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. Abstract

A new type of self-similar solutions of ideal magnetohydrodynamics in the nonlinear

stage of undular mode (k||B) of magnetic buoyancy instability (ballooning instability in

fusion plasma physic or Parker instability or in astrophysics) are found through MHD

simulation and theory. The linear theory developed agrees well with our simulation in

the early (linear) stage. The nonlinear stages of the instability in the simulation show

the self-similar evolution. One of the solutions obtained from the nonlinear analysis

has the characteristics of nonlinear instability in Lagrangian coordinates; the fluid ve-

locity and the Alfvén speed on each magnetic loop increases exponentially with time,

because the loop is evacuated by the field aligned motion of matter due to gravita-

tional acceleration. In the later stage of the nonlinear evolution, the solution property
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changes from the exponential to the power-law time dependence. The latter corre-

sponds to a force-free expansion solution. The later saturation of velocity increment is

also discussed.

PACS numbers: 52.35.Py, 52.65.4+z, 96.60.Hv




I. Introduction

A plasma that is supported by a magnetic field under the gravitation is known to be subject
| to the Kruskal-Schwartzschild (or magnetic Rayleigh-Taylor) instability.! Similar instability
results in a gravitationally stratified plasma with non-uniform magnetic field, called magnetic
buoyancy instability.? The magnetic curvature can play a role similar to gravity. The undular
mode (k||B) of the magnetic buoyancy instability, where k and B are the wavenumber and
magnetic field vectors, is believed to be important in various physical phenomena ranging
from astrophysical plvaJsmaJs3 to fusion plasmas,* bécause this mode can be unstable even
when the plasma layer is stable against the interchange mode (k L B). For example, for
an isothermal case the former is unstable when dB/dz < 0, while the latter is unstable
only when d/dz(B/p) < 0, where p is the density and the gravitation is in the negative
z-direction. |
Parker® applied the undular instability to the disk of Galaxy. Hence, this instability is
called the Parker instability in some astrophysical literatures. The ballooning instability®
in fusion plasmas has essentially the same physical characteristics as that of the Parker
instability with general orientation of k with respect to B. In spite of many linear theory
investigations, however, the physics of nonlinear stages of this instability is much less known.”
In this paper, we report the discovery of a self-similar solution in the nonlinear stage of
the undular instability, which has a characteristics of the nonlinear instability (exponential
growth in time) in a Lagrangian frame.
In Sec. 2, we summarize basic equations and an initial model. The linear stability of the
magnetized plasma in our initia,l model is studied in Sec. 3, and the results of nonlinear,
two-dimensional magnetohydrodynamic (MHD) simulations are discussed in section 4 with

emphasis of their self-similar evolutionary pattern. A quasi one-dimensional (1D) self-similar




solution with characteristics of nonlinear instability, which explains simulation results very
well, is analytically derived in Sec. 5. In Sec. 6, we consider physical meaning of the results
found from simulations and analytical studies, and try to derive basic characteristics of
nonlinear evolution of the instability by using an idealized simple model. In Sec. 7 we give a
summary and a brief discussion on the comparison of our study with some previous related
studies. Finally, in Appendix A we show an exact self-similar solution for the one-dimensional
free expansion of a cold magnetized plasma into vacuum, which is useful for understanding

of our more complex problems.

I1I. Basic Equations and Initial Model

We assume that (1) two-dimension (2D) [V, = B, = 8/dy = 0 in Cartesian coordinate
(z,9,2)], (2) ideal magnetohydrodynamics, (3) a constant gravitational acceleration:(g)in

the negative z-direction. Then, basic equations are:
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where 1 is a specific heat ratio and is assumed to be 1.05 in this paper because the growth
rate of the undular mode of the magnetic buoyancy instability is larger for smaller +.35
The initial gas layer is in magneto-static equilibrium and consists of a cold isothermal
plasma layer, which is partly permeated by horizontal isolated magnetic flux sheet in zy < z <
zo+ D, and a hot isothermal, non-magnetized plasma layer above the cold layer. Hereafter,
the units of length, velocity, and time are H, C;, and H/C,, where H = C?/(~g) is the scale
height and C, is the sound speed in the cold layer. The temperature distribution is taken to
be
T(z) = Ty + (T — T3) [tanh (2 — 24r) 0r) + 1] /2., (7)

where T3/Ty (which is assumed to be=25 here) is the ratio of the temperature in the hot

“layer to that in the cold layer, z;, is the height of the transition layer between the cold and
hot layers, wy, is the temperature scale height in the transition layer (= 0.6H for allour
calculations, where H is the pressure scale height of the cold layer).

We assume that the magnetic field is initially parallel to the horizontal plane; B =
(Bz(2),0,0), and is localized in the cold layer. The distribution of magnetic field strength is
given by '

By(2) = [87p(2)/B(2)"? ,
where
B(z) = Ba/ £(2) , | (®)
f(2) = [tanh ((z — 2z0)/wo) + 1] [— tanh ((z — 21) /wy) + 1] /4 . |

Here, Bx is the ratio of gas pressure to magnetic pressure at the center of the magnetic flux
sheet, zy and 2; = 25 + D are the heights of the lower and upper boundary of the magnetic
flux sheet, D is the vertical thickness of the magnetic flux sheet. It is assumed that zq = 0,

D =4H, wy=w; =0.5H, wy = 0.6H, Bx = 1 for all of our calculations.




