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Abstract

A formalism is established for calculating the saturation level of a discrete modé‘
that is destabilized by the distributién function formed by a high-energy injected beam."
The electrostatic plasma wave interaction is studied here for two problems. In one the
distribution function is formed by.injectiori of a source with a velocity spread and
a steady-state bump-on-tail instability is established with only particle annihilation
taken into account. In the second problem particle drag as well as particle annihilation
is accounted for. In both problems the self-consistent distribution function in the
presence of a ﬁnite amplitude wave needs to be calculated. By calculating the péwer
transfer between particles and finite amplitude wave, the saturation level of discrete -
mode can be predicted. The drag problem with annihilation has the interesting feature
that in steady state holes in phase space are formed for a large enough amplitude wave
and the pvower transferred from particles to waves can be greatly enhanced due to the

drag force on the population of holes.
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I. Introduction

? we investigate the saturation level of a plasma destabilized by a

In this series of papers®
beam injected at high energy. The motivation for this problem is to develop a formalism
to predict the saturation level of possible Alfvén wave instabilities®*® generated by alpha
particles in an ignited tokamak. The excited Alfvén waves are likely to arise as a discrete
well-defined single mode. To predict the saturated wave level for such a problem we have
developed a method of analysis that can be applied to a class of beam injection problems
with varying degrees of complexity.

We assume a steady-state high-energy neutral beam injected uniformly in space into a
background plasma and ionized by atomic processes. Through classical transporf mecha-
nisms such as drag, pitch-angle scattering, and charge exchange losses, the beam particles
are assumed to form a weakly destabilizing distribution function to a quantized wave of the
background plasma whose wave number is fixed by external boundary conditions. In this
paper we consider that the beam transport 1s due to drag and particle annihilation, and the
background wave is an electrostatic plasma wavel (or an ion acoustic wave). In the subse-
quent papers the method of analysis is extended to drift waves in a sheared magnetic field,!
and then to Alfvén waves in a tokamak geometry.?

The treatment of a single mode has been studied previously by O’Neil® and Mazitov.” In
the absence of collisions the distribution function was shown to flatten by particle trapping
effects in the region of the resonance particles. The flatness of the final distribution resembles
the prediction of the plateau in one-dimensional quasilinear theory.®° In the plateau regime
there is no exchange of energy between particles and waves. When collisions are accounted
for, the flat distribution eventually obtains a finite slope leading to wave damping.'®

The problem we formulate is somewhat more complex in that the classical transport



processes establish an unstable distribution without any wave excitation. The excited waves
res‘upplied and feed the resonance region.

To treat this problem we need to calculate the self-consistent shape of the hot particle
distribution function in the presence of a finite amplitude wave. The wave will be assumed
of low enough amplitude so that the structure of the linear eigenmode is valid. The principal
nonlinear effect treated is how the Wave-particle resonant interaction varies with increasing
amplitude and therefore increasing distortion of the resonant particle distribution function.
This wave particle interaction determines an energy transfer from particles to the wave,
We also assume the presence of a linear background dissipation mechanism that remains
undistorted in the presence of a finite (though small) amplitude wave. The tendency for the
wave to flatten the resonant particle distribution ultimately weakens the instability drive
and allows the background dissipation mechanisms to compete with the drive to determine
the saturation level. |

Our method of solution has a close resemblance to neoclassical theory.!! The linear regime
is similar to the plateau regime of neoclassical theory in that the wave energy transfer is in-
dependent of collisional processes. However, at finite wave amplitude particle wave trapping
frequencies are faster than collisional frequencies and a theory similar to neoclassical “ba-
nana” perturbation theory can be used.!! Part. of our problem was treated by Mikhailovskii
and Pyatak!? who considered the influence of the particle source on the wave excitation.
However, our work- appears to be the first to treat the self-consistent case where there is
present a source, particle collisions, and wave particle interactions to allow a steady state.

The structure of this péper is as follows. In Sec. II an overview of how the particle wave

-interaction is treated is given. In Sec. IIT we describe a model where the particle transport
mechanism and incoming beam distribution excite a weak “bump-on-tail” instability.8® This
is the simplest of the genre of problems we have fbrmula.ted. In Sec. IV we treat a weak

bump-on-tail instability formed by a beam, injected at fixed speed, that slows down due to
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drag. In this problem the wave particle resonance region takes on a more complex nature.
The method developed to solve this problem is particularly useful for the more complex
problems treated in subsequent papers.l’? In Sec. V conclusions are presented.

