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Abstract

A calculation is presented which accbunts for the rapid nonlinear growth of the m=1 kink-
tearing instability. The equilibrium anélysis contained in the Rﬁtherford theory of
nonlinear tearing-mode -growth ié generalized to islénds for which the constant-y -
approximation is not valid. Applying the helicity-conservation assumption introduced by
Kadomts'e\ﬂ we show the presence of a current-sheet singularity. that gives rise to a narrow
tearing layer and rapid reconnection. This_ rapid reconnection, in turn, justifies the use of
the helicity-conservation assuﬁlption.. The existence of a family of self-similar m=1
equilibrium islands is demonstrated. The formalism introduced here is shown to apply
both to the case of the m=1 kink—teai‘ing mode and to the case of forced reconnection.

These two cases are compared and contrasted.

#*Present address: Princeton Plasma Physics Laboratory, James Forrestal Campus, P.O.
Box 451, Princeton, NJ 08543




I. INTRODUCTION

The nonlinear theory of tearing modes developed by Rutherford predicts algebraic
growth of magnetic islands on a slow, diffusive time scale.] The Rutherford theory does
not apply, however, when the mode under consideration is near marginal stability in the
ideal limit. This is the case, in large aspect-ratio tokamaks, for the kink-tearing mode with
poloidal mode number m=1. 23

A qualitative picture of the nonlinear evolution of the kink-tearing mode has been
proposed by Kadomtsev.4> The Kadomtsev model predicts that the kink-tearing mode
will grow on an intermediate time scale between the slow, diffusive time characterizing
Rutherford growth and the much faster poloidal-Alfvén time typical of ideal plasma.
motions.

Kadomtsev also calculated the final magnetic coﬁfiguration after the complete
reconnection of the flux within the g=1 surface, where q is the tokamak safety factor.4 He
based this calculation on the assumption that the helicity within two flux-tubes is conserved
during their reconnection.

The Kadomtsev model has been confirmed by many numerical simulations of m=1
island growth.-2 However, the mechanism responsible for this instability is not well
understood. It is sometimes. argued that the reconnection is driven by the nonlinear
- evolution of the ideal kink instability. This explanation must be rejected, however, as it
does not account for the rapid reconnection in ideally stable systems such as low-beta
tokamaks10,

An analytic description of rapid reconﬁection in helically symmetric configurations
has been presented by Hazeltine et. al.ll; however, in the present paper, a different

approach is taken. Here, we seek equih'brium magnetic islands which satisfy Kadomtsev's




helicity-conservation assumption. The focus on equilibrium configurations is motivated by
the ohservation that the mode evolution is slow compared to the Alfvén time. The helicity
conservation assumption, by contrast, is justified by the rapidity of the reconnection
compared to the resistive diffusion time.

The existence of a family of self-similar, helicity-conserving equilibrium islands is
demonstrated below. The most important result of the analysis is that 'helicity-invariance
requires the presence of a current-sheet singularity on the isla.nd separatrix. This result can
be anticipated from the observation that the safety factor diverges on the separatrix of a
regular island. The divergence of the safety factor is inconsistent with helicity invariance,
and cannot be avoided without allowing for the presence of a current sheet on the
separatrix.

The demonstration of the existence of a current-sheet singularity is significant in
that it implies the self-consistency of the helicity conservation assumption, since the current
sheet will give rise to a tearing layer in which rapid reconnection will occur. The
conservation of magnetic helicity during rapid reconnection in a current sheet can be shown
to follow from Ohm's law.

While the existence of the current sheet thus insures self-consistency of the helicity-
conservation assumption, it might appear, upon first glance, to put into question the sélf—
consistency of the equilibrium approach, since the current sheet causes a tearing layer in
which inertial effects will be important. This is not the case, however, as the non-linear
regime is characterized by the inequality w; << w, where w; represents the width of the
téaring layer, and w represents the island width. The equilibrium solutions found in this
paper can thus be interpreted as "exterior” solutions of a boundary-layer analysis.

A more serious criticism of the equilibrium approach is that the reconnection,
although itself slow, may convert part of the magnetic energy into kinetic energy, thereby

causing global oscillations of the island at the alfvén frequency’. However, the existence
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of current sheets is a consequence of the helicity-conservation assumption only, and is
independent of whether the island evolves near equilibrium. Moreover, on a more
fundamental level, it is the existence of nearby equilibria that determines what will occur
during reconnection; thus the oscillations will play only an ancillary role.

The "interior" problem of reconnection within the tearing layer will not be
considered here. A solution of this problem, assuming laminar flow conditions, has been
given by Sweet and Parker!2, The Sweet-Parker model has been generalized to include the
effects of viscosity by Park ez. al.” The application of these models to the current layers
discussed in this paper will be considered in the conclusion.