On the basis of the above initial plasma B distribution, the initial density and pressure

distributions are numerically calculated by the equation of static pressure balance

%[p+%l}+pg=0- (9)

We assume periodic boundary for z = 0 and Xmax(= 80), conducting wall boundary for

z =0, and free boundary for z = Znax(= 35).

I1I. Linear Stability Analysis

We here stu'dy the main characteristics of the linear instability of an isolated magnetic flux
sheet described in Sec. 2. We perform a linear stability analysis using the normal mode
method similar to those of Horiuchi et al® That is, we first linearize the basic equations
(1)-(6) by assuming B, = By + by, [bs/Bo| < 1, and b, = b, exp(iwt + ikya + 1kyy), etc.

After some manipulations, the linearized equations become

if _ [Dee Dey17¢
where |
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and

€=p06z7

N = iw (5§+ B"b”> ,
i

.2 — I e
K =kl+k,

and po and By are the quantities in the unperturbed state, and ¥,, §p, b, are perturbed
quantities. Here, we used the equation (10) of magnetostatic balance for the unperturbed
quantities, and T'= T'(z) and B = §(z) are given in equations (7) and (8).

The boundary conditions are ¢ = 0 and dn/dz = 0 on z = 0, and ¢ and 7 should vanish at
z — oco. The equations (10)-(14) are solved numerically for prescribed %, and k, using the
Runge-Kutta method to find an eigenvalue w and the corresponding eigenfunctions which
satisfy these boundary conditions.

Figure 1 shows the growth rates iw as a function of the horizontal wavenumber k, for three
cases fx = 0.5, 1.0, and 2.0 for k, = 0. It is seen that the instability occurs if the horizontal
wavelength, A, is larger than the critical wavelength, A, o 14H for fx = 1. (If D = oo and
~ = 1, the critical Waveiength is analytically calculated; A, :( 4mH/(142/B%)'/?).3® The most
unstable wavelength is o~ 20H (k, = 0.314) for Bx = 1. The growth rates for Bx = 0.001,
0.5, 1, and 2 when k; = 0.314 and ky = 0 are 0.19, 0.15, 0.12, and 0.08, respectively. From
these numerical results, we can construct an empirical, approximate formula for the growth
rates (for Bx < 2);

wy =~ 0.2(1 + 264)"Y2C,/H , (15)

It is seen that the growth rates tend to a non-zero value when Bx becomes 0 for finite D.
This behavior is quite different from that for the case of a non-isolated field,*” where the
growth rates tend to zero when Bx becomes 0. This is because in the case of isolated field the

density is locally larger just above the flux sheet than in the sheet, i.e., the density inversion
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occurs locally as in the case ‘of a familiar magnetic Rayleigh-Taylor instability.!—3

Figure 2 shows the 1D eigenfunctions (as a function of z) for some physical quantities.
It is noted that both velocities ¥, and ¥, are maximum at the height near the top of the flux
sheet (z ~ 8), and that they have non-negligible values even above the flux sheet. The same

is true for the magnet'ic field, density and gas pressure.

IV. Nonlinear Simulations

The MHD equations with v = 1.05 are solved numerically by using modified Lax-Wendroff
scheme with artificial viscosity.®'® We initially give the system small-amplitude perturbations
(Vinax = 0.01C,) having the same spatial distributions as those of linear eigenfunctions in
~ the unstable mode with A = 20H in the finite horizontal domain (Xmax/2 — A/2 < z <
Xmax/2 + A/2).

Figure 3 shows the time evolution of magnetic lines of force, the velocity field, and the
density distribution. As the magnetic loop rises, the gas slides down along the loop. Spikes
of dense regions are created on the valleys of the undulating field lines, whereas the rarefied
regions are produced around the top of magnetic loops. The most salient characteristics in the
nonlinear stage (¢ > 40) is the approximate self-similar pattern of magnetic loop expansion;
_ the rise velocity of the magnetic loop and the velocity of downflow along the loop increase
with height as the loop expands and ascends. Figure 4 shows some physical quantities at
& = Xpnax/2 (midpoint of the magnetic loops), indicating approximate self-similar behavior

as a function of height. We also find
Ve=az ; Vi=asz, (16)

where a 22 0.06 (for ¢ < 60), a2 ~ 0.3, and 2 is the height measured from 2zo(= 4).! On the -

!Note that hereafter we often use z as the height from zq = 4, the base of the magnetic lux sheet, instead
of the height from the bottom of the computing box when discussing the self-similar behavior of the magnetic
flux expansion. However, the latter definition is used in all figures of simulation results.
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p Xz : Bpox 2zl (17)

Figure 5 shows the time evolution of the Lagrangian displacement of a test particle at
the midpoint of the loop in the simulation results. In the initial stage, the growth rate of the
perturbation amplitude agrees well with linear theoretical values (w; = 0.12). The amplitude
increases exponentially with time even in the nonlinear stage (¢ > 40); z o exp(w,t) and

wp ~a~0.06 ~w/2.
V. Self-Similar Solution

A. Nonlinear Instability

We shall now look for a self-similar solution of the problem by analytical method. We have
the following relation from Eq. (16); 8V, /87 = 8V, /0t + V,0V,/0z = aV,, where T is the

| time in Lagrangian coordinates, while ¢ and z are the Eulerian coordinates. This leads to

