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Abstract

The formalism to describe the saturation of a discrete mode that is destabilized by
hot particles fed by neutral beam injection is extended. The destabilization mechanism
described in this work arises from the density gradient in the distribution function
formed from a spatially inhomogeneous source. Energetic particles are injected at a
fixed speed and collisisnally relax through drag and pitch-angle scattering with the
background plasma. The distribution formed is solved self-consistently in the presence
of a finite amplitude wave in a sheared magnetic field. Three regimes of collisionality are
found and the expressions for the nonlinear wave particle power. transfer is determined
in each regime. With the dissipation processes of the background plasma.given, the

- wave saturation level is then determined. When pitch-angle scattering is sufficiently
weak, particles trapped in a wave convect across the magnetic field as they slow down,

a phenomenon similar to the Ware pinch.
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I. Introduction

This is the second of a series of papers'? where we investigate the saturation level of a plasma
destabilized by a beam injected at high energy. In the first paper a formalism was generated
and applied to a one-dimensional plasma wave problem when a single discrete plasma wave
is excited. The classical transport processes effecting the high energy particles that were in-
cluded were drag and particle annihilation. A formalism, similar to a neoclassical transport
calculation,® was then developed to describe the particle-wave resonance interaction with a
finite amplitude wave. In this work we extend the formalism to describe the excitation of
‘a plasma wave that is driven by the density gradient free energy source of hot particles.
The additional transport process of pitch-angle diffusion is included in the dynamics of the
‘injected beam particles. The annihilation mechanism is discarded. It was previously needed
to establish a destabilizing particle distribution in the plasma. Now we use a neutral beam
source that varies across the sheared magnetic field. This gives rise to a steady-state distribu-
tion function with a spatial gradient perpendicular to the magnetic field which produces the
“universal” instability drive*® We shall investigate the electrostatic wave-particle interaction
for a finite amplitude discrete wave when the “universal” instability drive is tapped.

Only a single well-defined discrete wave is assumed to bé excited. This assumption
is artificial for drift wave problems for which the “universal” instability mechanism most
commonly applies. It is motivated so that we may ultimately describe the excitation of
Alfvén waves by alpha particles in a tokamak.? Most of the formalism needed to describe the
Alfvén problem can be developed for the simpler electrostatic wave problem in slab geometry.
The Alfvén wave problem is further complicated by the toroidal and spatially inhomogeneous
poloidal aspects of the geometry. These aspects are treated in Ref. 2. For the electrostatic

problem in a sheared magnetic field we can treat the generic formalism of resonant particles




with a density gradient being continuously driven and simultaneously relaxing by classical
transport in the presence of a finite amplitude wave. The power transfer between resonant
particles and the electrostatic field is calculated. At sufficiently high field amplitude the
wave particle resonance interaction reduces the power transfer to a level comparable to the
ambient dissipative processes present. At this stage a saturated steady-state wave can be
established.

We find that the particle-wave interaction does not produce a simple ﬂéttening of the
spatial gradient of the resonant particles. Instead there is a strong nonlinear effect at the
transition between passing and trapped particles because trapped particles convect across
magnetic field lines while the passing particles remain on a magnetic surface. Thus at the
resonant boundary the source of passing particles comes from an injected particle source
located at the original spatial point of injection. The passing particles slow down from high
energy and pass through the resonance region. On the other hand, the source of trapped
particles comes from points remote to the observation point as they are convected from
the point of trapping across the magnetic field to the point of observation. This type of
phenomena has been noted by Tennyson® to explain particle spreading observed in accelerator
storage rings. There particles interacting with stray fields are trapped in island structures -
and are then able to convect a long distance in phase space because of their adiabaticity
conservation. The mechanism of convection in our problem also resembles the Ware pinch.”
For our problem there are three regions of collisionality to describe these processes and they
are given in detail in the text.

The structure of this paper is as follows. In Sec. II we develop the formalism and derive
the basic equations to describe the particle-wave interaction with finite amplitude wave. In
‘Sec. III these equations are solved in the different regimes of collisionality. Section IV is

devoted to conclusions.