The presentation is organized as follows. In section II the problem is formulated.
The basic reduced nonlinear equilibrium equation for thin islands is derived in section III; ..
the formulation used is an extension of the one introduced by Rosenbluth, Dagazian and
Rutherford? in their study of the nonlinear saturation of the internal kink instability. In
section IV, the helicity conservation assumption is applied to the thin island equilibrium
equation. The reduced equilibrium equation is then shown in section V to be equivalent to
a variational principle. This variational principle is used to demonstrate the existence of

solutions to the flux-conserving equilibrium problem. The results are discussed in section
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II. FORMULATION

A. Equilibrium

The standard reduced magnetohydrodynamic (RMHD) equations of Strauss!3
describing large aspect-ratio, low-beta tokamaks will be taken as the starting point of the
analysis. The equilibrium equation is |

| (B-V)J =0, (1)
where J is the parallel current. The perturbed equilibrium will be assumed to be helically
symmetric. It is then convenient to express the magnetic field in terms of the "auxilliary

field" B, as

B=2+ %rg + By,
where € is the inverse aspect ratio and q, is the safety factor on the resonant flux surface;
that is, the rational flux surface where the winding ratio of the field lines matches the
helicity of the equilibrium. The magnetic field is normalized to the value of the toroidal field
B, The auxilliary field is related to the helical flux y by
B«=-eZx V),

while the parallel current J is givg:n in terms of the helical flux by Ampere's law,

1=V - 2.
As a result of helical symmetry, the equilibn'ulh equation, eq. (1), takes the simple form

VyxVI=0. (@)

The most important feature of eq. (2) is its singular nature on resonant field lines.
For such field lines, one has
Vvy=0.

The general solution of the equilibrium equation, away from resonant field lines, is .




J=T(y). 3)
On resonant field lines, however, it is apparent that current singularities violating eq. (3)
are allowed by the equilibrium equation, eq. (2).

" The simplest such configuration consists of a current .ﬁlament lying on an isolated
closed field line. It is interesting to consider the consequence of superposing such a
current filament on an X-type neutral point. In the neighborhood of the current filament,
the magnectic topology will be changed to that of an 0-type neutral point.14 In the presence
of resistivity, however, this structure will diffuse without further altering the topology.

More significant configurations arise if rational surfaces composed of closed field
lines are present. Equilibria can then be found with y-independent current sheets lying on
the rational surface. The bifurcated kinked equilibria of Rosenbluth ez. al2, for example,
fall under this category. Note that the auxilliary field will undergo an antisymmetric jump
across such current sheets:

@VY.=-@VY)., ©
~ where 11 is the normal to the flux surface. |

Current-sheet singularities are also allowed on irrational magnetic surfaces, as long
as they satisfy eq. (3). A jump condition can be derived by integrating eq. (2) around a
closed loop lying along the current sheet.l5 One finds

@ Vv - (Vv =0. (5)
That is, the jump in the square of the auxilliary field is constant along the current-sheet.

The results of this subsection can be summarized as follows. Two types of current

sheets can exist at equilibrium: on nonresonant flux surfaces, J = J () must be satisfied,

while on resonant surfaces the amplitude of a current-sheet may be field-line dependent.




B. Conservation of Magnetic Helicity

The precise statement of the helicity conservation assumption is now given.45 The

general definition of the helicity K in a flux tube is!®

K=jA-JdV, 6)

where J is the current and A is the magnetic vector potential. The integral in eq. (6) is
taken over the volume of the flux tube being considered. For the large aspect-ratio,
helically symmetric system considered here, it can be shown that conservation of K is

equivalent to conservation of the integral C given by

C=f\4rdV.

In an ideal plasma, the helicity integral C must be conserved for every flux tube
individually. Kadomtsev's hypothesis#5, which is adopted here, is that the sum of the
helicity integral for two reconnecting tubes of flux is conserved during their rapid
reconnection. In addition, it is assumed that C is conserved separately for all the flux tubes
which do not undergo reconnection during the period of interest. Note that the Kadomtsev
assumption is reléted to but much more restrictive than that of global helicity conservation
used by Taylor!6 and Bhattacharjee ez. al.l” to calculate the final state of a plasma after
turbulent relaxation. |

We now derive a more readily usable form of the helicity-conservation assumption.
Consider two flux-tubes about to undergo reconnection. Since these flux-tubes share the
separatrix, they correspond to the same value of y (fig.1) The helicity-conservation
condition then takes the form

dVe=dV;+dVa, 7




where dV¢ is the volume of the reconnected flux-tube and dV1 and dV, are the volumes of
the initial flux-tubes. Since|dys| =|dy1|=|dyz|, eq. (7) can be written

dv| _|dv| . |dV| 8

e v ®
Eq. (8) is the local form of the helicity-conservation assumption. It will be used in Section

IV to calculate the current distribution within the island. Note that the "local helicity"

dV/dy is related to the safety factor q by

%: 2 (1- 4.