Va(&,7) = al exp(aT) , (18)

where { = zexp(—ar) is the Lagrangian coordinate.
We assume the quasi one-dimension (1D) for the problem, i.e., we consider only vertical
(#)-variation of the physical quantities at the midpoint of the loop. The basic equations of

our quasi-1D problem are

g—f;- V) (), (19)
(5 ) [ (&) 5] &
| & =3 (B Vi), (21)

where R is the radius of curvature of field lines at the midpoint of the magnetic loop. The last

term on the right hand side of Eq. (20) is in a simplified phenomenological form in order to
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~ keep the variation in one (z)-direction. Here we neglect the gas pressure and the gravitational
forces in Eq. (20), and the reason will become clear after the self-similar solutions are found.
The neglect of B,-related term in Eq. (21) may be justified because B, < B, near the

midpoint of the magnetic loop. A central Anzatz of the present quasi-1D model is
B(pVa)/0a = (N = 1)8(pV.) /0 (22

where N is assumed to be constant. The left-hand term in Eq. (22) corresponds to fluid
leaking along the field line away from the midsection of the loop because the bent loop allows
the fluid to eécape under the gravitational influence. Here, we measure the amount of matter
leakage in the horizontal direction in terms of the vertical flow motion. If N = 1, no leakage
arises, which corresponds to a pure 1D motion. In order to have matter leakage, N < 1.
N —1 is a parameter that measures severity of matter leakage in the z-direction.

We further assume R = ¢z and ¢ = constant, which is a manifestation of the self-similar
evolution of the spatial pattern of the loop, as observed in Fig. 3(c).

Under these assumptions, a particular self-similar solution, that satisfies our empirical

velocity functions (16) and (18) and quasi-1D MHD equations (19)—(21), is found;
p =016 Mexp(—4dat) = 0927+ M exp(2qat) , (23)

B, = bi¢ 7 Y exp(—ar) = bz " Yexp(gat) , \ (24)

where ¢ = 3N/[2(1—-N)], oy = 0(¢ = 1), by = afdnr,/(g+1 -—1/0)]1/2. The simulation results
(17) [see Figs. 4(c) and (d)] indicate the analytical solution with N = ¢ = 0, which leads to a
steady solution in Eulerian coordinates in Egs. (23)-(24). The physical reason why we obtain
N =~ 0 will be explained in Sec. 6. Our self-similar solution leads to pg/[0/8z(B2/87)] x z~1
and Op/0z/[0/02(B2/8x)] =~ (Cs/V4)? < 2~ 2. Hence, as the magnetic loop rises, both forces
decrease more rapidly than the magnetic force; as long as above force ratios are less than

“unity at ¢ = 0, the neglect of the gravitational and the gas pressure forces in the nonlinear
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evolution is valid, while the nonlinear growth rate a is found to be related g (see Eq. (101)

in Sec. 6.3).
B. General Self-Similar Analysis and Solutions

In this subsection, we shall show that there is another class of self-similar solutions with
power-law time dependence, in addition to the empirical solution with exponential time
dependence discussed in the previous subsection.

We further consider why V, is proportional to z. Table 1 summarizes solutions found
in this subsection. \One of the power-law solutions has the characteristics that V, o« z/t,
p < z7% B, « z7!, and explains the behavior of simulation results after ¢ > 60 in Fig. 4(a);
after the magnetic loop enters the hot layer.

In contrast to the previous subsection and Shibata et al,'° we here use the cylindrical
coordinate (r,8,y), where r is the radial distance from the point (Xmax/2, 20), 2o is the base
height of the initial magnetic flux sheet, and 6 is the angle measured from the vertical line
towards the positive z-direction. (Hence we have r ~ z for || < 1) This is because the
magnetic field configuration tends to have the current free configuration of (B,, By, B,) o
(1/7,0,0) as time proceeds, so that the equation becomes simpler in the cylindrical coordinate
than in the Cartesian coordinate. We also find a new solution, a force-free solution, which
are not found in the previous analysis.°

We now write the quasi-1D equations (19)-(21) in the cylindrical coordinate.

Op 0 0 '
i —@;(TPVT) - W(PVE) ) (25)
oV, _ov,\ [0 (Bh) B
(B %) =~ 5 () 7 (26)
0By @
= —5;(39W) , (27)

and we assume again R = cr, and
0 0
g (PVe) = (N = 1)——(roV:) .
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As in the standard self-similar analysis,'''%!3 we seek a general self-similar solution by

adopting the new dimensionless independent variable

C:Z_('Ifj’ (28)

2
= = 29
r=r, (29)

where Z(t) is the scale function, with dimension of length, and ¢, is a normalization constant

for the time. We further assume

Vo= 20/t (30)
p=E()o(0), | (31)
By = (4nSZ23Y?6(¢) /1o , (32)

where v, o, and b are nondimensional quantities with only (-dependence, and the dot repre-

sents d/dr. Substituting Eqgs. (28)~(32) into Eqgs. (25)—(27), we have

$Z A o'

S5+ +N +(No—()—=0, - (33
YA vy 1 ‘

Z7Z 1%Z ¥y, -

7 tazp T -0+ =0, - 39)

where ' = d/d(.
We adopt the boundary condition for v(¢)

v(¢=0)=0 " (36)

because there is no magnetic flux below ¢ = 0, and thus the fluid is stationary there. Thus,

v({) may be written as a self-similar function that satisfies Eq. (36),

v(()=¢", , (37)