II. Formalism

We shall solve the kinetic equation for the distribution f, of high energy particles of mass m
and charge ¢, = Ze in the presence of a standing electrostatic wave in a sheared magnetic
field. Particles are supplied by a source varying spatially in z and injected at a speed vo.‘
Collisional effects are included that describe slowing down and pitch angle scattering from
the background plasma. We shall assume w* 3> w where w* is the drift wave frequency of

the hot species. The equation is
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where the slowing down rate v(z) = 47n.e2q? In A/m; v}, v = [v| and
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(for simplicity we treat vr as a constant and assume the background plasma is a single ion
species with atomic number unity), n is the background density, m. the electron mass, m;
the ion mass of the background plasmaj‘and T, the electron temperature. Q(z) is the particle
input rate where the particles are injected isotropically in velocity space with a speed vg, s
is the distance along a field line. The magnetic field B, is sheared with B = B, <2 + —;—s A>.
For the wave ¢(r,t) we choose

¢(r,t) = po(@) cos ¢

with 1 = (wt—kyy) =wt—kyn—k)(z)s where n = y—zz, s = z—l— L Ry = kz:c By assuming
ky Of af v . i
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wRkp <w < o, Bz 8'0” , We cgn peglect the ¢, B in Eq. (1) compared to the

b X Vi term. The distribution function f is then a function of z and 1, and Eq. (1) can be

written as
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v(z) 0 0 af N Q(z)é(v — vo) .
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where v = |[v|, A = v-B/vB = pitch angle parameter, and vy(z,v) = m;v(z)v}/(2v3m).
Equation (2) determines the distribution function needed for calculating the average
power transfer of the particles’ energy into the wave. The power transfer of an electrostatic

wave from the wave fleld to the particles in a strong magnetic field is given by
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where v = v — w/kj. We anticipate that only a sharply peaked region of f around

v| = w/ky contributes to the integral so that we can neglect the &j6v)/w term.
First we calculate the power transfer, P, from linear theory. We then need to solve
Eq. (2) when ¢ is arbitrarily small (the standard linear case). We choose f = fo+ fi, where

f1 1s first order, so that fy and f; satisfy

(o) g0 - L XD D ()| 4wy
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The solution to the equilibrium distribution is
fo = S(2)8(vo —v) (5)

v3 + v}

where S(z) = le / v(z). It can be shown that the collisional terms in Eq. (4b) can be
ignored if

v [ v \? vg [ v \3

s(&) < w2 (5) < ©
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where Av is the width of the equilibrium distribution function at resonance. In order to
fulfill the conditions near the injected energy, we may suppose the injection source has a
sufficiently broad spread to satisfy (6), but is otherwise narrow.

The solution to f; is then found straightforwardly to be

) 1 k, v ck 05
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If Eq. (7) is substituted in Eq. (3), the cost vanishes after the 3 integration, while the

delta function term gives

o i 0(vo — v) 8S
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*=wL,/ kyv and sgn(z) is the sign of the é,rgument. If kygow g—i > 0, it follows

where z
that P, < 0 and thus destabilizing.

Now let us consider the nonlinear problem. We note, if collisional terms are neglected,
that the characteristics of Eq. (2) are

- kyx cky Opo(z)
VECS TV gy Y

&= ckygg)(x) sintp . (9)

Equation (9) has an approximate first integral of motion that is found by considering

; dp _ chypo(z)sing dyp " kyzv|  cky 0o cos¢

v= de B dz L, _§ Oz
This equation is solved by expanding ¢o(z) about the resonance point z* which satisfies
kyz*v
_ yL_” =0, (10)
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and then neglecting all higher order derivative terms in ¢g. The conditions for this procedure

is determined a posteriori. We can then integrate in = and find a constant of motion E , given
by
z — g*)?

g2z

5 + A cosvp (11)

where A = cpo(z*)L,/Boj (to simplify notation A is assumed positive). Using that (z —

2*) ~ A2, we find that the condition for neglecting the % terms in Eq. (10) is A2 < Az

where Az = (% In goo> —1, i.e.,' the nonlinear oscillation amplitude is less than the mode
width.

Note that Eq. (11) allows for two groups of particles, a passing group for which E > A4,
where ¢ (modulo 27) can vary from 0 to 27, and a trapped group for which —A < E < A
and % is constrained to vary from cos™'(E/A) < ¢ < 27 — cos7L(E/A). It readily follows
from Eq. (9) that the period, T3, for oscillatory motion in the z-direction of a deeply trapped

particle (E = —A +¢) is

Ty = 21 Jwy = 2/ [y (o v/ Ls B)*?] . (12) .

T, is the characteristic period for the particles in which E =~ A. Of course near the separatrix
where E = A, the period approaches infinity logarithmically.
We now use Eq. (11) to transform from z to E, approximate v(z) and Q(z) as a power

series around z = z* (keeping up to two terms). Then we find that Eq. (2) can be written
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where [2(E, ) —z*| = v/2(E — Acos)'/? and + and — refer to z —z* > 0 and z — z* < 0
respectively.