It can be evaluated with the general formula

dv_4 d6 9
dy éIB*-Vel’ e

where the integration is carried out along a toroidal section of the flux-surface. The .-

denominator in the integrand of eq. (9) is given by
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III. EQUILIBRIUM IN THIN ISLANDS

A. The Thin-Island Approximation

The equilibrium problem can be greatly_simpliﬁed for thin islands by using a
second boundary-layer decomposition. In the present case, the decomposition is based on
the smallness of the island's width, w, compared to the characteristic scale length of the
unperturbed cylindrical equilibrium. Near the singular surface, defined as the surface
where Vy = 0 in the cylindrical equilibrium, nonlinear effects will be important. In the
bulk of the plasma, however, the perturbation occasioned by the growth of a thin island
will be small, and a linearized description will be adequate.

In the thin nonlinear layer the effects of curvature may be .neglected. In addition,
gradients along the layer may be neglected compared to transverse gradients.

The simplifications described above were utilized by Rosenbluth ez. al.,? to
reduce the equilibrium problem for the bifurcation of the m=1 kink to a one-dimensional
nonlinear equation. The analysis in this section follows closely that of Rosenbluth ez. al..
A significant difference, however, is that the expansion parameter in their theory is the
inverse aspect ratio €, while the small parameter in the present analysis is the ratio w/rg of
the island width to the radius of the singular surface. In this respect, the thin island

asymptotic analysis used here is more similar to that of Rutherford.1

B. Solution in the Nonlinear Layer

With the approximations discussed above, the equilibrium equation takes the form:




82\;/

= J(\;!) +2.
or?

I VZW;

;)
This equation can be integrated along a radius. One finds

1 aLp 2 — _
42 5 )e =F(y) - G(9), | (10)
where '

\j
Fly)= f [I(y) +2] dy
Vos

and G(0) is a constant of integration.

A formal similarity between the island equilibrium problem and the problem of
nonlinear electrostatic plasma oscillations!8 is apparent in eq. (10). The sign convention
for G(8), which is opposite to that chosen in ref. 2, has been chosen to make this similarity
explicit. Solving eq. (10) for (3y/dr)e yields

(aa—‘r")6 =+ [2Fy) - GO ay
One thus finds that flux surfaces such that F(y) < Max (G(G)) will be "trapped" between
"mirror points" Oy, given by G(0n) = F(v). These trapped surfaces correspond, of
course, to reconnected flux surfaces lying within the island. The continuity of the flux can
be assured by inverting the sign of the square root in eq. (11) when passing through mirror
points. k

Flux -surfaces such that F(y) > Max (G(O)), by contrast, are "untrapped” and
continue to encircle the plasma core.

The displacement of the flux surfaces frdm their position in the cylindrical
configuration can now be derived. Radial distances are henceforth measured from the
radius rg of the singular surface in the unperturbed cylindrical configuration. This is
accomplished by the substitution r - rs—T.

The flux in the unperturbed configuration can be expanded close to the singular
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surface:
Y = Yos +%\4f6 12 + 0 (13).
Here yos = yo(0).

Note that the helical-flux v is not a good flux-surface label for unreconnected flux-
surfaces, since there are two distinct flux surfaces with the same value of . Itis therefore
preferable to label the flux-surfaces with their radial position in the unperturbed
configuration. As in ref. 2, this quantity is denoted by x. For reconnected flux surfaces, it
is convenient to label the "left" branch of the flux-surface between the two mirror points
with the position of the corresponding "left-hand-side" flux-surface in the initial
configuration, and respectively, the "right" branch with the "right-hand-side" posiﬁon.
With this convention the sign of the square root in eq. (11) is identical to the sign of x.
The radial displacement of a flux-surface with respect to its position in the initial
equilibrium is given by

€ (x,9)=r (x,0) - x. _ (12)
An expression for & is now derived. Taking the reciprocal of eq. (11) and

substituting Fy) = 15’ £x) and G(®) = L (yo)" £(6), one finds

d ( x|
2 (e(x,0)) = —X (13)
Ix (£ - g(0))"

Integrating eq. (13) from the mirror point to a flux-surface x and combining the result with

eq. (12) yields the sought-after equation for &:
X

€ (x,0)=¢ (Xm (9),9)4'] dx | x| 1 - as
@ e -g@)? X

The quantity xm (6) in eq. (14) is the value of x for the flux-surface whose mirror-