12




where § is a positive real number. We now consider the solution of Eqs. (33)—(35) for

boundary condition (36) for both ZZ/Z? =1 and # 1.
a) Case ZZ/Z%#1
In this case, Z may be written as
Z = ZyT® (38)

where Zo is a normalization constant. We also assume that ¥ has a similar power-law

dependence on 7,

Y= Sor?, (39)
where % is a density normalization constant. We consider two separate cases, § # 1 and
d=1.

i) 6+#1
Equation (35) can be Writtlen, by using Eqgs. (37), (38), (39), as

Y_ 2 g+d st f e (40)
b (-v T (1-¢Y)

The right hand side of equation (40) diverges at ¢ = 1 unless the numerator vanishes when

the denominator vanishes. Thus, we impose

a—1  p '
= 41
—tg-=-9%, (41)
which yields
v 6 '
It follows from equation (42) that
b=0b(""°, (43)
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with by a constant. Similarly, Eq. (33) reads

o §+N(’U'+%)

- ¢(—Nv (44)

If N # 0, the solution of Eq. (44) becomes
o = O']_C_E, (45)

‘and B/a = —(1 +§), where oy is a constant. Inserting Eqs. (43) and (45) into Eq. (34), we

obtain
a—1

_ 02 _oso1 (1
T -+ 2 261(2_5)=0' (46)

It is apparent that the left-hand side is not identically equal to zero. Thus, when N s 0,
there is no solution with § s 1. Physically speaking, the solution with § # 1 diverges at a
finite distance from the origin, so that such a solution is not acceptable.

On the other hand, Eq. (34) with N =0 yields the solution
o =005 (47)

Note that Eq. (47) differs from Eq. (45) because 8/« is not necessarily equal to —(1 + &) for
Eq. (47). Inserting Egs. (43) and (47) into Eq. (34), we have

- 2 |
@1 +6(¢ 1)+ b—lC"‘%_g—l (l - 5) =0. (48)
(o] (&
This equation is identically satisfied when
a—1 |
= 6=0, (49)
—35—é—1=6—1, (50)
et
2
5+ﬁ<l—5>=0. (51)
g1 \C
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From Eqgs. (49) and (50), we have oo = 1/(1 — §), and B/ = —46. The solution for N =0

1s summarized as follows:

_ Zoaf_la_—l_ Zo(?")aT-l
W—ate’r ¢ —ato Zy ’ (52)
p= 20017'_4(0‘_1)4_4(71) = o0y (_Zr—o) = ] (53)
a=—1 T _(O‘T_l)
By = BoblT—(a_l)C_(T) = Boby <Z_0> ’ (54

where By = (e /to)(4750) 2, by = [601/(6 — 1/c)[/?, and 6 = (e — 1) /v
Note that (7,() are Lagrangian coordinates, and Eqgs. (52)—(54) are steady solutions in
Eulerian coordinates. We consider only an expansion flow 7 = Zor® with o > 0. In this

case the solution with § > 1 is not permitted. However, if we assume

1

(1. — T)TE:T

Z = ZO(Tc - T)aZO ) . (55)

% = So(r, —7)° (56)

for & < 0 or § > 1 instead of Egs. (38) and (39), the solutions (52)-(54) are applied for
6 > 1. Here, 7. is a non-zero constant depending or the initial condition. In this case, 7 in
Eqgs. (52)-(54) should be replaced with (7. — 7), and the Lagrangian velocity is

1

V< (r.—71)*1 = - __7-)3'5—1

, | (57)

1

so that the velocity becomes infinite in a finite time.
" On the other hand, when § — 1(a — o0), the solution becomes V, o« r, p o r~4
By o< r~1. The dependence on r of these solutions is the same as in our empirical self-similar

solutions with exponential time dependence (see Sec. 6.1 and b.ii).

i) §=1
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In this case the basic equations become

B

o.l

E+2N+(N“1)C;—O, (58)

a—1, [y 1
> C+;(g+zz>—07 (59)

a—1 B
o ‘|‘27;-|-1—0. (60)
Thus, when N = 1, we obtain

/3 =2—4da 9 (61)
o= oyt | - (62)
b=b (7", | (63)

where the constants are defined as b = (N — 1/a)/(1 — N), and b = [o3(1 — @)/ /(=1 —
h +1/c)[*/2. Then Eqs. (30)-(32) give rise to

Zo —1 T
= 2ol = g 4
Vi=a o (=az, (64)
. 2(1+ha) —4—2h
o= Do B (L) (1) @
to Zo
1 ho r —-1-h
By = Bobyr~a(™h = Byb, (—> (——) . (66)
to Zo

It should be noted that the coordinates (7, () are Lagrangian coordinates.

When N =1, we have the following solution for ¢ = 1,

a=1, (67)
=2, | (69)
Zo T

_Z0._T 6

v=Zor, (69
w2 -
p = Zoo17 2 (H* = Toon (—t') <L> ; (70)
to 2o
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-1
By = Bobir (™" = Boby (1) (1)
0

where By = (4750)Y2 2y /to, V4 = r/t, and p is an arbitrary constant. This freedom comes
from the decoupling of the inertial term and the magnetic force term in the equation of
motion, Eq. (59), because the inertial term becomes exactly equal to 0. This solution belongs
to a force-free (J x B = 0) solution, and we will study more general force-free solutions in

Sec. 6.2.c.
b) Case ZZ/2% =1
In this case, we have the solution varying as
Z = Zyexp(aT) . : (72)
We assume that the density ¥ also has exponential time dependence,