Observe that the left-hand side of Eq. (13) is proportional to wyf. Roughly, away from
resonance (E =~ z* > A) the right-hand side scales as vf. However, if we assume that
near resonance % ~ fJ/A (E =~ A), then §/0F terms acting on f allow the last two terms
on the right-hand side to scale near resonance as vfz*/AY? and v, Fa** J/A. Thus near
resonance we can develop a perturbation theory for the nonlinear problem that assumes
Wy > Vg = max [%/: , vgz*? /A] Veg is the rate a resonant particle would slip out
of resonance due to either drag (wherein Veff = ve*|AY? ~ vw/w,, where we have used
Egs. (10) and (12)) or due to diffusion (wherein veg = vgz*?/A ~ vgw?/w}). We shall
assume throughout that vy < v. However, if A/z* ~ w?/w? < (v4/v)?, the diffusion term
dominates the dynamics in the resonance region. We also note that our calculational method
is very similar ts the treatment of the banana regime in neoclassical transport theory, viz. in
an effective collision time, v, a particle’s oscillatory orbit is well defined and veg, effective
collision rate, is enhanced above the bare inverse drag rate due to the small phase space of
the trapping region.

One other important point shouid be noted. For E approaching the separatrix value

A, wy — 0. Therefore for this region there is a local breakdown of the above perturbative




procedure. In this region a special boundary matching procedure must be invoked, which
will be discussed below.
Ultimately the power transfer needs to be calculated. If we use E as an integration

variable, the power transfer function, given by Eq. (3), can be written as

'max sin + o<
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where we have integrated by parts to obtain the final form. Thus the power transfer function
depends only on the left-hand side of Eq. (13). When wj is large, we can then use Eq. (13)
to obtain the power transfer in terms of lower order quantities.

To solve Eq. (13) we seek solutions in an expansion of ¢ = veg/ws,. Then vwritiflg =
E' + fi, to lowest order we have

- yuyle(B,9) —a¥| OF*

T 55 =" (15)

and therefore F'* is independent of 1. We also note that for trapped particles F* = F~ = F,

since at turning points F' must be continuous. To next order we obtain

_ kyoplz(E,¢) —a*| 0ffF

P TS~ g, FY) (16)

where Q* (¢, F%) is the right-hand side of Eq. (13) with f* replaced by F. As we assume
that vy < v, we anticipate that the only important term in the diffusion term (the last term
in Eq. (13)) is

va(@*) (m(E, ) — x*) | (%—f) 2 (1)) a% (x(E, ) — o*

This is the only part of the diffusion term that we will explicitly retain.

> OF*
OF

To solve Eq. (16) we demand that fif be periodic in . Therefore for passing particles
(E > A) we divide Eq. (16) by [z(E, ) — *| and integrate over a period in %, to find as a
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solubility condition

.’%%F*Jr %%?5@ -”0)] <|x(E,¢1) —w*|>
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dd) = +
where (G(E,)) =/ G’(E ¥) and F* = (v3 + o) F=,
For trapped partlcles, boundary conditions demand
(18)

fl_("/’maX) = fl-l-('éz’maX> .
If we divide Eq. (16) by |z(E,) — 2*| and integrate the f* equations from %min t0 Ymax,

we have

‘ +
~fi (Ymax) + fi (Yeain) = Zfﬂ <|$ Qr(, F) >

(E7¢) - ZE*I
— = N 2nL, Q_(¢7F)
J1 (max) — f1 (%rmin) — kyv” <]x(E,¢') "‘5’3*]> (19)

1 Ymax
where (G(¢)) = 5 /¢ diy G. Note that it is consistent to use the same symbol for
T min
(G (<)) for passing and trapped particles as for passing particles tmin = 0 and Ymax = 27.
Now adding the two equations in Eq. (19), and noting from Eq. (18) that the left-hand

side vanishes, leads to the solubility condition for trapped particles

[Q%h %?5(” ‘”")J <Iw(E,¢l) —w*!>

v(z*) 8A cos i aﬁ v'(z*) aw*
v? |z(E,¥) — z*| 8E  ?
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# )1 -0) (50) 2 ()~ g =0, (20)

Note that Eqs. (17) and (20) differ and this leads to considerably different behavior for
passing and trapped particles.
If we use Eqs. (17) and (20), we find that Eq. (16) can be written as

koo 0FE  [v(z®) 0F%(E,v)  Q(z*)
T L 61/11 _[ v? v 42 5(v = vo)

| [|w<E,¢1> — ¥ <lw(E,¢l) ~:c*|>]

CC* 2 : +
] ) R R I (R R
v(z™) 04 QF* cos P B cos ¥ v(z*) 0A QF* ok
=2 B 0B [lx(E,¢)-x*| <Iw(E,¢)—m*]>Ji v 9v 0F Y
14 :I:* .',U* e * .
D) O O o) — *| ~ {Ja(B, ) — ™)) (1)

