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Abstract

The saturation amplitude of Alfvén waves, e;ccited by alpha particles produced in
an ignited tokamak, is estimated. The formalism that has been developed to describe
the saturation of a single mode, is generalized to toroidal geometry. The sat/ura,tion
level is estimated for the toroidal Alfvén gap mode. The alpha particle radial flux due
to the finite wave amplitﬁde is found to produce relatively weak energy losses compared

to the usual energy drag losses.
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I. Introduction

Alpha particles created in a thermonuclear plasma can have a diamagnetic drift frequency
greater than the Alfvén frequency and thereby can excite shear Alfvén wave instabilities.
These waves are driven by the density gradient of the alpha particle distribution function.
Alfvén waves are generally difficult to excite as they usually occﬁr as modes in a continuqus
spectra that thereby have a finite damping rate.! Howevér, when cylindrical a,nd. toroidal
geometry is considered, shear Alfvén waves can have a discrete spectrum under special
conditions.?3* The competition of the destabilizing nature of these modes compared to
background dissipation mec-hanisms has been studied in Ref. 5. It was concluded that the
toroidal Alfvén gap mode? is the most likely of the discrete Alfvén waves to be unstable
in an ignited system. At long wavelengths this mode has a well-defined quantum number
with a real frequency substantiglly greater than the growth rate. In this paper we attempt
to describe the nonlinear saturdtion mechanism of this mode. We view Nthe Alfvén wave as
a well-defined standing wave that is only weakly perturbed by the alpha particles. As the
wave grows we assume that the alpha particles can continue to be considered as a weak
perturbation of the wave. However, the alpha particles themselves are strongly perturbed
by the wave, especially in the region of particle-wave resonance. This perturbation alters
‘the particle distribution and ultimately weakens the source of instability.

In our problem the alpha particles are assumed generated at fixed rate and isotropically
at a fixed energy (~ 4MeV.) A steady-state distribution is formed by the slowing down of
the particles from background plasma drag. Pitch-angle scattering of the aipha particles
needs to be considered, especially for describing particles resonant with a finite amplitude
standing wave.  The competition of the particle source, classical transport processes and the

particle response to a finite amplitude wave, determines the resonant particle interaction.



The description of how to treat this problem has been developed in previous papers.®’

The presentation in Ref. 7 is particularly appropriate to the application of the Alfvén wave
problem. In this paper we need only extend the formalism so that the equations for Alfvén
waves in toroidal geometry can be converted to the equations studied in Ref. 7. We shall
use the results of Ref. 7 in this text and equations referring to Ref. 7 will be preceded by the
symbol “IL.”

In the relaxation of an alpha particle distribution due to collisions, the drag rate, v, is
generally much larger than the diffusion rate v;. However, v, is of sufficient importance as it
dominates the relaxation of alpha particles in descﬂbing the nonlinear resonance interaction
with the wave. There are three regimes of collisionality for describing the nonlinear resonant
particle-wave interaction.” In one regime (regime (a)) pitch-angle scattering is unimportant.
In that case particles trapped in the wave convect across the entire eigenmode structure in
a slowing down time. However, as the amplitude of the wave is small, even weak pitch-angle -
diffusion can scatter particles out of the trapping region. Two such scattering regimes were
determined. In the low, but not negligible pitch-angle scattering regime (regime (b))’, a
trapped particle can convect a distance large compared to its oscillation amplitude (but less
than a mode width) before being detrapped by pitch-angle scattering, and in a moderate
pitch-angle diffusion regime (reéime (¢)), trapped particles scatter out of the trapping region -
before they convect an oscillation amplitude. It is the last regime that appears to be the
most important for reactor parameters. Our detailed calculations will be confined to this
regime. |

The structure of this paper is as follows. In Sec. II we convert the equations.for the
Alfvén wave problem in toroidal geometry, to a standard form derived in Ref. 7. In Sec. III
we calculate the specific power transfer for regime (c), of alpha particles to a finite amplitude
Alfvén wave. We also estimate the wave saturation level by eciuating the resonant nonlinear

alpha particle-wave power transfer rate to the power linearly dissipated by the wave. In



Sec. IV conclusions are presented.

II. Reduction of Alfvén Wave-Particle Interaction in
Tokamak to Standard Form

To treat Alfvén waves we assume that the perturbed parallel electric field is zero, and the
perturbed magnetic field is transverse to the equilibrium magnetic field. At low plasma beta

such a perturbation can be represented by a potential function ¢ with the properties

_ 1/d 0 86
B=- 5t-+b83 ot
ot (1)
Bl——CbXV"— .
Js

where we assume ¢V x b <« V¢.

