,.

Equations (24) and (25) account for the perpendicular pressure
equilibrium. In Eq. (24) the curvature term is null, R, =, while in
Eq. (25) it becomes maximum with Aa = ag — aje

With (iii) stating k = 2v/L, Eqs. (24) and (25) are combined to

give

2 2 p2
2 2 10 o _ = _ e =
Po[1-f(u]/2e50)] - - (;_% 1) -k(agmay) z— =0, (30)
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where use has been made of Egs. (25) and (29) in Eq. (24). In Eq. (30)
the first term originates from the particle pressure effects, the
second from the magnetic pressure effects, and the third from the
surface tension effects which have been neglected in the previous
literature. All these three terms are necessary to balance the terms
and to describe the high~beta area wave and endloss and are also
sufficient within the magnetohydrodynamic description. The velocity 0

given by Eq. (28) can be expressed as

B%o ag Bg
— + ak
2 4rp 2 4wp 1
w2 =2 gt (y c . 3D
ot 2 T2 5

Equations (29), (30) and (31) relate the quantities Py, a1 and wug

to the quantity defined at the center with subscript 0. However, in

order to solve for Eq. (21), the quantities at the center have to be

expressed in terms of the unperturbed quantities a By, and p,,, that

00? (¢}

are defined before any endflow processes or any deformation of the

column take place. From Eqs. (11), (13), and (14)

Podo = Poodoo » (32)
Bio20 = Bioo00 » (33)
B2 B2
io ioo
Py +-W = (1 + Zk(ao - al)) (poo +-—81r—) 5 (34)

where Eqs. (32) and (33) are, respectively, the conservation of the

T e T e | e e e e ———

N .
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mass and magnetic flux when the column compresses under the field line
curvature tension and Eq. (34) relates the new perpendicular pressure
equilibrium to the initial one.

The endloss rate 1s evaluated in terms of the normalized

confinement time n defined as =

n = 2CSOOT/L (35)

with ¢ ., being the sound speed in the plasma column at the initial

time. - This gives for n from Eq. (21)

» . -1
ay P1 v
( )

250 Poo €soo

n:

.« ' (36)

In dimensionless forms we may rewrite Egqs. (29) to (34):

-1, ~ 1/2
z = {(I48)[1 + 4mA""(z=a )] - '}, (37)
ap =7l - L (e - g2ae) (- 1), (38)
u 2~2
¢ ay
and
(1-8) —— + 27 2L
~2
5% = Y1 ,v-1 5 a1 ., (39)
1
Yo BuY + (1-8) — + 2y 21
2 ~9 A
a
1
where
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~2 a a u
u 00 ~ 1 1
e e, g =22 g - g -
Z;Y a5 250 €so0
p
)\=_L_,and B: 200 .
250 Be/8n

Equation (37) is obtained from Eqs. (32)-(34), while Eqs. (38) and (39)
come from Egqs. (30) and (31), respectively.

Each of the equations from (37) to (39) are solved one after
another by using the Newton method; we iterate til counvergence. It
‘takes only a small number of iterations. Numerical sdlutiohs_are
displayed in Fig. 5. Our theory [solved numerically from
Egs. (37)-(39)] f£fits very well with our simulation points and is found
close to those of Brackbill et al.14 for our Y = 2 case. Experimental
values roughly fall between our Y = 1 and Y = 2 theory curves.

In some limiting cases results are easily expressed analytically.

When deviation of B from unit is very small, i.e. 1-8 £ (l6n/15)k-1,
the inside magnetic term in Eq. (30) can be neglected and f in

Egs. (30) and (31) is expanded up to the second term because

' u%/cho << 1. The values obtained for al/ao and ul/cSO altogether with

the value of py/py from Eq. (39), are therefore substituted in

Eq. (36). Using the fact that a50P00 = 8P and that cg, = cgqy, for

B = 1, we obtain for the normalized confinement time n when A is large

1/2 1/2
I (40)

e T e
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width, may be c;lled the aspect ratio. This expression agrees very
well with the values computed numerically in Fig. 6 for B = l. We
notice at the same time that slight departure from B = 1 leads to a
quick saturation of n at large A. The other limiting case B + 0 may be
aﬁal&tically d;fived. We kﬁow that at the”throéf fhé fluid Velocity ié
the sound speed so that Eq. (29) gives Py = Pp exp(-1/2). The radius
of the column will not change, al/ao = 1, because the plasma pressure
does not contribute to the total perpendicular pressure balance for
B + 0, Using these in Eq. (36), we obtain n = exp(l/2) = 1.65 which is

the value obtained in Fig. 5 by the curve vy =1 at 8 = 0,

S e
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IV. Reverse Field Configuration and the Tilting Instability

We have seen in Sec. III that for the open field-line pinch
configurations the endloss remains the main transport loss process.
That is, in the usual linear system configuration, Fig. 6 tells us that
unless we succeed to create a very high B ratio (1-8 << 1), the
self-mirroring effect of high-fB plasma is relatively weak. For
example, for B = 0,99 the largest possible n value attainable is 7 in
the ¥y = 1 case when the aspect ratio A > 3 x 102; a somewhat larger
value 1is obtained for larger value of Y. One way to circumvent this
difficulty is to reverse the magnetic fields inside the plasma column,
so that closed magnetic fieldflines createdkby magnetic islands as a
result of reconnection trap the plasma and prohibit the\ endloss along
the field-lines. This is equivalent, within magnetohydrodynamics, to
having n + @ for the straight system. If such closed geometry is
realized, one can achieve a long confinement time beyond the

hydrodynamic time scale with a relatively short length of the system.