Ou’r perturbation method in the finite amplitude region at first appears standard. To
lowest order the distribution function is a function of the constants of motion that can be
obtained by solving for the particle trajectories in the absence of drag annihilation and
source terms. To next order the source and sink terms must be taken into account. In
the problem that treats annihilation alone (Withoﬁt drag) the perturbé,tion method is quite
straightforward and leads to an easily interpreted result, i.e. the power transfer between
waves and particles is reduced by a factor veg/ws, where veg is the rate in which particles
leave (or, by detail balance, enter) the resonance region and wy the typical circulation rate
of particles in the trapping region (veg/w, is assumed less than unity; in fact this condition

is the essential parameter of the nonlinear perturbation theory).

When the drag and annihilation problem is treated several surprises arise. There is a -

crucial physical effect that particles that are not trapped by the wave cannot enter the trap-
ping region as they slow down. Consequently, if the injected velocity of the source is not in
the trapping region (as is aséurned in this paper) the particle source cannot feed the phase
space region where particles are trapped. In fact in the steady state of the nonlinear problem
the distribution function in the trapping region is zero. Thus, when annihilation is present,
‘a large gradient in the distribution function must develop at the separatrix between trapped
and passing regions. The perturbation theory we have developed assumes the bounce fre-
‘quency is large. This assumption must necessarily fail at a critical region of phase space. To
treat this region properly we have accounted for a boundary layer contribution that makes
use of the steep phase space gradients at the separatrix. We then find that the power transfer
" rate is appreciably larger than linear theory for moderate w,. Even without particle annihi-

lation large phase space gradients can develop at separatrices in more complicated geometry.



In Ref. 1 we show how a nonlinear drift wave problem exhibits a similar discontinuity and
how the formalism developed here can be generalized to solve the drift wave problem. Fur-
ther details and interpretations of the plasma wave problem are presented in the text and

~ conclusion.

II. General Procedure

The general method of calculation for the class of problems considered in this and subsequent
papers is as follows. We assume that there is a hot particle species injected at high energy.
A steady-state distribution is established by either the slowing down of the injected particles
to a low energy or by particle annihilation (for example by charge exchange). The resulting
equilibrium distribution function is assumed to provide a weak instability source for the
background plasma, where only the hot particles in the regions of phase space in resonance
with the wave contribute to the instability. Except for the growth rate, the excited wave is
assumed to have linear wave properties established by the background plasma. Only a single
wave is assumed to be excited and this is a reasonable assumption for our ultimate apphcatmn
to Alfvén waves in a tokamak where the excited spectrum is discrete. In our applications
to electrostatic waves our discreteness assumption is often artificial as normally a broad
spectrum is excited. However, these problems are still of interest because they illustrate
the general method rather simply without the more complicated algebraic manipulations
required in the Alfvén wave problem. One can also envisage experimental situations where,
due to finite spatial size, boundary conditions restrict waves to a discrete spectrum and the
method developed here should be relevant. We also note in passing that our model may be
applicable to cases where nonlinear mode locking arises so that conditions where a single
mode is excited is effectively achieved.

The growth rate of the system is assumed small, so that in solving the Vlasov eduation,

the perturbed field amplitude can be treated as quasi-stationary. The slowly growing part



of the field amplitude is determined by the wave energy equation which takes a form

WE -
a—at—+7>h+7>d=o (1)

where WE is the Wé,ve energy, which includes the perturbed field energy and the background
plasma’s “sloshing” energy, P} is the power transferred to the hof f)articles in resonance with
the wave and P, is the power transferred to background particles by dissipative mechanisms.
The wave amplitude will be assumed to always be low enough that the quadratic forms found

in linear theory for WE and P, apply, viz;
WE =Gyule|* and  Ps=Gqlel

with ¢ the perturbed field. It will be assumed that G, > 0 and G4 > 0.

In linear theory we have
OWE
ot

where v is the growth rate. In the absence of hot particles

=29WE

vy ==G4/2G, = —v4 (2)

and the wave is damped.

With hot particles, at low enough field amplitude, P, has the form
Pr = Gh el (3)

and we are interested in the case where G, < 0. The growth rate is then

GL+ G .
=—u'Gi_d)=7h—7d (4)

with 74 = —G1/Gy. Thus, instability arises if —Gy > G4 (or 4, > 74). The wave will grow

until nonlinear effects alter the resonant particle response. Characteristically, at a finite



wave amplitude, a nonlinear power transfer to the hot particles, Pynp, can be expected to

have the form

n LB 2
PrNL R o Gh el (5)

where veg is the rate in which resonant particles leave the resonant region and wj; the bounce
frequency of a trapped particle at the bottom of the potential well. Hence stabilization would

then arise when l::—ﬁ Gh + G4 = 0, or when the field amplitude is large enough that
S .