Y = Ygexp(nT) . | v (73)

)61

The formulation and results are similar to those for N # 1 of a.i; there is no solution
with 6 # 1. It should be noted that there are no solutions with § # 1 even for N = 0 in this

case.
i) 6 =1

The basic equations are

n o’
—+2N+ (N ~1)(==0, (74)
B2y 1
C+;(z+z)=0, (75)
In
2452 =0. | (76)
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Thus for N # 1 we have

n
o= 0‘14"'4_217 y (78)
and
b= blf—l_p , (79)

where p = N/(1 — N), and b, = [01/[1/(1 — N) — (1/0)]]1/2. The solution is summarized as

follows:
Ve = (aZo/to)( exp(at) = (a/to)r . (80)
| r\ 4% t
p = Boo1{~** exp(—4at) = Tyoy <—) exp [2pa—} , (81)
. Zo to
r\ 1P t
By = Bobi("'"? exp(—aTt) = Boby <—> exp [PC@—‘] . (82)
Zy to

This exponential solution, which is one of the four possible solutions (Table 1), is essentially
the same as our empirical solution in Sec. 6.1 (23) and (24). (Note that p = N/(1 — N) is
different from ¢ = 3N/2(1 — N ) in Eqgs. (23) and (24) because the geometry is different.) It

should be noted that there is no solution for N = 1 in this exponential case.
c¢) Force-free solutions

Let us now consider force-free solutions, i.e., solutions satisfying J x B = 0. In this case,
the inertial term dV, /dt becomes identically zero, since we assumed that the gravity and the

pressure force are neglected. Thus we have

V,=r/t. (83)

Equivalently, the following functions
Z = Zot , (84)
v=_¢, (85)




satisfy the force-free condition as evident from equation (34). (Note that Eq. (84) corresponds
to o =1 in (38).) From the condition that the third term should vanish in Eq. (34), we

obtain

c=1, b=b/(, (86)

where b; is an arbitrary constant.
Since the inertial term and the J x B term decouple in the equation of motion, we do

not have to assume equation (32), so that we may write
By =W(r)b(¢) - (87)

Hence Eq. (35) is replaced by

W Z v |
T = ,—_ . 3 8
WZ—I-(U C)—b—l—v 0 (8 ) |

Inserting Eqs. (85)—(87) into (88), and assuming

W = Wor” | (89)

we find A
v=-1. (90)

On the other hand, Eq. (33) becomes

ﬂ+2N+(N—1)C%I=O. ©(89)

)

When N = 1, this equation leads to B = —2. Therefore the solutions in this case are

essentially the same as Egs. (67)-(71). When N # 1, from (89) we have
o= (PtY, (90)
where w = (84 2)N/(1 — N). The solutions are summarized as follows:

V= (Zofto) =/t o
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By = Wobyr™ ¢t = Wby (r/Z0)™, | (92)
pP= EoUlTﬂCﬁ+w = anlthw?‘ﬁ-}-w . (93)

The force-free solution for N = 1 described above corresponds to a one-dimensional
‘version of Low’s'* two-dimensional self-similar solution, although he did not discuss the

solution with N # 1, i.e., the solution with downflows.

VI. Physical Interpretation of Numerical and
Analytical Results

A. Classification of Evolutional Stage by Curvature Radius of
Magnetic Field Lines

On the basis of numerical and analytical results obtained in previous sections, we can. con-

struct a rough model of linear-nonlinear evolution of the undular mode of the magnetic

buoyancy instability. A key physical parameter is R, a curvature radius of magnetic field

lines at the midpoint of the loop. In the linear regime, R decreases with time (or height),

- Ry = (A/27)?/z, while R increases with time (height), R, = cz (Fig. 6). The transition.

from the linear regime to the nonlinear regime occurs when the two radii become equal,
Ry = R,. This occurs at the height z = z, = )\/(27c"/?), where the curvature radius is
R = R. = c*/?)\/2x. In our model, z, ~ 3, because A = 20 and c is of order of unity. The

actual curvature radius in the simulation results at z ~ z, is not equal to R., but is somewhat

larger than R. and is nearly constant (~ Rp) near z,. This stage (called Stage II) corre- -

sponds to the nonlinear stage characterized by the exponential expansion of magnetic loops
(Fig. 6). When R begins to increase with height, the nature of the magnetic loop expansion
gradually changes from the exﬁonentia,l to the power-law type expansion. In Sec. 6.5., we
will calculate the second critical height 2z beyond which the éolution has the power-law time

dependence.
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B. Non-Equilibrium in Magnetic Flux in Nonlinear Stage of the
Undular Magnetic Buoyancy Instability in Isothermal Layer