We model a tokamak in the high aspect ratio limit. Theinagnetic field is B =
By (l — —}%J- cos 9) {b + Bg(r)é where r is the flux tube radius, 8 the poloidal angle and
'Ry the major radius. We denote ¢ as the toroidal angle, and choose an 7,8, ¢ right-handed

coordinate system with B - c%’) = B, ~ B. The grad-B drift is given by

2
(2 + u) o A
szwc—BbeBz—vDO(S1n<9r+c0890) (2)

with vpo = (v} /2 + v“) /we Ro, w, the cyclotron frequency and v, and v) the perpendicular
and parallel speeds respectively. Using the assumption that w < w*, (with w the mode
frequency and w* the hot particle drift frequency) or more precisely

X3 0¢
fdt2<<_Bb Vf- Va—mv ,

the zero Larmor radius drift kinetic equation becomes

(a+v||0a+VD )f—l—caf [bXV<g§—|—v”gé>J

ot B
—vg(r,v) == B (1 - )\2) = _ % 3% ((v3 + v?)f) - fﬂ_(zg (v —v9) =0 (3)
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where we have neglected the higher order curvature drift motion in the perturbed fields,

2me? g2 In An, drn;e? ¢2 lﬁA 3 3T 2T\ 3/ n,
o) = TR W) =8 TEESS =BT (1) (58)

¢« the alpha particle charge, m the alpha particle mass, m. the electron mass, m; ‘the
background mass, note that v(r) is independent of background ion mass, for simplicity we

assume vy independent of r, the ion species are singly charged and n, — n; < ne.
1 9 By 0

J .
We also note that v | (E £ - E %) and we choose £(r) to be of the form

£(r,t) = €o(r) sin(wt — ne — mh).
With the distribution calculated from Eq. (3) we need to calculate the energy transfer

function, which for waves with Ej = 0, is given by
P =g / ddddr rR / Povp -Ef

= wqa dgocl@drrR dPvvpoy sinfwt —nep — (m + 1)6)] % - m_f_ |
or

r
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with ¢, the a-particle charge.

In linear theory we put f = fo + f1 where fo is determined from the kinetic equation

: . 0 0 0 :
with { = 0. Assuming v s > ,VD e and v A > v, one readily finds
' vpo B 0F,
fo=Fo — 'v_” Fe cos § or
where
ol QW)
drv(r) (v3 + v})

We note that the correction, fo — F', is of importance for low-m modes and has not been

included in previous studies.?® The linearized equation for f; becomes

9 8 ¢ Bf 9% ¢ Of 9
(at“’“a Vo )fl 7B or (aﬁ ”83) éﬁ‘@@?é’?(aﬁ "I 55 )5 (5)
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where as in previous.treatments®” we neglect the drag and. diffusion term acting on fi.
In addition, O (% By /B> terms are neglected and we treat B on the right-hand side of
Eq. (5) as a constant. By keeping the r/ R corrections, we would only generate higher order
corrections and significantly complicate the algebra.

Now writing

_ c [0fo 9 Ofo 0§
hi=h+5 (ara—o‘ﬁa)’

we find

o, 9 _ c 8fo 06 ¢ Ofy OC
(aﬁ”"a o V)h—‘<VD'V> (@W%‘FE'@?E)

_o% ’UIIBe 9 (e 0fo) 08 (wbBo) 0 (c 9f) ¢ 0f0C0 (vbBe)
86 9 \rB or or \ rB ) 86 \rB 00 rB 80 00 or \ rB ]

When we substitute fo into the right-hand side of Eq. (6), keeping only the 1ovvést order

(linear in vpg) terms in Eq. (6), we obtain .
(gt_*’vllg“‘*‘VD )h‘_chana ( 90§+c0890§) .

rB Or 00 or r 00
Then neglecting vp and aspect ratio correction on the left-hand side and using the explicit

expression for ¢ we obtain

sin @ sin(wt — nyp —mb) + méo cos § cos(wt — np — m@)}
r

8 8 _ CUpo BF 8 660
(at+”lla ) =5 o [a
= 22 08 i) (B2 - ) iyt~ - (B4 22 ) sy

where 9% = wt —np — (m £ 1)4.
The solution, A = At +h~, with each component proportional to the corresponding phase