Wy

~ ——Gh/Gd .

Vest
In practice we find such scaling sometimes occurs, as in Sec. III, but at other times the wave
particle interaction causes steep phase space gradients that can alter the above inferred
scaling, as in Sec. IV. Thus, detailed knowledge of the background wave properties including
dissipation, and the saturation associated with resonant particle trapping, determines the
nonlinear amplitude of the linearly unstable wave. In the next sections we calculate Pxnr,

for several model problems.

II1I. Plasma Wave with Particle Source and Particle
Annihilation

The simplest problem we can pose is to consider an electrostatic plasma wave (or acoustic
wave) in one dimension. In addition to the background plasma we inject a hot species with
an injection velocity distribution @(v). These particles are assumed to annihilate (through
some physical mechanism such as charge exchange) at a rate v,. The kinetic equation for

the distribution function, f, is

0 0 0
Hod L )r+Qw) (6)

where £ is an electrostatic electric field, £ = —0p/0z with ¢ = @y cos(kz — wt).



The power transfer is given by

k 2r/k kw 2 /k .
= gq/o da:/dv Evf = o P09 ), d:c/dvsm(ka: —wt)(1 4+ ku/w)f . (7)

w
k
space so that [ku/w| < 1 and can be neglected in Eq. (7).

with v = — 4 u. We anticipate that the contribution to P is from a narrow region in velocity

In linear theory we have f = fy + f1 with

fo=Q(v)/va(v) (8)

and f; satisfies the linear equation

4 Y q . . .3f0
<~5—t- “+ v ax> f1 + I/af]_ = ——’n; kg(?o sm(k:c -—U.Jt) % . ' (9)
We shall assume that 5%) (@/ve) > 0 so that instability can arise. It can be shown that if
|kAv| > v,, where Av = fo/(0fo/0v), then v, fi can be neglected in Eq. (9). The solution
to Eq. (9) is then straightforwardly found to be ’

ﬁ=iW£@P(P

— B | o =) cos(kz — wt) — 7é(w — kv) sin(kz — wt)] (10)
where P is the principle value.

By substituting Eq. (10) into Eq. (7), we obtain the linear power transfer P,

—q? 0 —q? k 0
| ’PL=2—rr:rk<p§w/dv5(w—kv)ﬁ=ﬂ 29 (g—(—v—))

v 2m ‘Pom% v (v) (11)

v=w/k

Note that instability can arise if

>0.
v=w/k

P ()

For the nonlinear problem we assume that f = f(¥,u), with ¢ = kz—wt, and u = v—w/k.

Equation (6) then becomes,

kua—f+ ghposing Of _

R R UAT R (12)
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The characteristic equations for the left-hand side of Eq. (12) are

" (13)
1,/} = ku .
Equation (13) has a first integral determined from
; 6¢ qk‘Plo ., O :
Y= Uge=— sin ¢ ol (14)
Integrating Eq. (14) gives
u’ | gpo
—2—+—m— cosyp = F (15)

with E (the energy in the wave frame) a constant. If we use Eq. (15) to transform from u

to E, we find
(B L = e (2 2uB ) 40 (£ £u(E )
e @ re@] o

with u(E,¥) = V2 (E — Acos )2, A = qpo/m, the + sign refers to positive and negative
u-vaiues, and gyq is assumed positive.

To proceed furthér, we ‘assume Qa/wb & 1, where w, = (gk*po/m)'/? is the trapped
particle radian bounce frequency. Note that w; is also an estimate of the spatially periodic
transit frequency of passing particles that are near the separatrix. We then expand f* in
powers of v, /wy (formally we treat ku ~ wy which is appropriate near resonance) and consider

the equations

ik%{z =0 | (17a)
g 2DESG L e o



First we consider passing particles with £ > A, so that f is a periodic function of ¥
with period 27. From Eq. (17a), it follows that to lowest order f, is independent of ¥, i.e.,
fE = fE£(E). We can determine f& from the next order equation, by integrating Eq. (17b)
in % from 0 to 27 and demanding f (v = 0) = f(» = 27). We then find

fgz@(%)ﬂﬁmy@'(%)icz(g) ey
ya(g)iyé(s;.><m>*l'ya(%) & &) (18)