We here discuss why the magnetic flux expansion initiated by the undular instability does
not decelerate in an isothermal layer in the nonlinear stage. Fillst, we should note that the
vertical thickness (D) of .our\ flux sheet is not thin; D = 4H > H, where H = C?/(yg)
is the pressure scale height. Therefore, the thin tube approximation (D < H) cannot be
used; i.e., B # constant inside the flux sheet. Secondly, we note £ = 1 initially, so that the
magnetic pressure cannot be assumed to be a perturbation. For these reasons, we have to
consider internal structure of the flux sheet as shown in Fig. 7. The expanding flux sheet
may be approximated by a currént free (potential) magnetic field because plasma pressure
(or, equivalently plasma f) is decreased inside the flux sheet owing to the downflow along
the field line. If the potential field is approximated by the field illustrated in Fig: 8; the -
field strength at the midpoint of the loops is B,  exp(—z/Hy,), where H,, = \/= - 6.4H.
Thus the magnetic pressure decreases with height; p,, o exp(—2z/H,,) = exp[—z/(3:2H)].
On the other hand, the gas preséure outside the magnetic flux decreases with height as
pg x exp(—z/H). Consequently, if 8 = 1 at the base of the flux sheet, the magnetic presstre
at the top of the loop cannot be balanced with the outside gas pressure. This is the reason
why there is no saturation (or non-equilibrium) in the nonlinear stage as long as the gas
layer is isothermal. There is a critical horizontal wavelength, A\, = 27 H, beyond which there

is no equilibrium state. In other words, the necessary condition for the non-equilibrium is
A > )\2 =7H . (94)

In our case, A = 20H, and hence this condition is satisfied. [For more exact treatment, see
Ref. 15]. It is interesting to note that the above condition is the same as that for the thin

tube.?
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C. Nonlinear Evolution in Stage II: Exponential Expansion

In this subsection, we consider the nonlinear evolution of magnetic loop expansion in stage II
around z ~ z, (Fig. 6), and derive basic formulae found in numerical and analytical studies
in Secs. 4 and 5, using an idealized model illustrated in Fig. 9.

We first consider the motion of a fluid element at s along the magnetic loop, where s
is the distance from the loop top along the loop. If the gas pressure is neglected, the fluid
element falls freely along the loop due to gravity. The equation of motion along the loop is
written as

dV,/dt = d*s/dt* = gsinf ~ gf ~ gs/R , (95)

for < 1. f R o~ Ry is nearly constant in time as discussed in Sec. 6.1, we find

s o exp(Q) (96)
V, = Qs o exp(Q) )

where
Q= (g/ Ry | (98)

We next consider the vertical motion of alocal part of the loop (shaded area in Fig. 9) near
the midpoint of the loop, and assume V; = az in Eulerian coordinate and thus V, o« exp(at)
in Lagrangian coordinate on the basis of numerical results in Sec. 4. The cross-sectional area
of the loop is A, and by assumption V, = dA/dt and A « exp(at). From conservations of
magnetic flux and mass, we have B, = 1/A « exp(—at) and pAs=constant, respectively.

Then the density inside the shaded area decreases with time as
p o exp[—(Q + a)t] . (99)

The relation between a and Q is found from the consideration of the equation of motion

in z-direction,

v, 10p 1[0 (B?\ B2
AL R el . 1
ot g p0z p [az (8% ) + 47rRJ (100)



The term in the left hand side scales as exp(at) by the assumption V, o< exp(at). The
first term in the right hand side, i.e., the gravitational force term, is constant in time. The
second term (the gas pressure force) scales as oc exp(—at), and the third term (the magnetic
pressure gradient force) o ekp[(Q — 2a)t]. Since initially the first and second terms are
comparable to the third term because § = 1, the first and second terms can be neglected
in the later stage if & > 2a. The fourth term (the magnetic tension force) is in proportion
to exp[(Q — a)t] if R = Ry = constant. Although the magnetic tension term increases with
time more rapidly than the magnetic pressure term, the former is much smaller than the
latter in the early stage, and hence may be neglected before it becomes comparable to the:
magnetic pressure term. In later phase of Stage II, the tension term has the time dependence
of oc exp[(f2 — 2a)t], which is the same as that of the magnetic pressure. Altogether, we find
that the left-hand side (o< exp(at)) should balance with the third term in the right hand'side -
(o< exp[(© — 2a)t]), and thus a = Q — 2a, or

0 1/g 1/2 :

From this relation, we find that the parameter NV introduced in Eq. (22) should be equal to

05
8(pV2)/0
0(pV2)/ 0=

because p o exp[—(© + a)t] = exp(—4at) x 274, V, = Qs ~ Qz = 3az, V, = az. Since

N=1+ =1+ (3az™")/(=3az"*) =0,

Q = (g/Ro)'/? is of order of the linear growth rate (w;) of the undular instability, the nonlinear
growth rate w, = a is also of order of the linear growth rate; i.e., w, =~ /3 ~ w;/3. This
explains the numerical results found in Fig. 5. Consequently, one can understand that the
exponential time dependence of the physical quantities in the Lagrangian coordinate found
in numerical and self-similar solutions originates from the exponential time dependence of

the downflow speed along the loop due to gravity as shown in Eq. (98).
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D. Nonlinear Evolution in Stage ITI: Power-law Expansion

As the magnetic tension force becomes comparable to the magnetic pressure force, the nature
of the expansion changes. That is, the curvature radius increases with height, and the whole
magnetic configuration becomes close to that of the potential magnetic field produced by a

line current at (z,2) = (X;maz/2,0);
B, x z/(Az? + 2%) , (102)

B, x —Az/(Az? + 2%) (103)

where Az = & — Xy, /2. The distribution of B, at the midpoint of the loop (Az=0) in
Stage II already has the same distribution B, o< 1/z as that given by Eq. (102).