P*, is
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Now substituting Eq. (8) into Eq. (4), yields for the linear power transfer
L= —Zcm‘;qa / d°r d®v L OF

> B_ = ”Do ( +1) <8g’0rm _ miOm) 5(w — (R (M;}—l) %9))

e (25422 2)

where we have added a summation on m, as the eigenmode can contain multiple m-values

: 9)

In the nonlinear problem we shall assume ¢ is small, but keep nonlinear terms associated
with the resonant region where P is small. We assume b x Vln y < b x Vln £, define

F=rf+ (b VE) - 6f,andweﬁnd

~

Df-z0xve)-(v (ﬁf))—%(Vf)-(bxv(vD-Vé))-

ui(r,0) 5 (1= 0 8 = L 217 4 o)1~ 260 —w) =0 (10

with

D= (aat +v||8i+vDV> .

We note that the vp - V f can now be dropped compared with ( Bat + )| aa ) f.

To proceed further we assume that the nonlinear solution will be due to a large term
independent of phase and small resonance terms depending on the phases 1*. The resonance
regions are assumed sufficiently sepai’ated so that when considering, say a nonlinear resonance
 interaction involving ¢ terms, one can neglect the effect of 1~ terms as well as any other side
band terms. With this approximation fin Eq. (10) can be taken as f (as the difference f—f
is an oscillatory function in 6 independent of 3™ or =) and the term < (b x V§)- (V(E f)) |

B
which is a perturbation of the first term in Eq. (10) can be dropped. Then the kinetic



equation reduces mathematically to the problem treated in Ref. 7. Specifically, taking f =

f(r,9%), we find that Eq. (10) can be rewritten as |
lw 3 <ﬁ N By (m;l:l)) v”] Of _ e(m x1)vpg (850 - m 0) I of

ETB G T 2Br  \or "7 ar
N n0f wv(r) 8 3,.,.3 Q(r) _
—yd(r,v)a—/\(l—/\)‘gx—?—a';((’v —l—v_,)f)—m—g(S(v—vg)—O. (11)
If we assume 5—T ~ %7: g—f- & 1, where 6r is the nonlinear radial excuréion of a p‘a,rticle,
r .Or

Eq. (10) is quite similar to Eq. (IL.2). One different aspect for the Alfvén wave problem is
that some particles can pass through two separate resonance regions as they slow down.
We now follow the procedure we developed in Ref. 7. The characteristic equations for

the nonlinear trajectories are -

¢*=w—<2+(mi1) L) ]

R R g(r)
. (m + 1)’0D00 660 m . +
CpogmElme (B om ) (12)
r B . % . .
where ¢(r) = = . By expanding Eq. (12) about r = r}, we obtain a first integral
R Bg(?‘)
kN2 '
E= % + A% cos op* (13)
where r¥ satisfies the condition that
ny  (m=£1)y
Skt | SOt | QS 14
R Ry(r¥) | )
and
+ _ vpoc L Oto(r®) _ mé&o(r™®)
A% = 2B | ( or* r¥* , (15)
* * * ‘
: —1_7_"__i By(r™) __C____d__ * .
with L7 = TR ( % =T (l/q(r )) The region
— |A%| < E < |A%| (16)
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is the trapping region. The period of oscillation of a deeply trapped particle is found to be

— 27 _ (m + 1)2 CUDOY|| 0éo mfo(’f‘*) -1/2
/ o =w_b_27r[ L, 27«;23( 2= *iﬂ - (7

We transform from r to F, and find the equation for f can be written as (to accommodate
notation we now explicitly write the equation for the positive side band and suppress the

negative side band term; the + notation will now be used to denote whether r —r™ is greater

than zero (+) or less than zero (—)),

2 O )~ o) = 2 2 [0+ o] + L) 0 — o0
£ r(Bpl -1 {22 200+ + L oo )
A O i) -t B
=20 (54 pir(B, ) = ¥ I O ,v>(a = (B ) — 4| B ) 0=
(Z=rew-mG aE)f* 200 1, ) = 22 08 4 o9 2 con
AR o G i (19

where |r(E, ) —r*| = v/2 (E —Acos )2, This is essentially the same equation (Eq. (I1.13))

as obtained for the electrostatic problem of Ref. 7.
The power transfer function, P, is given by Eq. (4). We transform from r to E , use that
(-t
[ P : 1
1 o ) —r = oo T — 1)

and perform an integration by parts, to obtain

2

_2rRg.Bw [ o oo pbmas o |r(B, ) — ¥ty 9(fH 4 f7)
p= T /d v/_lAldE [y - @)



where ¥y, and 1y, have the obvious definition. Except for trivial factors, this is exactly the
same as Eq. (I1.14). Thus, the electromagnetic Alfvén wave problem has been reduced exactly
to the electrostatic wave problem in a sheared magnetic field, and can be solved in an identical
manner. There are three separafe regimes of solution, vgw?/vw? < 1, vyw?/w? > v > vuw/wy,
and vgw/wy > v. The last regiovn is the one that is physically the most relevant, and is the

one we shall discuss in detail.