To obtain the nonlinear power transfer, Py, we apparently need only substitute Eq. (21)
into Eq. (14). However, to do only this would overlook an essential contribution from the
vicinity of the separatrix, where the large wy ordering fails. To include this region in the
power transfer, we note that we can integrate the £ variation of Eq. (14) in the vicinity of
the separatrix between A(1 —§é) < E < A(1 4 §), where § < 1 but w, <A(1 + 5)) > Vet
From Eq. (13) we find |

L ap A jo(B, ) - o4 2T

A(1-8) o

N I/(:];*) 3 3 * am* . _

= Gz Ut enle(4 ) — 2T 5 [F <A(1+6)) +F (A(1+5)> ~2F<A(1 _5)>]
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+O(AS) . (22)

In Eq. (22) we have neglected all the terms containing F'* (A(1 + 6)) — F~ (A(L + §)) since
at the separatrix we have F * = F~. At the moment, we do not assume F* and F~ to be
equal to F'(A(1 —6)). They actually become equal if v4 is not too small (see Sec. III.B)
while as v4 = 0 the distribution function is not in general continuous at the separatrix (see
Sec. ITL.A.)

Now we substitute Eqgs. (21) and (22) into Eq. (14) to obtain

Pa=L2? [ o) [ - D Al JBZ?)AF] [1“<$(E’¢)_x*><m>J

A(1+6) v?

cos V:c* 3A o 3y OAF

* Z
¥ [<lx(E,¢> ¥ 1)~ (fo(B,) - 2*))’] L) aav (0 +03) 22T

(4 0}) o (F* 4 )
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2
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0 OAF
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— vala®)(1 - 22) (2
(a/\) _<m(E’¢)_—w*>aE< (E ¢)_$ -5

+ g /_*:(1‘5) 4B (|a(B,8) - =*) | - (V'(w*) Ol(v® +oP)F] Q'(w*)5(1;— ”0)>
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(1-6) i
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()3:1:

4 T @+ 0]) ([2(B, $) — *|) [F* (A(1+6)) + F~ (A1 +6)) — 2F (A(1 ~ 6))]
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2
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Oz 2\ OAF (E = A(1+6))
o100 (2) ((eta, —ot)) LRLE (29
where AF = F+ — F~,
The dominant terms of Eq. (23) can be determined by estimating dE ~ A, ZIE? a;s; ~

F/A and A = |z* — z|*. Then keeping only the dominant terms we find that Py, can be

simplified to

P, =

_(iakwa /dav{l/d )(1 -2 <(?;\*)2 <(w(A, P) — :13*)2> OAF (B ;EA(l +9))

v(z*) dz*

v2  Ov
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We now evaluate the power transfer in three regimes (a) v > vae® JA ~ yw? Jw?

(b) vgw?[wi > v > vaz* AV ~ vy /wy, and () vaw/wy > v.
III. Solutions in Various Collisionality Regimes

A. Non-diffusive Regime vw?/w? < v

In this regime diffusion is not an important effect. Particles slow down from their initial
injection épeed Vo in a time scale ~ v~!, and trapped particles do not have a chance to
diffuse away from the trapping region. Thus, in Eqgs. (17) and (20) we can neglect v, terms.

With the boundary condition F'(vg + €) = 0, we see from Eq. (17) that

Floo -0 =S 2 (er) 5168 o SEH%VIESGY ()

)_$0|

where w — kyv”oa:g /Ls = 0, and the subscript “0” refers to the injection coordinate. For the

remaining determination of F'*, we use only the dominant terms of Eq. (17), which upon

using =* as a variable instead of v, reduces to the equation

It -1 ot
oF 1 OF _0. (26)
V2(E — Acosy)L/? 0F
The characteristic of this equation is
i dE ~1/2\ "1
: TE= T <2[E — Acos ] > (27)

which yields a constant of integration C given by
C(z* E) =™ + <\/§(E — Acos 1/))1/2> [1 + (Q(Al/z/:c*)} .

For concreteness we assume that if z(E,) —z* > 0, a particle injected at z > z* will reach

resonance as it slows down to a speed v, (the subscript r denotes the resonance value). Then
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for v < v, we have z(E, ) —2* < 0, and using that C(z* +¢, A,) = C(z¥ —¢, A,), we have