1 2w
where (g()) = o /o dip g(1). For trapped particles —A < E < A and % is restricted to

the region Ymin < % < Ymax With Ymin = cos™ E/A and ¢max = 27 — ¥min. To lowest order
Eq. (17a) still givés a Y-independent solution for f;. The'n using the boundary condition
fH(E, ¥min) = f~(E, ¥min), gives f§(E) = f5(E) = fo(E). In next order we integrate
Eq. (17b) from %min t0 ¥max and find
()
u(E,)

F (o) — F (i) = %’3{ [-— v (%) s+ (%)

AL (%)}(%?&> }

. 1 1 y¥max  dip .
with now = — / . Now subtracting the ft equation from the f~
<u<E,¢)> 27 Siin 5B, D) g the J eq d

equation, and using that f* = f~ at the endpoints, yields the equation for fj

fr=@Q (-‘,‘g) [ (%) (19)

Observe that fo is continuous at the separatrix between passing and trapped particles, but

 x

has discontinuous derivatives.
We are now in a position to construct the nonlinear power transfer Pyr. In Eq. (7) we

transform from v and z to £ and ¥ and find

e L () o)
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- -—%m[j dE <u(E,¢) k—‘%—f;:—f—)> (20)

where the last expression is obtained from an integration by parts. Now from Egs. (17b),

(18) and (19), we obtain -2 5 (fr+f- ) in terms of the known f;. We then find

P = 227 (2 { [ dE {u(E,v) - <—(E17)>]

+ [ aB w»} M: (%)'Isgnw) (@)

m

and

1= [«y — cos)"7) - <m> _1}

1612
ok 1/2 Ve _
+/ dy - (y cos)? =0.291 + o 1.09 .

Observe that trapped particles contribute directly to the power transfer.

The ratio of Pny/Py is

'PNL '
102 22
PL 9 wb ( )

Suppose a positive background dissipative power transfer, P,, is present with —Pp, > P,

so that there is linear instability. Then saturation arises when Pnr, = P, or when the field

amplitude reaches the level

/2
_ [ qpok? ! ('PL>

IV. Plasma Wave Problem with Drag and
Annihilation

We now consider a somewhat more complicated problem. We assume we have a high energy

particle injection source sharply peaked about a speed vy and that the injected particles are
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annihilated at a rate v,. In addition, the fast particles are assumed to slow down due to drag
with the background plasma. Because of the annihilation a distribution f is formed with
0f/0v > 0, so that an energy source is available to self-excite electrostatic plasma waves.

The one-dimensional kinetic equation for the distribution f is taken as

of of . qkepo o of of
8t+ 6a:+ — n(km—wt)%——yaf+Q06(v—vo)-{—.ab—;. (24)

We note that the drag term enters formally the same way as a dc electric field. Hence our
problem is related to the dc resistivity of a periodic system.!?

The power transfer function is still given by Eq. (7), where again the contribution to the
power transfer comes from a region where v — w/k € w/k.

In linear theory we have f = fy + f; with

fo= Qo exp [——Va(v — vo)} O(vo — v) (25)
a a
and f, satisfies the linear equation
o o\, 9
(a +v 6_:0) fitvafi—a a—fl = —a koo sin(kz — wt) BJ:? . (26)

If kAv > max [v,,a/ Av] with Av = f, <3fo) , then the terms v, f; and a 8f;/8v can be
Ov
neglected in Eq. (26). Equation (10) then gives the expression for f;, and the linear power

transfer is found to be

m (B e (B 0(0-) .

m

w . .
For Z < vg, P < 0, an instability arises if —~P, > P,, where P, is the dissipative power

transfer rate to the background plasma.

For the nonlinear problem we assume that f=f(¥,u) withy = kz —wt and u = v—w/k.

Equation (24) then becomes

o OF

51/, ql:;oo 'nd’% = —ya(u+w/k)f+Qo5(u+ 2 —Uo) +a<9_f : (28)