'point lies on the radius of integration. At the mirror point, the flux surface originating from

- | Xm(0) |must be connected to that coming from + i Xm(0) | (fig.2), so that
e (-[xm@), 0)- & (+|xm ®)], 8) =2|xm ®)] (15)
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It should be emphasized that the variable £ does not represent the fluid
displacement, but only the radial displacement of a flux-surface. Eq. (15) is thus nothing
more than a continuity condition on the flux. |

In order to match the linear solutiéﬁ to the solution inside the nonlinear layer, an
asymptotic expansion for the latter must be found. An expression for f(x) at large x can be 2
derived by assuming that the helicity-conservation equation is asymptotically valid for large
x. Note that this will be the case not only for rapid reconnection, but also for the slow
tearing mode evolution of Rutherford. There results from egs. (8) and (9)

f(x) ~x2+ gg, (16)

where g, is the zeroth harmonic of g:

go=§ do g(©) .

The asymptotic expansion of the displacement at large values of x follows from egs.(14)
and (16). One finds
Ed6)

&(X, e) ~ g:t(e) + X (17)
where
£:(0) = &(Hxm(®)], 8)= dx x[é-—l— (18)
e 0@
and
&0(6) =-2(2(®) - g0). 19)

The relevant quantity as regards the asymptotic matching is the value of the jump in &
across the layer, which we denote & (0):

& (8) =&+ (8) - &- (O). (20)
Combining egs. (15), (18) and (20) yields

12




-Z| - Xm(©). 1)

1 |4 \ [m 3 1 ' 1
= Gw (0} = dx X{——“-_
2 Jo® e - @) *

C. Linear Solution in the exterior region.

The linear solution is found by integrating thé Euler-Lagrange equations derived
from the well-known energy principle.l?-2! The case of free reconnection should be
distinguished here from that of forced reconnection. The former refers to the spontaneous
growth of a tearing mode driven only by the energy contained in the equilibrium
configuration, whereas the latter occurs as a result of imposing a helical perturbation on an
equilibrium. These two situations require distinct boundary conditions. We consider each
case in turn.

In the case of free reconnection, the exterior problem is identical to that for the
linear tearing and kink-tearing modes. The familiar result is that the asymptotic behavior of
the exterior solution in the neighborhood of the singular surface can be described by the
coefficient A'. Neglecting the effects of curvature, the asymptotic form of the exterior
solution near the singular layer is | |

20,21

, &~ Ay + 5 22)
where the Ay and A_ should be used for x>0 and x<0 respectively. The A' coefficient is
then defined by A' = A,-A./Ag

Two important results of the linear analysis in low aspect-ratio tokamaks should be
recalled here. The first is that modes with poloidal mode number m=1 are distinguished by
rather large values of A'.23 Specifically, A' ~&-2 where € is the inverse aspect-ratio. The
second result is that the average curvature vanishes, to lowest order in the inverse aspect-

ratio, for all the modes which are resonant on the flux surface where g=1.22 The neglect of
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curvature effects thus appears particularly appropriate for these modes.

We now consider the case of forced reconnection. In this case, the linear
perturbation in the bulk plasma is the sum of a "homogeneous" solution identical to that
found above for free reconnection and of a solution of the same equation satisfying the
inhomogeneous boundary condition imposed by the external perturbation on the plasma
surface. The inhomogeneous solution may be chosen to satisfy A,=0 on the singular
surface.

The asymptotic behavior of the complete solution near the singular surface again
takes the form given by eq (22), but the coefficients are now related by

AgA =A,- A - Asinh. 23)
Note that A ;;;,=0. In the following section eq. (23) will be used to derive the reduced.

equilibrium equation.
D. Reduced Equilibrium Equation.

The nonlinear layer solution, given by egs. (17)-(21), and the exterior linear
solution, given by egs. (22) and (23), are now matched together. The matching condition
yields the reduced equilibrium equation,

axx[———- 1. Xm(0) =-lw (A'ng + 8p) cos (n0), (24)
Ln ((f(x)-g«a))”2 ") 451 e

where 8=-2A ; 1, and

&n= 2% de g(®) cos (n6), n=0.

Eq (24) is the basic nonlinear equilibrium equation. It allows, at least in principle, the

function g(0) to be determined for a given current distribution J(y). It should be
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emphasized that only the thin-island approximation was used in the derivation of eq. (24),
and that it therefore has very general validity. It can be used to describe both free and
forced reconnection, Rutherford reconnection, and the bifurcated kinked equilibria of
Rosenbluth et al., provided the appropriate current distribution is used.