C(z*,E) = af + <\/§(E0 — Ag cos 1/;)1/2>

m*+<\/§(E—Acos¢)1/2> , z—z¥>0
- (28)
z* — <\/§(E — A cos 1/))1/2> +2 <\/§A1/2(1 — cos 1/))1/2> ,z—z¥ <0
We also note that C(z*, E) =z + +/2E; if By — E > A.
The general solution to Eq. (26) is F = F° (C(E, z*)). If Ey > Ao, this solution is readily
matched to the boundary condition given by Eq. (25), and we find for particles that go

through‘resonance (ie., z* > z¥),
S(z*) + <\/§(E ~ A cos z/))1/2> S'(z*), z(E,p) —z* >0
F= (29)
S(2*) = (VA(E — Acos $)/?) §'(z*) + Cy , #(E, %) — 2* < 0 |
with ,
Cy = 22 A2 {(1 — cos h)'/%) §'(2*) . | (30)
We now examine the solution for trapped particles where —4 < F < A. If we change

variables from v to A(A = cL,p0 (:c*(v)) /B v)\>, Eq. (20) can be written as

OF (A, E) 1 cos ¢ OF (A, E)
0A <\/§(E—Acos¢)1/2>+<\/§(E—ACOS¢)1/Q> OF
—-Il;aa—z<\/§(E—Acosz/))1/2> %l:O. (31)

where it is assumed v < wvp, so that the source terms at v = vy are ignored. If we now

introduce the variable

'l/’max .
J = 2u(z*) / dp(E — A cosp)/? (32)
and transform from E to J, Eq. (31) then takes the form
OF(4,J) :
= =0. (33)
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Equation (33) indicates that J is an adiabatic invariant as the equation does not contain
the term g—? From Eq. (32) we need £ < A when a particle is trapped. As |E| ~ % (z—a™)?
and :c*(v) changes a8 a particle slows ‘down, we conclude that the z position of a trapped
particle convects across field lines to track with #* in order to maintain the conservation of
J. The situation is illustrated in Fig. 1. As v (or equivalently z*) changes, passing particles
. move along ¥ to the resonant point where they are reflected and then move in the other
direction of 1. The z-motion is limited to a relatively small oscillatory amplitude. Trapped
particles are confined to a limited phase of ¥ and are then forced to convect across the field
lines as they slow down (i.e., as z* changes). Some of the passing particles can be trapped
(or a trapped particle detrapped) as indicated in Fig. 2. Thus it follows from Eq. (33), that
for a given J, F remains constant as the speed v decreases. To determine F, we note that F

must have the value it had when a particle first becomes trapped. This arises when E = A,

and from Eq. (32) it follows that at the separatrix,

J=J, = 8u(z*) (ﬂf;i—kﬂi) v : (34)

We first consider the injection point z} = z*(vp). At the point z¥ the distribution consists
of particles injected directly into the resonant region. To lowest order, #' = § (2¥), which

applies to untrapped and trapped particles. The trapped particles in the region 0 < J <

1/2
L, zX ~
Jo = 8v(z¥) (%—;—)) will then have an F-value given by

F=5(aF) . (35)

As z*(v) increases from zy, the separatrix width either increases or decreases depending
on whether A oc ¢(z*)/Av is increasing or decreasing (note that for ¢(z*) constant A
increases). If the separatrix width increases, passing particles are entrapped by the rising
separatrix. The distribution F of trapped particles adjacent to the separatrix then has

the value S (w*), i.e., the passing particle distribution function adjacent to the separatrix.

16




Formally, we define a function z}(J) which is defined by Eq. (34); z*(J) is the z*-value a

particle has when it is first trapped. Then, at £ = z* for J, < J < s, ﬁ’(.]) is given by
F(1)=F (2¥()) . (36)

When the separatrix decreases with increasing z* (this ultimately happens when o(z™®)
decreases sufficiently rapidly) trapped particles cross the separatrix and become passing
particles. There is then a discontinuity of F' at the separatrix, with the passing particle

distribution given by S(z*) and the trapped particle distribution given by

S(za) ; if Jo < Jy(z*)
(37)
S (a*(w)) 5 if J(a*) < Jo.

We now calculate the power transfer Pyr,. We account only for the most important terms
in Eq. (24). These terms come from the trapping region (the last term in Eq. (24)) and the

discontinuity of F' at the separatrix. We find

P = 2%Bw / P 012 a;v
L*) 47 _oF |
-{v<m*><rw<A, ¥) - =*) [S(e*) - Sh] + [ —JW} - (38)
with |
OF Ly O o '
a7 =— sz 635 0(J —Jo) , (39)

and we have used the convention that z* = z™* if the separatrix is outwardly increasing.
With the further approximation that S(z*) — S(z¥) = (2* — 2¥)5'(2¥) and some addi-
tional algebra we find,

372 o*
Prp = 8anw L? /d3 Yv(z )

viX?

L1 (el (PO e (Lo (2*()))
(;— ’U.s(’U)) ( ABv ) +/'Us(v) Bﬁ ( \Bv' ) (40)
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where v,(v) is determined from the relation,

2 (% go(a:*(vs)) — 2 (¥ go(x*(v))
v (:n (vs)) v (x (v)) >

Vs

and only one relative maximum of the separatrix width is assumed present. If a solution for
v, > v cannot be found, we shall take vs(v) = v.