k Ou

12



We note that the coeﬁicient of g% in Eq. (28) is —0V/(z)/0z where V(z) = A cos kz + az,
with A = g¢o/m for particle motion that takes into account the drag. V(z) can be viewed
as an effective potential per unit mass. With this potential, an exact constant of motioﬁ is
£ = u; + V(z). In Fig. 1 the solid curve indicates this potential which has maxima and
minima if kA/a > 1 (When these extrema exist trapped particles arise). The value u?/2
can be graphically obtained in Fig. 1 as the difference of the horizontal line £ = &, and
V(z). When a particle passes a local peak in the potential V = Viax, it will be reflected
near the next peak if £ — Vipax < 27ma/k. In steady state the passing particles only change
their directions as they slow down; they cannot be trapped in the well. If we imagine an
adiabatic buildup of a wave from zero to finite amplitude, initially there are particles in the
trapping region and if veg/wy 2 1, passing particles will penetrate into the trapping region.
However, as the wave continues to grow in amplitude, so that veg/ws < 1, the motion
becomes adiabatic and new particles can no longer penetrate the trapping region when they
slow down past the separatrix region. Then the old particles in the trapped region eventually
disappear because of the finite annihilation rafe. Thus we expect that the structure of the
steady-state distribution function di‘amatically changes as the finite amplitude wave grows.
When kA/a > 1 a separatrix appears between passing and trapped particles. As particles
cannot penetrate this region and the original particles in this region are annihilated, the
distribution of trapped particles will be zero. This structure needs to be accounted for in
the nonlinear calculation.

We shall solve Eq. (28) in the limit that the right-hand side is considered small and the
left-hand side is formally taken to be O(1). The characteristics of the left-hand side of this
equation are determined by Eq. (13). The first integral of these equations give the expression
for the energy per unit mass, F, of the particle in the wave frame |

2

E=%—+Acoszb (29)
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'With —A < E < o0. For —A < E < A particle orbits are trapped in the wave. The energy

E is drawn in Fig. 1 as the dotted straight line. If a‘is sufficiently small, E is close to £
fqr many periods and this is the basis of our approximate theory. However, F eventually
diverges from & as the particle slows down.

If we now transform from u to E, Eq. (28) becomes

of* + 5f*
£ ku(B, ) 3 = —va F* + 02 Qou(E,0)8( B ~ Acosp —ud/2) £au(E,p) F (30)
with up = vy — w/k, g4 = 1, g- = 0, and otherwise the same notation is used here as in
Eq. (16).

We also construct the nonlinear power transfer. The method is identical with the previous

section and we find (see Eq. (20))

5 (wzw) A v (51)

To proceed further, we will also assume for convenience that the wave amplitude is small

PnL = —mw /

enough so that the bounce frequency of trapped particles (as well as the transit frequency

of passing particles near the separatrix) is less than the external frequency; i.e. wp/w < 1.

v 0fo

Also, we restrict ourselves to a “smooth” distribution where — 222 O(1) which requires

fo Ov
from Eq. (25) v, = a/v. It then follows that

a
VeF = — D Vg
Wy

Physically, veg can be interpreted as follows. The rate in which a particle changes its speed
by an amount Av due to drag is a/Av. The velocity width of the separatrix region is
Av = wy/k, therefore the rate in which drag causes the speed to change by this separatrix
width is ak/wy = veg. If we estimate the order of magnitude of the terms in Eq. (30), we
g—i ~ f, ~ f/u® = f/A, that the right-hand side is less than the

left-hand side by a factor Veff/Wb, which is the basic parameter of our perturbation theory.

find for ku = wy,

Now expanding f, we find

14



of5

k=0
+k Of _ _ _wli F Q5(E Acosz/;——z)i ofy (32
o~ u(B,p) " O BE. )

To properly analyze Eq. (32) it is essential to note that the ordering breaks down near
the separatrix between passing and trapped particles as the bounce frequency, &;(E), for
particles close to the separatrix approaches zero. Nonetheless, the solution to Eq. (32) is
- adequate for obtaining the energy transfer. We note that except for right near the separatrix,
f can be solved both in the trapping region and the passing region, giving solutions that
are generally discontinuous around the separatrix. To obtain the péwer transfer, we can
integrate Eq. (31)vbetween A(l —6) < E < A(1 + 6) with § < 1. If we substitute Eq. (30)
into Eq. (31), we have

s 2= (e H50)

=5 8{80 255 ) (4 009)

= 2 (uam [r+(a+9) + 7 (a0 + 9) -1+ (4-9) -7 (a0 -9)]) . @9

We need to choose § such that at the energy £ = A(1 £ §) the bounce (transit) frequency
@y (A(l + 5)) is lafger than v.g, and yet have § < 1 so that the E integration in Eq. (33)
is in a narrow layer. If ©y(—A) > veg it readily follows that such a value of § can be found.
It may also be observed that Eq. (33) can be generalized to the case veg/ws, ~ O(1). The
E integration should then be taken across the separatrix boundary, and the contribution
from the discontinuity is then determined if f(E, ) just above and just below the separatrix
are known. We have argued that below the separatrix the trapped particle distribution is
zero. Above the separatrix one can choose f to sufficient accuracy if w/wy < 1 by taking

the unperturbed value of f at the resonant velocity as given by Eq. (25). This calculation
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will be presented towards the end of this section. ‘However, if better accuracy is desired, f
above resonance must be calculated more accurately. This is only easily done in the limit
Vet /wy < 1, where the value of the distribution function can be consistently calculated at an
energy close to the separatrix; i.e. at £ = A(1 + §). The method of evaluation is indicated
below.