Eq (24) can be simplified further in either of the following two cases depending on
the size of the parameter A'r,. For A'r, ~ 1, the constant-y approximation may be used.
This case was treated by Rutherford, and is only included here for the purpose of
comparison. For A'r>>1, however, the constant-y approximation fails, and a different
approach must be taken.

The simplification of eq (24) in the "small-A' " case is the subject of the following

subsection. The "large-A'" case will be treated in sec. IV.
g

E. Constant-Psi Islands

The constant-y approximation consists in neglecting the perturbation \Tf in the
poloidal component of the auxilliary field B#. This is justified, when A' ~rgl, since
Ay/or ~ Ay ~A'w (Qygdr) implies that oy/or ~ (w/rs) oyo/or. The neglect of oy/or
is thus consistent with the thin-island approximation w/rg << 1.

The poloidal component of the auxilliary field is then given by

(%‘1—’)9 =Vor . (25)
The constant-y approximation also allows the flux to be written
O v=wEY 26)
where
V=2, Wdt) cos(2mn).

n=1 :
An equation equivalent to eq (11) for constant-y islands can now be obtained from
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egs (25) and (26) :

)2 @

a\lf n ~
=} 2 2
(ar )9 =( WO(W )
Comparing eq (27) to eq (11), one concludes that, for constant-y islands,
f=fy=x2and g, = Z\Tfnf\Vo That is, the current perturbation f is of order w/rg and may be
neglected in eq (27). It must be retained in eq (24), however. To lowest order, this
equation yields

j dx-% —=l===13 A% ga cos (2mn6).
*m(©) x2-g(0) “n=1

This is clearly equivalent to eq (14) in Rutherford's paper.1

The significance of the constant-y approximation, however, is that it allows a direct
calculation of the current from the flux-surface-averaged Ohm's law. This is-a
consequence of the fact that oy/dt and dw/or are independent of the current, to lowest order
in w/r.

In large-A' islands, this simplification cannot be used. As a result, the current can
no longer be calculated explicitly from Ohm's law. In the following section, the helicity-
conservation assumption is used to calculate the current-profile in large-A' islands. We
repeat for emphasis that the resulting current profile is consistent with Ohm's law, thus

jusﬁfyin g the use of the helicity conservation assumption.

IV  HELICITY-CONSERVING ISLANDS

A. Helicity Conservation and Current Distribution

The thin-island formalism introduced in sec. ITL.A is now applied to the helicity

conservation condition, eq (8). Note that for unreconnected flux surfaces, the integral in
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this equation extends over the two flux tubes labeled by y. For reconnected flux-surfaces,

the same integral must range over the two branches of the flux-surface corresponding to the

* sign in eq (11). The helicity-conservation constraint therefore takes the following

compact form :
oo FOOEOL
BT (-e@) |

where we have inserted the Heaviside function H to define the range of integration. It is
defined by

0, fory<0

H(y) = e
1, fory=20

Eq (28) is an implicit equation for the total current f(x) contained within a flux-
surface, as a function of the flux-label x. Note that the helicity-conservation constraint can
be applied individually to flux-surfaces which did not undergo reconnection, resulting in
£(x) = £(-X). |

It is the solution of eq. (28) for f(x) that demonstrates the existence of the cuﬁent
sheet. The inversion of this equation yields three solution-branches for f(x). In order to
obtain an islénd topology, it is necessary to jump from one branch to another. The resulting
jump in f(x) corresponds to a current-sheet lying on the separatrix.

To demonstrate the above assertions, consider the function ¥ (f) defined by

0 { 40 HIE- g(e))r_

1/2
(t- e®)"
In terms of this function, eq (28) takes the simple form|x| = y(f). Two features of ¥ (f) are

immediately apparent. First, %(0) = O is required by eq (28). This will be satisfied when
g(6)=o(62).in the neighborhood of the island's magnetic axis, which we take to be 6=0.
Second, the integral in x(f) contains a non-integrable singularity for f=gn,y, Where
gmax=Max(g(6)) , 50 that % (gmax) = 0. This singularity reflects of course the well-known

divergence of the safety factor on the separatrix of regular islands, as discussed in the
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introduction.
These two properties, combined with the positiveness of % (f), imply the existence
of a maximum Ymax of X(f) between f=0 and f=g,,. The analysis of % is completed by

the asymptotic expansion for large f :
x () ~f1f2(1 ; %’) +0 (69,

The function % (f) is represented schematically in fig.4-(a); its inverse is shown in
fig. 4 (b).