In order to compare the scaling of Py, and P, we define the variable

cAkZvp (m*(v))
BL, '

wi(v) =
Then the ratio of Py, to P, can be written as
v, %, % wp(v) (1 1 w o' ,
Par _ 16w? / v 0 @ )0 —0) | == { £ = oy +/Us(u) v ) (41)

7L T | /d3 S'(2*)8(vo — v)wi(v)

A3v3(v3 + v})

From this expression it is evident that

with o a numerical coefficient.
 Marginal stability arises when
PrnL =Py
where P; is the power damping rate to the background plasma. Roughly, the saturated

amplitude is then determined from

1/3
wy & (vw?)t3 (%)

The above ordering is valid if w, is greater than the rate in which particles pass through

the resonant region, i.e., wy > va*/AY? ~ vw/w,. Note that Pyy, > P if
vw < Wi < vw? Jwy

where the left-hand side of the inequality is necessary for the validity of the expression for
Pni. Thus, over a considerable band of ws, the linear growth rate is enhanced as Py, > P

Only in the region vw?/w] < 1 is the nonlinear growth rate less than the linear one.
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B. Diffusive Regimes

If v < vgw?/wi, diffusion is important in solving for 7. In regime (b), va ;w-b- <v < vgw?/wi,
trapped particles scatter out of the trapping region so that they no longer remain trapped
during a characteristic slowing down time. However, they can still drift across the magnetic
field over a length that is many separatrix widths. In regime (c) v < vyw/wy, the trapped
particles scatter out of the trapping region before they drift the distance of a single separatrix
width.

To solve for F , let us consider Eq. (17) for the passing particles with the diffusion term.

To leading order it can be written as

1 OF* QF* 1y O oF=*
/2 Y . 1/2\ Y4 — 49
with
B=(1-)) vg Qv ° 8z*\* 1
B v 0z* vd+ v \ O\ ] A2
Similarly, Eq. (20) for the trapped particle distribution can be written to leading order as
1 oF 12 0 2\ OF
<\/§(E —Acos¢)1/2> o7 A4 gE (VB(E—Acosy)?) gp=0. (83)

The boundary conditions for these equations are: (1) the matching of the passing particle

solution to the solution when E > A. Thus we require

F*(E,z*) — S(z*) £ V2E S'(z*)
E>A

(2) the continuity of ¥ across the separatrix, viz. in the limit § = 0,
F*(A(146) = F (A(1+6)) = F (A1 - 9)) ;

(3) the continuity of particle flux across separatrix

OFt(E,z*) N 8F‘“(E,:c*)}
OF OF E=A(1+6)
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Now for the passing particles, consider F' = Ft + F~ and AF = F+ — F—. Equation (42)

can then be written as

1 BF_aAF 12 0 ~ yn OF
<\/§(E—Acosz/;)1/2> 5~ om T 55 (V2B ACfS¢) ) 55 =0

1 OANF OF OAF
<\/§(E—ACOS¢)1/2> 8 * 3E' +/3A1/2 E <'\/_ 2(F — ACOS¢)1/2> ﬁ.=0 . (44)

To lowest order in the asymptotic form F = 25(z™*), which is independent of E. Thus, we

can take Q_]_F_ =25(z ) and OAF

5a* T = 0. By using
oF 1y 0 12\ OAF
5E = BA 35 <\/§(E—Acos'¢) > 55 (45)
. OAF
we construct a second order equation for g = BE

o =284 g (VA (B~ Acost ) (o (2 - deomy?)) = pd )
| (46)
We can solve Eq. (46) in two limits, # < 1 (regime b) and S .>> 1 (regime c).
Now we solve for ¢ in the limit 8 < 1. One can readily ascertain that the contributidn
from the trapping region is the most important contribution to the power transfer. In the
trapped particle region we have to solve Eq. (43). The first term in this equation is actually

known from the boundary condition at the separatrix

F(E,2*)p=n=S(z¥) . (47)

To show this, we estimate each of the two terms in Eq. (43) as

oF f’_
5 -

1 oF F e 0 12
)1/2> 5% BAN g (VR (E — Acost)'V%) 5oz~ 8

<\/§(E—Acos¢ AlT2g® OFE
It follows from these estimates that second term is much larger than the first one, while

according to Eq. (43) these two terms have equal absolute values. To make them equal F
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needs to be almost constant in E in the whole range of trapped particles. Therefore, to a
good approximation ¥ in the trapping region is given by Eq. (47) so that we may substitute
S'(z*) for 0F/0z* in Eq. (43). We then integrate Eq. (43) under the condition that the flux

of particles at the bottom of the potential well equals zero. The solution for F / OF is

OF _ 5" yp
5 =4 A (48)

This equation is essentially all the information that is needed for the calculation of the
power transfer in regime (b). However, for completeness we indicate the solution F for

passing particles.
For passing particles the diffusion term is unimportant except near the separatrix. There-

fore for £ > A we can use Eq. (29) and then find

AF =2v25'(z*) ((E — Acos)*?)