II1. Calculation of Power Transfer and Wave
Saturation

As in the electrostatic wave problem, if veg = vgw?/w? < wy, the most important contribution
to the nonlinear power transfer, Pyr, comes from the diffusion term including the interface
region between passing and trapped particles. Assuming vyw/w, > v, leads to the equation

(compare with corresponding terms of Eq. (11.24))

Pur, = W/dsw(r ,U (%7;\:)2 (1= A2)r* <(r(4,¢) — r*)2> T ;EA(1_+ L

n /Aoo dE <(T(E,¢) —r¥) 5_8]5‘ <<T(E’¢)_r*) %AE]:—:)>

= (B =) o ((rE) ) S ) | o)

where

(G)) = /0 ;’f G) and AF=F*—F-
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with AF satisfying the equation

9
9E

12\ OAF
<\/_(E Acos'z/))/> i =0. | (22)

The solution is the same as in Ref. 7 (see Eq. (IL.57))

OAF — 1 0 Q(T*) 1/2
OF 271‘(’03—}-'0?) Or* (V(r*)>/<\/§(E—Acos'¢)) / > , (23)

where r* is the resonant position. Substituting Eq. (23) into Eq. (21), assuming that the

eigenmode is localized radially at r = ro & r*, defining vg = vgv® /ve, and including the
two side band terms (we again use the & notation to refer to upper and lower side bands),

we find

_ —27mq.wB 0 Q(ro) 3
P = ——— Brgvan 5 (V(ro) favo

Y (O o L

with I = 1.38 (see Eqs. (IL.61) and (I1.62) and a summation on mode amplitudes has been

added.

As previously, we can calculate the ratio of Pyp /Py and find

PNL  Vaow?
——x
P, wi

Let us evaluate this ratio somewhat more precisely for the Alfvén Toroidal Gap mode.
This mode has the properties that it is defined by a radius r¢ where

mBe(’l"o)

k”(n,m) = - B?‘o

= —ky(n,m —1) . (25)

These conditions determine the point ry and mode frequency such that
Bro  —(2m—1)
a(ro) = By(ro)R 2n

B
CU:k”UA:'UA (ﬁ._l_m 9(r0)> — 2;):R .

=4qo
(26)

R ’I"oB
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(A typical mode is m = —1, n = 1, giving go = 3/2).
For simplicity we assume a mode £(r) localized close to ro with g—f =¢/A with A < ro/m

50 tha or r or

. We take as a test function
£(r,0) = Eexp (—(r —r0)?/A?) {exp(imb) + exp [i(m — 1)6]}

and choose the negative side band for the m amplitude and the positive side band for the
m — 1 amplitude, and we assume that the other side bands do not resonate with alpha
particles. (It is readily shown that the other side bands need |v| ~ 3v4 and thus do not

contribute if vg < 3vy4). The particle resonance condition for the m amplitude is

Be(’l“*)} '

Va4 n | .
= = —_ — 1) ——=
Y= onr [R -1 g

. 1 e
Then, expanding about r* = ro, using that s + L m, the resonance condition is
0

R QQR
—V4
Y= Av =
T (B
B@(To) - To
: 2(r* —ro)(m — 1)rg (Bg(’f’g))l]
=—vy4 |14+ : . 27
; A |: Bo(ro) ro ( )
!
If we assume 2A(m —1) ;—0 (Bg (TO)) & 1, it follows that all the resonant particles have a
g To

parallel velocity near the negative of the Alfvén speed. Similarly, resonant particles for the

m — 1 amplitude are near the Alfvén speed and the resonance condition is

-2 (B0

Using Eqgs. (9) and (24) we can write the expressions for P, and Pyy, as

—micwq R QN v dvv® 1
= e (¥ d\ v?
PL 4:B (V) ~/’UA 'U3 + 'U? /'UA/‘U vDo
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2 2

1y 2ntr i[O80

or Or (28)