Returning to our discussion of the basic perturbation method for veg/wy < 1 we see that
in evaluating the power transfer given by Eq. (31), we need to integrate over nearly all of
the E region where f is given by the solutions of Eq. (32), and then add the contribution
from Eq. (33), which accounts for the rapid change of f around the separatrix.

Now in solving Eq. (32) we first consider passing particles with £ > A. To lowest order
dfE 0 =0, and therefore ff = ff(E). The form for f¥(E) is obtained by integrating the
dfE /&b equation in Eq. (32) between 0 < ¢ < 27. Then, as f£(0) = fE(27), the f; term

cancels, and we find that f&(E) satisfies the equation,

+ 2
5570 (sgy) - oo (o(o-ams-F)) .

Except for E near u2/2, the right-hand side of Eq. (34) vanishes, and the solution to Eq. (34),
with the boundary condition f*(A) = f~(A), is

fE=C exp [i%LEdE’<u(E1,,¢)>] . (35)

To determine the constant C' we note that fH(E = o) =0. Iful > A, f(F) remains zero

2
up to the source energy u2/2. If we now integrate Eq. (34), in the interval % (1+6)<E<

2 2
922 (1-29), we find f§ (E = 229(1 - 5)) = Qo/a. Then matching Eq. (35) to this result gives

_ Qo Va “3/2 , 1
C="g =P ["; A <u(E',¢>>]

., (___) 1 BB L2 g o(£) +0()] . a0

Vett
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In order to consider trapped particles in the region —A < E < A we use the boundary

conditions
f+(¢ma.x) = f—('ﬂbmax)
F* (%emin) = ™ (min) -

As in the previous section, it then follows that f = fy = fo(E). Now, we integrate the
OfE /0% equation in Eq. (32) from tmin t0 ¥may and obtain the expression for f*(tima) —
i (min). We eliminate f; terms by subtracting the fi equation from the fi equation. We

‘then find (assuming that there is no direct source term in the trapping region),

vmax  (fo o) _ prmex  O(f — f5)
“ o TN " e @0

As ff = fo = fo(E), it follows that fo(E) = 0. This formally confirms our expectation that
the trapped particle distribution vanishes.

We can now calculate the power transfer gi\}en by Eq. (31) assuming that there are no
particles injected at resonance. We use Eq. (32) to obtain g—{; in terms of fo and @, and
Eq. (34) to eliminate the source term Q. We find, including the boundary layer contribution

~given by Eq. (33), and using f; = 0 in the trapping region,

P =~ < <u(A), ¢>> [fgr (A(l + 5)) L f (A(l + 5))]

. /AZH) dE(fJ—fo—)<(u(E,¢))<u(;’¢)> —1) (37)

where ¢ is taken sufficiently large so that fo (A(l +5)> is independent of phase. For f§" — f5

we use Egs. (35) and (36), and that the contribution to the integral in Eq. (37) comes from
E =~ A <« ul, to find

-5 =2 o (22 [ (2 [ e ()




e (-2 [ e (h )]
2 2% o (-2220) [* ap <u(E1’,A)>

_ 2Qova exp (_z/a;o) [(u(E, $)) — (u(A,$))] .

We also use
fr (A(l + 5)) f ( (1+ 5)> — %0— exp (—V—aa@> .

As a result, we have

2mwv? VU
. ,PNL — _—C"QO exp (__9.)

ka? a

7 4B () (s ) 1) ()~ (4, )

2mw

Qoexp (~2222) [(u(4, ) + 2 (A ) + 25 (a4 07)]
2\/—me

: 5 ! 1AV | 824
ka? GQ‘)CXP( VJO) As/zf“mwA”oneXP( V;()) (1+ L et )

k Ta 72 g?