~and

= aaAEF = <(E \_/EA5;(();:*2)1/2> ‘

Near F = A the diffusive character is important in order to match boundary conditions at
E = A. In solving Eq. (46) we can set E = A in the diffusion coefficients and Eq. (46)

becomes

2 9% _ V2 5'(z¥)
977 3Ez T <((E — Acos¢)1/2)> (49)

with 4 = 4Af/7. The solution for g that is bounded at infinity can then be written as

(S o (58 o

where C is a constant.

We integrate Eq. (50) once more, using that (AF)g_4 = 0, to find

st £ - o) (5
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When E — A > + the integral on the right-hand side of this equation can be written as
2v25'(2*) ((E — Acos $)"? — AM*(1 — cos9p)/?) .
Thus, in order to have
AﬁE_—A;l 2v2 5'(z*) (B — Acosp)!/?) ;

we require

C = M—fr,(@ <A1/2(1 — cos ¢)1/z> S (w ) AV? (52)

Using Eq. (50), we can now substitute ¢ = dAF/OE in Eq. (45) and find 0F /OF near
E = A

OF __ S* s, (_E—4 |
35 = pom A% exp " . (53)

At the separatrix Eq. (53) agrees with Eq. (48) as F't = F'~ = F/2. Note that the main
contribution to §F/OE comes from the first term of Eq. (50).

We are now in a position to calculate the power transfer in regime (b), vyw/wy < v <
V4 w? Jwi. The largest term in Pyy, in Eq. (24) comes from the trapping region and gives

* *
2¢, Bw d%Q:_r_ 1/(;02)

Par =

/_i dE<\/§(E —Acos¢)> g—g .

The contribution in Eq. (24) from passing particles, using Eqs. (51) and (52) is smaller by a
factor vgw/vwy. Using the calculated value of 9F/8E in the trapping regime (see Eq. (48)),
gives

_ B4geBw [ 5 5 5 v2(a¥)A2 S (a*) A2
P = 97 ck, /d v ("4 ) (1 = A8 yy(z*) (54)

Note that Eq. (54) includes logarithmically diverging iﬁtegra,l over A. To estimate the integral
we have to recall the applicability condition, 8 3> (A/?)/z*, used in deriving Eq. (54). As
£ is proportional to (1 — A?%), this condition is violated as A = 1. Therefore, we have to cut
off the integral somewhere at 8 ~ (A%?)/z*. The ratio of Py, to PL, can then be written as

PNL 2 A

PL T vgws (55)
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with a large logarithmic factor A.

Thus, in regime (b), saturation occurs when

V2P
vaPa

(56)

Wy

The calculation for regime (b) is valid if wf > vw. Observe that if vw < wW? < V2w, Afvy,
our calculation predicts that Pyr, exceeds PL.
In regime (c) # > 1, and we need only keep the 3% term in Eq. (46). A particular solution

is-
_OAF V25'(z")
~ 9E <\/£_'7—Acos¢)1/2>

and it is readily verified that it matches to the asymptotic limit for large E. From Eq. (45)

(57)

we then have
oF
0E
In the trapping region, fz*/AY? > 1, only the 8 term is important in Eq. (43). The solution

=0. (58)

1s

oF 5
- / (s — ACOS $)'/2) ' 9E {(E = Acostp)1/?) (59)

with o and § constants. These constants are determined from continuity of F' and the

derivative at the separatrix. We then find that
a= S 6=0. (60)

Equations (57)-(60) are the relevant solutions for (regime c).

In calculating the power transfer in regime (c) we note that the contribution of the
discontinuity of the diffusion term at the separatrix in Eq. (24) is important. The drag.
terms from the trapping region are negligible. Now substituting Eqgs. (57), (59) and (60)
into the largest term of Eq. (24) yields

2
anw 3 2 S’(x*)A1/212
Pnp, = —2 /d vvg(z*)(1 — 2?) ( N ) P+ D) (61)

with
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1 e 1 17,
Iz=x/§——\/—§/1 dy[« - 37| 138 (62)

y — cos1p)1/2)

Very roughly, Eq. (61) yields

I/dwz

Pni, &~ P . (63)

wj
We a;ISO observe that if the wave amplitude is sufficiently low, regime c is the appropriate

regime. If P; is the damping rate to the background plasma, saturation of the wave is

determined from Pyi, = Py, or using Eq. (63)

73L> 1/3

Wy = (de2)1/3 (Pd

As regime (c) requires vqw/vw, > 1, consistency demands

1/3 2/3, 1/3
<7’d> i W,

7L

14

In this regime there is no apparent enhancement of the nonlinear power transfer.