In order to compare the confinement of the reversed field
configuration with that of the straight system, we simulate the reverse
field configuration by setting in the reversed magnetic field inside
the plasma columﬁ.

Since we allow the fluid to flow out of the system at the ends,
this outflow causes reconnection of reversed field-lines near the ends.
We find that reconnection is fast and magnetic islands formation takes
place on the Alfvén time scale as shown in the upper frame of Fig. 7.
This fast reconnection happens even if the resistivity in the
simulation code is very small, S > 4 x 103, where S 1is the magnetic

Reynolds number. Once the islands are well formed, they tend to reduce

e e T T
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in length and expand in width because of the magnetic tension. Fast
reconnection is observed also when we apply a local mirror field pinch
at the extremeties without the outflow alloweds In this case if no
pinch field is applied, it takes about one order of magnitude more time
to form magnetic islands through the tearing mode growth.

As expected, as soon as the islands are formed, the endloss almost
stops because the plasma is now trapped in closed field-lines. This
can be seen in Fig. 8. The exponential endloss in time, characteristic
of the open field-line transport, is terminated upon islands formation
and much slower .transport regime begins.

When geometry is prolate as is the case here, i.e. the islands are

longer rather than wider, it is theoretically known23

that the system
is tilting unstable. We have in fact observed this instability in our
simulation.2> Experimental evidence was reported in Ref. 8. Figure 9

shows the evolution of 1islands wunstable against the tilting

instability. The islands completely tilt in 1.5 Alfvén time and the

instability can be easily understood, as we inspect Fig. 9, say the
stage at t = 4(L/2cs). In the 1island the perpendicular magnetic
pressure as well as the plasma pressure forces in the y direction are
much stronger than the perpendicular magnetic and plasma pressure
forces in the x direction. See the first frame of the plasma density
and the first frame of the magnetic field-lines of Fig. 9 at
t = 4(L/2cy), for example. Because of the lower magnetic pressure in
the x direction the island can easily slip in that direction and rotate
from the original position. This allows for the islands system to
compress in the y direction when the magnetic force is stronger,

releasing the magnetic tension created by the formation of the islands.

N S S
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This is as if a compressed coil spring inserted in the "island cavity"
parallel to the y direction, trying to release its spring energy by
slipping and rotating toward the =x direction. In the oblate case
(island wider rather than longer), the magnetic force in the x
direction would be stronger than that in the y direction and the system
would be stable against the tilting.

When the tilting happens, release of magnetic energy and its
conversion into kinetic energy accompany. Figure 10 shows evolution of
energy in time. Total energy Ey = E, + Ep + Ep is conserved throughout
the simulation, where Ek = g mvza/Z with the summation over all the

particles «a ‘and Ep includes the fluid kinetic energy as well as
numerical interpretation of the kinetic energy and pressures in the
magnetohydrodynamic particle code21 may be found in Ref. 26. In
Fig. 10 the summed quantity is split into the kinetic energy for the
particles inside the systen Er; and that for the lost particles Eroe

The total magnetic energy is calculated as Eg = E. B%j/Sw where 1 and j
J

are the x and y grid positions. The pressure energy is expressed as
Ep = ?j pij/(Y-l) where P j is the pressure at the grid point (i,j).
The summations are over all grid points. Initially the magnetic energy
decreases slowly as field-line  reconnection takes place for
approximately two Alfvén time. And then suddenly a large drop of the
magnetic energy is observed as fast reconnection begins. This is
followed by island snapping toward the center. A few overshoots that
follow are due to the island compression and decompression
(magnetosonic oscillations). The tilting takes place during this time.

After the initial rapid drop of magnetic energy due to the initial
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island formation, overall magnetic to kinetic energy conversion occurs
during the tilting and final reconnection process.

Once the islands tilt, the regions where magnetic field-lines of
opposite senses touch together appear as shown in Fig. 9, at
ot = 5-5(L/2cs); in the ibwerrleft'énd'upper right corners of the plaéma
column. At these points fast magnetic reconnection takes place (see
Fig. 11). This reconnection process is similar in nature to the one
that ocurs initially: it is much faster than the tearing process. This
reconnection is responsible for disruption of the island confined
plasma and a rapid increase in the endloss is incurred for
7 t,> 7(L/2cS). A detailed study of fast reconnection mechanism will be
reported in a subsequent publication.27 The half life of the reversed
field configuration we observed in the simulation is approximately 10
Alfvén time. (Compare with the experiment Ref. (30), where it was 20
Alfven time across the total length.)