We now show the reason why the expansion law changes from the exponential to:the
power-law one. Suppose that the curvature radius R is in proportion to s. In this case, we
have

d%s s

—_— g — ' 104
a2 IR =9 - (104)

where gg = gs/R = constant. Then we find s = got?/2 and

This has the power-law time dependence, and this may be the origin of the power-law

expansion of the magnetic flux. On the other hand, the equation of motion vertical to the

110 (B? B?
it |5 (%) - 22z -

If the right-hand side is exactly equal to zero, i.e., if the magnetic field is exactly the potential

loop is

field, we have also the power-law solution for V;

V.=Vo=2z2/t. (106)
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These solution satisfies the mass continuity equation

0 0 0 |2
3—5 = =55 (PVs) = 5-(oV2) - % ) | (107)

if

p=poz?*,
where po is a constant. Note that we assume z = r and R = r in Eq. (107) where r is the
radial distance from the origin (z,2) = (Xmax/2,0) in the cylindrical coordinate (r,8). The
distribution of B, in the potential field (Egs. [102] and [103]) also satisfies the induction

equation (see Eq. [21]). Consequently, we find that the power-law solutions discussed here

correspond to one of the power-law solutions discussed in Sec. 5.2 (the case of # = —4 and

N =0 in Egs. (91)—(93); see also Table 1).

E. The Second Critical Height z; and the Maximum Veloc1ty of
the Magnetic Loop

We calculate the second critical height z; between Stages I and III (Fig. 6). This height
corresponds to the height where the curvature radius (R, = cz) of magnetic field lines in

nonlinearly expanding magnetic flux becomes equal to Ry. Thus we have
Zy = Ro/c . (108)

To calculate z; as a function of 8% and H, we use the relation between the nonlinear and

linear growth rates,

Q/3 ~ w2 . (109)

By using Eq. (98), Q = (g/Ro)"/?, and the approximate ana,lyticél expression for the linear
growth rate (for fx < 2) in Eq. (15), w; =~ 0.2(1 + 26%)~Y/2C,/H, we find

Ro ~ 10(1 + 26 H . (110)
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When Bx ~ 1, we find Ry ~ 30H and thus z; =~ 30H/c ~ 30H if ¢ ~ 1. This value seems
to be consistent with the approximate critical height found in numerical simulations (see
Fig. 4).

Since the Stage III has not yet been studied in detail by nonlinear simulations because
of some numerical difficulties, it may be premature to discuss the properties of the power-
law solution shown in the previous subsection. Therefore we here discuss only that there
is a maximum velocity (Vimax) of the magnetic loop expansién, if the analysis in Sec. 6.4 is
correct and hence the velocity of the magnetic loop in a Lagrangian frame is nearly constant
in Stage III (see Eq. [106]). If the gas layer is isothermal in infinite space, this velocity

corresponds to the terminal velocity, and is simply evaluated as
1
Vinax = 02 = gwiRo o (1 + 2B%)/*C, | (111)

for Bx < 2. Thus the maximum velocity is ~ 1.7Cs when Bx = 1, consistent with simulation

results.

VII. Summary and Discussion

A. Summary

In this paper, we studied the linear and nonlinear two-dimensional evolution of the undular
magnetic buoyancy instability, which is called the ballooning instability in fﬁsion plasma
physics and the Parker instability in astrophysics. Main results are summarized in the
following;:

(1) We first (in Sec. 3) studied the linear characteristics of the undular instability of an
isolated horizontal magnetic flux sheet with a vertical thickness D = 4H embedded in an
unmagnetized isothermal plasma stratified under constant gravitational acceleration, where
H is the pressure scale height in the ambient unmagnetized plasma. We found that the flux

sheet is unstable for the long wavelength perturbation with kHB(/\ > A >~ 14H), and that
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the linear growth rate is approximately given by w; ~ 0.2(1 + 26%)~*/2C,/H. for the most
unstable wavenumber k, ~ 0.31/H and Bx < 2, where B is the ratio of gas pressure to
magnetic pressure in the initial flux sheet, and C; is the initial sound speed. The growth
rate in a very early stage (0 < t/(H/C,) < 40; see also Figs. 5 and 6) of the instability in the
numerical simulation agrees well with the linear growth rate obtained from a semi-analytical
theory.

(2) Numerical simulations (Sec. 4) show that in the early nonlinear stage of the instability
(40 < t/(H/C;) < 60), magnetic loops expand self-similarly with characteristics of the
nonlinear instability in a Lagrangian frame, because the loop ié evacuated by the field aligned
motion of matter due to gravity. The rise velocity, V,, of the inagnetic loops and the local
Alfven speed, Vy4, at the midpoint of the loops increase linearly with height (V, =~ az,
Vi = ayz), while the density, p, and the magnetic fleld strength,B,, decrease with: Lieight.
with the power-law distribution (p & 274, B, o z7!). These are nearly steady in an Eulerian
frame, but change exponentially vsnrithA time in a Lagrangian frame. The nonlinear growth
rate a is found to be ~ w;/2 for 0.5 < Bx < 2.

A quasi-1D self-similar analytical solution with characteristics of the nonlinear instability
in a Lagrangian frame is found (Sec. 5.1), which explains above simulation results very well.

(3) We also find from numerical simulations that in the later .sta,ge (t/(H/C,) > 60) of
the nonlinear evolution of the instability, the time dependence of the self-similar magnetic
loop expansion changes from the exponential to the power—law. This corresponds also to the
stage when the magnetic loop enters the hot layer (z/H > 20).

More general self-similar analysis in the cylindrical coordinate (Sec. 5.2) shows that there
are in fact several self-similar solutions with power-law time dependence (Table 1). One of
the solutions (a force-free solution with N ~ 0, ,Byz —4) has the characteristics that V, o r/t,
p X ?‘;4, By x r1, ana seems to explain the simulation results in the later nonlinear stage.