IV. Conclusion

In this paper we considered the saturation of an electrostatic wave driven by the density
gradient free-energy established by high energy spatially dependent beam injected into a
plasma in a sheared magnetic field. The distribution function was calculated self-consistently
by taking into account several transport processes: drag and pitch-angle scattering due
to the background plasma and simultaneously the particle-wave interaction with a finite
amplitude wave. The power transfer between the Beam particles and the wave can be
calculated asymptotically in three regimes of collisionality. An interesting nonlinear eﬁ‘ect.
occurs when pitch-angle diffusion can be neglected, i.e., when vy < vw?/w?, (regime (a))
where v, is the pitch-angle diffusion rate, v the drag rate, w the frequency of the wave
and wp- = (cpo v k; /Ls B)'/? the radial bounce frequency of a particle in resonance with

a wave of amplitude g. In this case an effect similar to the Ware pinch” arises. Passing
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particles oscillate in a direction transverse to the magnetic field with a small amplitude
about their position of injection. However, particles trapped in the wave are constrained by
particle adiabaticity to remain in resonance with the wave as they slow down. These trapped
particles are then forced to croés field lines, and they can transverse a distance comparable
" to the width of the mode. The effect is somewhat like a conveyor belt. Passing particles are-
injected at different points z and slow down until they hit the points of resonance. If the
separatrix width is increasing as one moves spatially outward, some of the passing particles
will be engulfed by the separatrix, and these particles will then be conveyed across the field
lines as they slow down further. When the separatrix width begins to diminish, the trapped
particles near the separatrix are then released into the passing particle regions, now at a
position remote from their position of injection.

The power transfer, Pyy, from particles to a nonlinear wave was calculated assuming

wi > vw and it was found to scale as

where P, is the power transfer predicted from linear theory. This scaling indicates that the

power transfer rate is enhanced from linear theory if
vw < wi < vw?fwy .

~ A steady-state nonlinear wave can be established when the mode amplitude rises to a level

where

1/3
wp N (Vw2)1/3 <%>

where Py is the power transferred by dissipative processes to the background plasma.
For moderate pitch-angle scattering (regime (b) where vaw/wy < v < vgw?/w?), trapped

particles convect many separatrix widths, but pitch-angle scatter out of the trapping region
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in a distance that is small compared to a mode width. One finds if w2 > vw

PnL N v?

PL Vawy

Hence, the nonlinear power transfer is enhanced from linear theory in the regime,

I/2 Wy

vw <w§ <
Vq

and stabilization arises for a field amplitude in which

v P
Wwp = — — .
"7 v Py
For stronger pitch-angle scattering (regime (c) where v < vgw/ws), a trapped particle
scatters out of the trapped region before it can convect a séparatrix width. One finds if
wp > vgw?,
PNL ~ vq w?
PL w?

and saturation occurs when
| P\
~ 2\1/3 ( L)
wy & (vgw — .
b R (vgw?) P
In I;ég:'.':(le (c) we always find Py, < Py, in the region where the calculation-of the power

transfer can be self-consistently made.

One should also note that for a given v, v4, and w, it is the ratio of P, /P, that determines

. . . ' P viw .
the regime in which the saturated state exists. If 1 < %’- < —'-13— the saturated state is in
d v
2 3/2
) . Viw PL w (z/d> .. . . PL
egime (¢); if -~ < — < — | — the saturated state is in regime (b); if — >
regime (c); if —3 7 < 7.\ gime (b); 2,

w [vg\3? . :
— (-;) the saturated state is in regime (a).
V4

These considerations make regime (c) the most likely regime for a thermonuclear plasma

where for alpha particles slowing down and scattering on the background plasma, v4/v ~ 0.1

and typically, w/v R 108. Hence in Ref. 2, where the formalism for Alfvén waves is presented,
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detailed calculations will only be given for regime (c). However, systems can be envisioned
where a high-energy beam is injected into a cold plasma and a low frequency oscillation

excited. In that case regimes (a) and (b) can be of interest.
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Figure Captions

1. Particle trajectories in z,z*,1 space. Helical lines show trapped particle convection
across field lines. Passing trajectories of particles far from resonance (trajectories
a,c,d, and f) and close to resonance (trajectories b and e) are shown. Note that the

" two patterns of resonance are centered about different x positions (separated by the
z-distance between points A and B) and the trapped particles convection connects

corresponding phases of the two patterns.

2. Trajectory of particles that transform from passing to trapped particles, with passing

particles trajectories in the background.
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