*y\ / . /

Av(m —1)B-1 (—BG:: )) l AvmB-1 (_B()T(;*)> i

Q !
(27)%w BR 2 g4 (—) vao v 4 do v 1
PNL=“‘ - v '/UA m/ﬂA/u d)\(l—/\z)
ar¥\? |A; ()] or*¥\’ |A:i—1(7°*)|
Wav) Tm-1 "\&x) T m '

(29)

We use

ﬁ . —roLsv
or /.. " 2(m —1)gp Ruva ’

?ﬁ . —’I"oLs'U
ox ). 4 " 2mgoRuy
and we define 4 = cvy L,¢ /(Aw.RB) and then find with the subscripts and superscripts on

A and r* suppressed,

- (r* =) (r* —ro)?\ wa | (Mo 2 2
A—A————A exp |~ o ~+E .

Now we transform the ) integration to ¥, note that we can approximately set A\v = vy, set

v® + v} =v?, and we find that Pyp/PL can be written as

Pnn  4rgLivgpv
Pu rvig2R2 A’

wiva dy 14+y?\Y? e z’ 1 L
/1 y® (v —1)< 0 dwa.’” exp 2 (m—1)|m—1|+|m[m

2
vo /va dy 1+y2 2 oo 9 9
/1 — /0 dz z*° exp(—22°)(2m — 1)

(30)

2
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We note that )

/oo dz /% exp. (_m_)
0 2)

/oo dz 2% exp(—2z?)
0 |

and vo/ua P . 2\ 1/2 Vo 0
/ dy gy (Liy <——1>,1f L 1«1
1 ys 9 VA V4 .
I3 = ; 7 1 I\ 2 — — 3 . (31)
VO/VA _:]/. —I—y -vA . -vo )
/1 y2 ( 2 ) 62 ‘U_g- ) lf a >> 1

The maximum value of I3 is ~ 0.17.
Now using Eq. (17), we define a mean bounce frequency as

277 .2
o m Avy

“s 2rg3 L2
We then find
3 [ 1 L 1
Po _ o 4 ? Vo vd (m —1)jm —1] = m|m]| (32)
PL 2¢0R) @iv3 (2m —1)

where G &~ 4.1 I;. As w = vy/2¢R, this result agrees to within a numerical factor, with our
rough éstimatés of Pnr/PL if we use @, & Wy, _1.
Saturation is predicted when
P, =P (33)
where P; is the background dissipation. Now, the mean perturbed magnetic field, 8B, is

given by

L%
B B ~ 2BgRA

Then using the expression for @, from Egs. (32) and (33), we have

Thus at saturation we have

.@ ~ <Vd0R>2/3 Lsrgwc _ G*/3 (’00>2 (PL>2/3 . (34).

B T \4uy va(@R)? go(m —1)% \vy/ \P;
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As an example let us consider a reactor system with parameters B = 50 kg, n = 10" cm™3,

R =4m, ro = 1lm, T, = 15keV and an effective atomic number of 2.5. Then vy =
6.9 x 108 cm/sec, vo = 1.4 x 10° cm/sec and vy = 1sec™. For simplicity we take L, = ¢ R,

and we find

5B 13x10° (GPL>2/3 1.0 x 1078 <7>@>2/3

~ — 35
.B qg/ 3 m2 Pd pd ( )

473
Qo/ m2

In Ref. 5 P, /Py ~ 3 was calculated for typical reactor parameters.

IV. Conclusion

A formalism has been develope:d to describe the saturation of Alfvén waves excited by the
density gradient free energy drive from alpha particles created in an igllitiéll system. In
the most relevant region of physical interest the saturation level for the perturbed magnetic
- field is found to scale according to Eq. (34) and for typical reactor parameters a saturation
level of 6B/B ~ 2 x 1075 is to be expected. This saturation level is low enough to prevent
appreciable anomalous loss of alpha pa,r‘ticle energy. Only particles trapped in the wave
diffuse an appreciable distance across field lines. Their rate of flow is roughly 7 = v» and
only a fraction f of the alpha particles (f ~ A2/A) are trapped. From Egs. (35) and
(36) we have f less than one percent. Thus, the anomalous energy loss of alpha particleé

“due to outward flow is negligible compared to the energy deposited by drag directly to the

background plasma. Thus, if our description of a discrete mode for the particle-Alfvén wave

interaction is valid, it appears that even if Alfvén waves are excited the quality of plasma

containment will not be adversely affected.
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