Recall that f<g,,,., corresponds to "trapped" surfaces, while f>gq,., corresponds
to untrapped surfaces. Thus, if the reconnected flux is given, or equivalently if the value
of x on the separatrix, xg is given, the inverse function f(x) will be determined
unambiguously. That is, the lower branch of x'l (x) must be chosen for x<xg in order for- .
those flux-surfaces to be "trapped", while the upper branch must be chosen for x>x.

The current-sheet corresponding to the jump in f must therefbre lie on the
separatrix. Note that the "inner" value of f on the separatrix fj, is less than gp,,. This has
the following important consecjuence for the island structure : the outermost flux surface in
the island, corresponding to fj, will not extend all the way around the magnetic axis of the
tokamak, but will remain "trapped" within the arc defined by g(0) < fi.

In the complementary arc, g(0) > f; , the innermost unreconnected flux-surfaces,

corresponding to f,, are contiguous. Across this segment of the separatrix, the magnetic

field undergoes an antisymmetric, 6-dependent jump from + (fe - g(e))l/2 to - (fe - g(O))H2

. Such a current sheet is similar to the one found by Rosenbluth et al., and is consistent
with the equilibrium equation (2), as previously discussed

To summarize, one finds that the X-point structure of regular islands is replaced in
helicity-conserving islands by two Y-points, separated by a ribbon generated by closed

field-lines. This ribbon supports a field-line dependent current-sheet which satisfies the
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equilibrium condition given in eq. (4), while the body of the island is surrounded by a

flux-dependent current-sheet satisfying eq. (5).

B. Helicity-Conserving Equilibrium Islands

The magnetic configuration of rapidly reconnecting m=1 islands is described by eq.
(24), with f(x) determined by eq. (28) as discussed in the previous subsection. We begin
by considering the simplifications of eq. (24) which can be justified within the ordering
assumptions w<<rg and A"1<<rs, independently of the relative size of w and A1, Eg.
(24) can be written symbolically as ,

Eeen= % (A'aga+8), n=1,2,... 29)
Note that the zeroth harmonic of eq. (24) is identically satisfied.

The relative order of the terms in eq. (29) can be seen to be & ~ g2~ w. One
concludes that the r.-h.s. of this equation should be neglected, for n#1. For the n = 1
harmonic, however, the r.-h.s. must clearly be retained. The general form of eq. (29) in
either the large-A' case or for driven reconnection is dle;efore

-E=2(A1 g1+ 8), (30)
En=0, n=2,3,... (31)

This system of equation can be simplified further, for the case of free reconnection,

in the regime where A 'il<<w<<rs. Eq. (30) may then be replaced with
g1=0. ' (32)
| The most significant consequence of this approximation is that it implies that freely
reconnecting m=1 islands become self similar for w>>A"1‘; that is, they are invériant under
the scale transformation x; — o xs, f — o%f, g, — a?g,. Note that under this scale

transformation, the island width w and the displacement of the plasma core &..; become ow
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and o.&..;, respectively. One consequence is that the scaling law for constant-\y islands,
w ~yt/ 2,‘ also applies to m=1 islands. Another important consequence of eq. (32) is that g
will have a minimum at 9=i‘1t, in addition to the one at =0, where 6=0 is the position of
the island's magnetic axis. This means that the current will peak at the center of the ribbon
of closed field lines joining the tips of the islaﬁd.

We list here two other properties of the solution that can be deduced by inspection
of the integrals in eqs. (24) and (28) in the néighborhood of the points 0=0 and 0=16y,
where the 8y,which denote the positions of the tips of the island, are given by g(6y)=f;. -

First, near 6=0, one finds that eq. (28) requires that g(6)=0(68) Second, near
8=18y, the singularity in the denominator of eq. (24) must be compensated by a zero in the
numerator in order for £..; to remain analytic. Thus, it is necessary that dx/df=0 be
satisfied for f=f; that is, g(6) must be such that ynax=X; is satisfied. These qualitative
features are sketched in figs. 3 and 4.

We conclude this section by considering the case of forced reconnection. For thin
islands or large perturbations such that A'w2<<3, the A' term may be neglected in eq.
(30). For x =0, the resulting problem is identical to that corisidered by Rosenbluth et al .2,
except that the amplitude of the kinked equilibrium is now determined by d. It should be

recalled that the sign convention used here is opposite to that of ref.2. As the island grows,

a small localized well will appear at the point 0 for which g(9)=0((9-60)8) in the
unreconnected kinked equilibrium. This point will become the island's magnetic axis.
Note that our conclusion in this respect differs from that of ref.2,.where it was suggested
that the point 6, would become an X-type neutral point during reconnection.