One needs to stabilize the tilting mode by having oblate geometry,

because otherwise the internal magﬁetic energy released by the tilting
instability forces the rapid process of reconnection, leading to the
disastrous disruption of the confined plasma, as we have seen in the
above. In our case we have obtained only prolate islands for various
length to width ratios of thé initial plasma column. If we reduce the
length of the column described in Fig. 7 by a factor of 2, the islands
formed have their length to width ratio reduced from 6.6 to 4.6. For
shorter systems, however, it is harder to achieve island formation
through the rapid reconnection process. One would still need a long
system either because of the required reactor size or because of the

needed island creation procedures.29 As soon as they are created,



however, one needs to shape

make them prolate.
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them using external coils or a cavity to
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V. Summary

A better understanding of the physics of the endloss of straight
linear systems has been achieved. It is established that the
magnetohydrodynamic area wave has a nonzero phase velocity even for the
B =1 éasé ﬁith shérp boﬁndafieé; VWe find fhét thé éffeéﬁr résponéiblé
for the finite velocity comes from the proper inclusion of the tension
due to the curvature of the magnetic field-lines, which has been
neglected in previous theories. The endloss of the linear system can
then be accurately evaluated by assuming and being backed up by our
simulation that the plasma mass exponentialy decay and that the fluid
.flows out at the correct area wave velocity. The tension effect is
needed also to evaluate the cusp aperture correctly., Our results
obtained in slab geometry are found to be close to various simulation
and experiment values; this suggests that a theory in cylindrical
geometry, still needed to be developed, will not depart too much from

our present model.

In order to sharply reduce the endloss, the reverse field
configurations may be necessary (beside the case where the B is put to
be extremely close to 1). We study by simulation reversed theta-pinch
cases. Fast magnetic field reconnection at the island formation stage
as well as at the island disruption stage upon the tilting instability
is observed. The tilting instabiliy is detrimental to the confinement
of the island plasma; because the released internal energy contributes
to the (internally) forced fast reconnection of field-lines. The
initial reverse field formation by reconnection is made easier if we

initially make a long system, while afterwards we need to shape or
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control these islands in order

energy by the tilting instability.

to suppress the release of internal
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Fig.

Fig.

Fig.

Fig.

1: The area wave dispersion relation. The circles are obtained
from simulation for a column ratio L/a = 16, The solid curve is
obtained from Eq. (10). The dashed curve represents the sound

wave.

2: Time evolution of the straight theta pinch configuration.
The left~hand side and right-hand side correspond to the plasma

density contour and magnetic field line respectively.

3:7 Mass endloss vs. time. Solid 1lines are from computer
simulation and the dashed lines are for an exponential decay.
The curve R = 3 is for a mirror ratio of 3 at the cusp; we see
pretty well in this latter case that the departure from

exponential are due to area wave oscillations.

42 Schematic of the model for endloss. The plasma column has a

Fig.

sinusoidal . deformation of amplitude Aa given by the solid curve.
The parameters with subscripts 1 are evaluated at the no
curvature region while the ones with subscript 0 are at the

center.

5: Confinement time n vs. B. Dots are our simulations (y=1,2);
circles from simulations of Brackbill, Menzel and Barnes; solid
curves are from our theory; broken line label TW,W,M and FW are
theories from Refs. 18, 19, 21, and 23; square dots between error
bars represents the variogs SCYLLA experiments as given in

Refs. 12 or 13.
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6: The mass outflow predicted by our theoretical model
vs. aspect ratio A for various values of 8. The curve for B =1

is in good agreement with Eq. (40).

7: . ..Initial reconnection and islands formation -stage--in -the
reversed theta-pinch. The left—hand side and right-hand side are

respectively the density contours and the magnetic field line.

8: Endloss in the reversed theta—-pinch. High endloss is
observed before the island formation and after the system is
tilted when the final reconnection begins. The vertical bars A
and B denote respectively the time when the islands are
completely reconnected and when the system is completely tilted.
Low endloss 1is observed when the plasma is trapped in the

islands.

9: Tilting geometry. The left-hand side and right-hand side

are respectively the plasma density contour and the magnetic

field-line.

Fig.

Fig.

10: Energy vs. time for the reversed theta-pinch case with
endloss. At t = 3L/2cs a fast conversion of magnetic energy into
kinetic and pressure energy is observed when the disland, after
just Dbeing formed (vertical bar A), contracts toward the center.
The vertical bar B denotes the time when the system is completely

tilted.

11: Destruction stage via fast reconnection process. The
left-hand side and right-hand side columns are respectively the

plasma density contour and the magnetic field line.
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