(38)

with

1= [ e (=) (g ) -2) (7 9) - (V=)

3/2
=2 <-2-f—1> = .143 .
97

72

Equation (38) can be written as

b Wh Wh

'PNL=pL{ ” +(12V—6€+013V b[1+O<Veﬂ‘>]} (39)

with a; = 4v2 /7 + 64/7% =2.34, oy = 64/7%, a3 = 16/7%. The first term in the bracket

gives the same scaling as the power transfer calculated in the previous problem (see Eq. (21).
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The second term in the bracket has the scaling expected from the simple dimensional ar-
gument given by Eq. (5); i.e. for this term the linear power transfer is reduced by the rate
in which particles enter the resonant region divided by the transit rate of particles near
resonance. The second term is intrinsically larger than the first term by the.factor Vet [ Va-
However, the mostldomina,nt contribution comes from the third term in the bracket and it is
due to a new effect, the interaction of the drag force with the discontinuity between passing
and trapped particles at the separatrix that arises from a finite amplitude wave. One should
also note that the correction to the a3 term can exceed the oy and a; terms.

We now discuss the problem of obtaining the dominant power transfer when veg/w, ~
O(1) as long as ws/w <« 1. In the integral for the power transfer given in Eq. (31), a large
contribution to the energy integral will come from the discontinuity in 8f%/8F that exists
at the separatrix (if veg/wy, < 1) which occurs at

_a | . (Vs wi 1/2 a'
E=E@W) =1 [sm (E>+<E_ ) } - 2%,
Now integrating Eq. (30) across this separatrix gives
B} (4) (f* + -
/E:(w B u(E,9) _37—)

V(%)
0%

where the +(—) superscript on F,(1) means incrementally greater (less) than E,(¢) and

=k

u(By($)) [fFH(EFHW)) + f(BF) - FH(BD) - £7(E;)]  (40)

Va() = ap/k is the effective potential for the drag. Now, f vanishes for trapped particles
and therefore f¥(E;) = 0. To obtain f¥(E}), we note that it is essentially the same
as the unperturbed case when w,/w <« 1. For example, this can be seen explicitly in
comparing Egs. (35) and (36) to Eq. (25). They only differ by a small term O(v,/veg).
The explicit correction term we have retained in Eq. (36) is only correctly calculated in the
limit veg/ws < 1 and it gives the next correction to the dominant power transfer term which

was calculated in Eq. (39). However, when there is a separatrix the dominant power transfer

19



can now be obtained for arbitrary veg/ws as f*(E7) is known sufficiently accurately, and we

find

. w A Ymax
PaL=—2v2 _n;c_ Qo exp (-V:O> /%1 % [Bo(#) — Acosy]"/? (41)

with ¥min = sin™? (%—ff) and %max is determined from the condition that u(E,¥max) = 0,
Wp

which gives

a v a [ wi 1z a
— sin~? <Lﬂ)+z ( ; —1) = Acos ¢max+7c-¢mx.

k Wh vig

When veg/w, < 1, Eq. (41) reduces to lowest order to the a3 term in Eq. (39). If desired
Eq. (41) can be used to calculate the higher order corrections to the a3 coefficient of Eq. (39).
Recently, the power transfer has been calculated' from a direct integration of Eq. (28) in the
limit wp/w < 1 but with veg/ws arbitrary. The dominant contribution given by Eq. (40) is
reproduced and numerically evaluated, and the correction term is also evaluated for arbitrary
Vesr/ws. In the limit veg/wy & 1, the correction term calculated in Ref. 14 reproduces the
Qi Vest /wp term in Eq. (39).

It is also interesting to note that the enhanced power transfer that arises when there is a
hole in phase space seems to have the following physical explanation. The total number of

particles, Nj, evacuated from the hole is
V2  [max _
No= = [ dp [By) - Acos gl (f* + £7)

Whére f* and f~ are the values of the distribution function next to the hole. From Egs. (35),
(36), and (41) it follows that, as v, — 0, that the power transfer from waves to particles can
be written as

Pur, = — (N, Fdrag Vwave)
where Fdrag.= ma is the drag force‘a,nd Uwave = w/k is the wave speed. In other words the

work (per unit time) the drag force exerts on the holes converts into wave energy.
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The ratio of the nonlinear to linear power transfer is from Eqgs. (27) and (39),

Py 16 a2k 16 U3
e (42)

Pr 72y T vuws

If ¢ is large enough, the nonlinear energy transfer rate is lower than the linear transfer
rate, and saturation arises when Pyj, becomes less than P,, the background dissipation rate.

This arises when

w;

K2 2/3 (21,2 2/3
q“”°>(16) (ak &) . (43)

m. F v, Pd
We also note that because of the enhanced contribution from the discontinuity at the
separatrix Py exceeds P, when

1/3 2 \1/3
Ve S wp < (E> ( a ) (wly)3 .