In the next section, we introduce a variational principle to show the existence of

solutions to the free reconnection problem.
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V. VARIATIONAL PRINCIPLE

The existence of a solution to egs. (31) and (32), describing freely reconnecting
large-A' islands in the regime where A"1<<w<<rs, can be demonstrated with the help of a
varjational principle. The variational functional is most readily constructed by the standard
method of combining the energy integral with the integral invariants of motion and

constraints related to the boundary conditions. We choose

I =E+C+A, (33)
where E is twice the energy,
[ 1o 2 -
E g \vylfav; (34)
C s the general helicity invariant,
C= Jr K(y) dVv; : 35)
- and where A is a constraint related to the boundary condition represented by eq. (32),
A=xf %“’-r-rcosede.' - (36)

The integrals in eqs (34) and (35) extend over the volume of the plasma. The poloidal
integral in eq. (36) should be taken over a flux surface in the asymptotic region r>>w.
The function K must be determined so as to satisfy the helicity-conservation
constraint. Similarly, the Lagrange parameter A is determined by requiring that eq. (32) be
satisfied, or equivalently that A=0. The variational functional I can be written in terms of
the functions f(x) and g(0) by substituting the expression for oy/or from eq. (11). It is
cénvenient to subtract from thé functional I its value for the unperturbed cylindrical state,
so as to allow the integrals over x to be formally extended to infinity. The arguments of
f(x) and g(@) will be omitted from the equations below for clarity. The various terms in

I(f,g)-1, then take the following form:
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E-Eg= 2}[ dx x( % de H(f-g) (f-g)¥?- X) ;

0

C-Co=2 f dx xK(x)(§ do H(f-g) (f-g)2- x-l) :

A-Ag= ké do g(®) cos 6 .

The variation of I with respect to f is given by

2_; = ,4) de H(f-g)(f-g)V+ 2xK(x)d%(§ do H(f-g) (f-g)']’z)-

The function K is now chosen so as to ensure that the flux-conservation constraint,
eq. (25), is statisfied for the extremum of I, fo(x). This condition is fulfilled for
df.
K(x)=2x—%.
(x)=2x . (37)
The equilibrium equation now follows by requiring that I be extremal under variations of g.

The variation of I with respect to g is given by

Sl _ dexgif;g—)--ZdexxK(x)ﬁd(@ +Acos 0 . (38)
dg L ¥ |, ' (f-g)¥2

Combining eqs (37) and (38) and integrating the second térm on the r.-h.s. by parts, one

concludes that 8I/8g=0 is equivalent to eq. (31), and that the value of the lagrange
multiplier A for which the minimum satisfies the constraint given by eq. (32) can be
identified with €..y2 .

Is has thus been established that the functional I, with K given by eq (37), is
extremal for the g(6) and f(x) which satisfy the equilibrium equation. The existence of

solutions to the equilibrium equation follows from the fact that E is positive, and must

22




therefore reach a minimum on the set of functions g(8), f(x) satisfying the constraints, eqs.
(28) and (32).
The variational functional constructed here is related to that used by Rosenbluth

et.al 2 in their analysis of the bifurcated-kink problem, but differs from it in two important

ways. First, since x; must be kept constant when minimizing the energy of an island

configuration, the scaling law described in Sec. IV.B cannot be used to decouple the
equilibrium equation from the asymptotic matching equation as in the bifurcated-kink
problem. Second, the variational principle used here has been constructed so as to be a
functional of the two independent functions f(x) and g(8). The variational functional H(g)
for the bifurcated kink problem, by contrast, depends only on the function g(6). An
analogous functional ﬁ(g) can be constructed for the helicity-conserving island problem,
but this functional cannot be used to show the existence of equilibrium solutions. The
- Teason for this is as follows: as a result of the restriction to a fixed x, it is not possible to
satisfy eq. (28) for the trial functions g(9) such that Ymax<x,, since for such functions one
cannot jump to an inner solution branch of f(x) at x;. Thus, the domain of ﬁ(g) must be
restricted to the set of functions g(0) such that Yyax>x,. However, this implies that the
solution of the equilibrium equation will lie on the boundary of the domain of ﬁ(g). This
makes the functional ﬁ(g) inappropriate for showing the existence of a solution to egs.
(31) and (32), because it cannot be assertéd, in general, that 8H=0 at a minimum lying on

the boundary of the domain of .

V1. DISCUSSION

The equilibrium analysis contained in Rutherford's theory of nonlinear tearing-

mode growth has been generalized to rapidly growing islands for which the constant-y
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approximation fails, such as thé islands resulting from the growth of the m=1 kink-tearing
mode. These islands are found to have distinctive properties, which we briefly summarize
here. First, they do not completely encircle the plasma in the poloidal direction, as is
usually the case; instead, the extremities of the islands are connected together by a segment
of the separatrix composed of closed field lines. A current sheet lies on the separatrix, and
the parallel current is found to be field lirie dependent on the ribbon separating the tips of
the island. This should be contrasted to the more usual equilibrium property that the
parallel current is everywhere a flux-function. |

The equilibrium analysis presented here can be applied both to the case of free
reconnection and to that of forced reconnection. During forced reconnection, the current
sheet is induced through an external perturbation. For small island widths, the amplitude of
the current sheet is determined by the applied perturbation. During free reconnection,
however, the amplitude of the current sheet is determined by the island width; for
moderately large islands, satisfying €2 << w/a << 1, the islands become self-similar.

The kink-tearing instability is important because it is widely presumed?-423 to be
responsible for the minor disruptions or sawtooth crashes observed in tokamak
experiments?4, The growth rate of this instability can be determined by matching the
equilibrium solutions to a model for the reconnection within the current-sheets. We will
consider the result of applying the Sweet-Parker!2, Park et. al.” model for the current-
sheet reconnection to the equilibria described in sec.IV.B. However, it should be pointed
out that the Sweet-Parker model is probably not appropriate for the parameter regimes of
interest for present and future tokamaks, as it does not take into account the kinetic effects
which are expected to be important in high temperature plasmas. Nevertheless, this model
provides a useful reference point for comparing the analytical results with the results of |

numerical simulations, as well as with the experimental observations.
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The reconnection rate predited by the Sweet-Parker!2, Park et. al.” model is given

cr
«<i

_ 4 g¥2
vs=Kn "{1 ad B—’@—,
n T2

where i is the helical-flux at the separatrix, K is a geometrical constant, and B.g is the

39)

auxilliary magnetic field just outside the current layer. From the similarity law for freely
reconnecting m = 1 islands, one finds that s scales as \[f'(')wz, while B.g scales as \ydw Eq
(39) can then be integrated to find the evolution of the island width w during the
reconnection. After restoring the dimensions, one finds

%’; = K‘(?c‘—i)z, (40)
where A=(1+4/n)"A The Kadomtsev reconnection time Tx which appears in eq. (40) is the
geometric mean between the resistive skin time and the shear-Alfvén time:

T = (TsTan) 2.
The resistive skin time is given by T =4nrZ/cA), and the shear-alfvén time by
T = Ro/varg'. The Alfvén velocity v, is defined by v = B¥4np, where p is the fluid
density. ‘

In the case of forced reconnection, by contrast, the amplitude of the current

singularity is determined by the applied perturbation and is essentially constant for small

islands. If the amplitude of the displacement impdsed on the surface of the plasma is €., the

perE "

These growth rates are in good agreement with the numerical results. The qualitative

island width will grow as

predictions of the equilibrium theory, such as the separation of the X-point into two Y-
points and the peaking of the current in the center of the ribbon joining the two Y-points
are also consistent with the numerical simulations.”-8

It should be noted, with respect to this model, that steady growth requires that the
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- viscosity be much larger than the resistivity in order for the kinetic energy produced during
the reconnection to be dissipated within the layer. When this condition is not fulfilled, the
simulations of Park ez. al.” indicate that ideal oscillations are superposed upon the steady
growth described by eq. (37). However, these superposed oscﬁlations do not significantly
alter the average rate of reconnection.

An important question with respect to the tearing-layer problem concerns the role
lplaye-:d by turbulence. Numerical simulations of helically symmetric systems suggest the
likelyhood that the tearing-layer undergoes a transition to turbulence as the resistivity is
decreased.® In three diinensions, however, the nonlinear coupling between modes with
different helicities is likely to lead to much lower thresholds for turbulence, and to

.signiﬁcantly faster growth in the turbulent regime. The effect of magnetohydrodynamic
turbulence on the growth of constant-\y islands has been investigated by Diamond et.al.25 .

We conclude by remarking that the similaﬁty between free reconnection and forced
reconnection, as far as the presence of a current-layer is concerned, suggests that forced
reconnection experiments may yield some insight into the current-layer reconnection

Processes.
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Figure Captions

. Flux-function in the initial cylindrical state, as a function of the volume contained

within the flux-surface.

. Magnetic island showing the mapping between the initial flux-surfaces (dashed line)

and the final reconnected flux surface.

. General features of the function g(6). For f<g.. , the flux surfaces are "trapped”

between the values of © given by f=g(0).

. General features of the function ¥ (f) (a) and its inverse f(x) (b) showing the three

solution branches for X<)(ma . In order for the flux-surfaces to be continuous it is
necessary for g to be such that Y ma=X, .
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