2 2492
T Vv,

This enhancement of the nonlinear power transfer turns off when veg/w, — 1, when the
separatrix disappears. For veg/wy > 1 the power transfer is compara,ble to the linear level
and is numerically calculated in Ref. 14. Our steady-state distribution function has an
extreme shape due to the absence of trapped particles. This probably gives rise to side
band instabilities. The investigation of the éide band instability is beyond the scope of this
study. We note, however, that if boundary conditions preclude neighboring k values from
being excited, then the single mode saturation described here may be a realistic equilibrium.
The present description of nonlinear saturation serves as a prototype for the application _
to the saturation of alpha particle drjven Alfvén wave instabilities, which is studied in an

accompanying paper.’

V. Conclusion

We have investigated the saturated state of plasrha waves excited in a driven system with
particle injection at high energy. A “bump-on-tail” distribution is formed by a particle

annihilation process that can arise from charge exchange.
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In the simplest model treated, a particle annihilation rate v, is the only transport process
accounted for. In this case the resonant particles are formed from direct injection of the
‘neutral particle source into the resonance region. The resonant particle wave interaction
of an individual resonant particle only terminates when the particle is annihilated by the
charge exchange process. For sufficiently large wave amplitudes, where wy, > v,, the ratio
of the nonlinear power transfer (of beam particles to the wave), Py, to the linear power

transfer, PL, scales as
 PNL _ Va
P owe
g k20" |
where wy = (TO-> is the bounce frequency of a particle trapped in the wave. Thus
with increasing field amplitude the relative power transfer of particles to the wave reduces
from the prediction of linear theory. If the background dissipative mechanisms remain linear
and the power transfer of waves to the background plasma is given by Py, with Ps/PL < 1,

then the amplitude for wave saturation occurs when

w P

Voo Pi
The second problem is somewhat more complex. A particle drag force, —ma, is added
- as a transport mechanism and the injection speed is higher than the phase velocity of the
‘wave. In order for particles to interact resonantly they must slow down and go through
the resonant region. In steady state, when the excited field reaches .a, steady amplitude, the
injected particle cannot penetrate the trapping region. Then the trapping region is empty
as the particle annihilation process removes particles that may have originally been trapped.
Hence, there is a discontinuity in the distribution function between passing and trapped
particles. This discontinuity dominates the nonlinear power transfer between particles and

waves. We have presented a nonlinear calculation of the power transfer that is valid when
wp > (ka)l/ 2
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where k is the wave number. We find

PnL k2 a?

PL Vg Wi

'

This result indicates that the nonlinear power transfer, Py;,, from particles to waves can

exceed the linear power transfer, Py, if

k2 o2 1/3
wp < ( > .
Va

Hence a growth rate enhanced from linear theory is predicted for moderate field amplitudes.

For large enough field amplitudes we find Pyr, < PL, and saturation is predicted when

k% a? P, 13
Wy =~ < Ve E) .

These nonlinear scaling results indicate that 'PNL’/w,‘,1 increases as w;, decreases. However,
this scaling is oﬁly valid if wy > (ka)'/2. Tt follows from Eq. (40) that as % = vt /wy — 1,
that the nonlinear power ‘transfer decreases rapidly since the width of tli'le separatrix is
becoming small. The preciseévaluation of the power transfer for veg/wp & 1 is 'given in
Ref. 14.

Finally, we emphasize that we have restricted our discussion to systems with well-
separated discrete modes. This assumption is physically a,ppropria,te to our ultimate ap-
plication to Alfvén waves in tokamaks. This discreteness is assumed to preclude side-band

instabilities that are known to be important when trapped particle effects arise.!*13
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Figure Caption

1. Particle Potential and Energy Diagram

The oscillating and linearly increasing curve is the effective potential V(z) = 20 o5 ke
m

+ az. The horizontal dashed line, V = &, is the particle energy including drag which
. is a constant of motion. The distance between the oscillatory curve and a horizontal
line is one half the square of the particle speed, u?/2. Note that particles exist in the
region where £ — V(z) > 0, and that a passing particle, such as the one with £ = £,
changes its velocity from positive to negative at the turning point ¢t. However, such
a passing particle cannot penetrate into the trapping region that exists between the
points a and b. The trapping regions are indicated in the shaded area. The dotted line
2

indicates the quantity £ = % cos kz + u7 which changes linearly due to drag as a

particle moves in z.
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