(Note that r o~ z for |§| < 1.) The force-free solution with N = 1 (i.e., without downflow
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along magnetic loops) correspond to the one-dimensional version of two-dimensional self-
similar solutions studied by Low.*

(4) A simple phenomenological theory is developed to explain simulation and analyt-
ical results (Sec. 6). This theory shows that the three different evolutional stages (linear,
nonlinear-exponential, nonlinear-power law) are classified by the curvature radius, R, of the
magnetic field lines at the top of the magnetic loop (see Fig. 6). The exponential stage is
characterized by R ~ constant, while the power-law stage by R  z. The difference of the
time dependence between two nonlinear stages is likely to come from the difference of the
nature of the downflow along the magnetic loop; in the exponential case, the downflow speed
Vi o< exp(3at) for |§] < 1, while in the power-law case V; o t. If the power-law solution is ex-
actly equal to the force-free solution, there is a maximum loop speed, Viax = (14 28%)Y/2C,,
and the height of transition from the exponenfial to the power-law (force-free) solution is
given by z _~_ 10(1 + 208 H.

(5) We also found an exact self-similar solution for purely one-dimensional expansion
of a magnetized plasma into vacuum without magnetic field when the plasma motion is
perpendicular to the magnetic field and there is no gravitational field (Appendix A). The
solution has the characteristics that the maximum velocity of plasma is 2Vyo and time
independent, where Vo is the initial Alfven speed of the magnetized plasma. This solution

may be useful to understand the results of this paper.

B. Discussion

It is known that the rise velocity V4 of the bubble observed in the laboratory’® and in
the ionosphere!” tend to be steady in the Lagrangian frame and is in proportion to the
radius R, of the bubble; V; = agR;, where az ~ (1/3 — 1/2) x (g/Rs)'/? is of the order
of the linear growth rate of the Rayleigh-Taylor instability. This is similar té our results

that V, = az ~ aR, where R is the curvature radius of the magnetic loop, a ~ w;/2
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and w; is the linear growth rate. However, the rise velocity of our magnetic loop is not
steady in the Lagrangian frame, but iﬁcreases exponentially with time. This nonlinear
instability in the Lagrangian frame is also observed in the exact solution found by Ott!® for
the Rayleigh-Taylor instability of a thin, cold gas layer; which is supported against gravity
by a hot gas, with a second hot gas above the thin layer.'® In this case, the growth rat.e
in the nonlinear stage is exactly the same as that in the linear stage. Physically, this is
because cold gas in the thin layer freely falls along the curved interface between two hot
gases, and mathematically, because the nonlinear basic equations become linear ones in the
Lagrangian frame.?® Although the nonlinear growth rate is not exactly equal to the linear
growth rate in our case, the involved physics is common between ours and Ott’s problem;
the exponential growth in the nonlinear stage is due to the .gravitational free fall along
the magnetic loop. That is, the equation of motion along magnetic loop in our problem
is written as d®s/dt? ~ (g/R)s as shown in Eq. (26), where s is the horizontal distance
from the midpoint of the loop. This equation has the exponential solution with the growth
rate of (g/R)*/?. In addition to this character of nonlinear instability, our solution has the
self-similar property, which is not in Ott’s solution.

Finally, we note that the magnetic flux expansion considered in thisvpaper is similar to
the free expansion of a magnetized plasma into vacuum in some sense, because the magnetic
pressure at the top of the magnetic flux is much larger than the ambient gas pre;sure.
There is, however, one important difference between our case and the pure one-dimensional
expansion of a magnetized plasma where there is no gravity and hence the plasma flow
vector is exactly perpendicular to field lines (Appendix A); in the latter case, the expansion
- velocity is constant, while in our case the velocity increases with time (or height) in the
exponential phase (Stage II in Fig. 6). This is because the magnetic loop is evacuated by

the downflow due to gravity along the loop, which increases the local Alfven speed inside the

loop. If there is a high pressure plasma above the expanding magnetic flux, the acceleration
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of the magnetic loop soon ceases, and the entire flux is decelerated to find a final equilibrium
state.?

The authors thank Drs. W. Horton, J. Van Dam, R. Steinolfson, R. Rosner, M. Nambu,
and B.C. Low for useful discussions. Computations were performed on FACOM VP200 at
the Institute of Plasma Physics, Nagoya University. This work is supported by NSF, NASA
and USDOE. -

Appendix A
Self-Similar Solutions for 1-D MHD Free Expansion

We present in this Appendix a self-similar solution for the one-dimensional ekpansion of
magnetized cold gas into vacuum.

The problem may be described as follows. Initially, a static gas layer with uniform density
po is situated in a half space (z < 0). A uniform horizontal magnetic ﬁeld B, penetrates
the gas layer. The region z > 0 is a vacuum, where there is also no magnetic field. The
magnetized gas then expands into the vacuum due to the magnetic pressure gradient, and a
rarefaction wave propagates back into the static magnetized gas layer. We assume that gas
pressure and gravitational forces are zero, and that the magnetic field is frozen into the gas.

Since this problem contains a characteristic velocity Vo, the initial Alfven speed in the

magnetized gas layer, the scaling function Z in Appendix A may be written as

Z = Vot , (A1)
where
Ba:O
VAO = W . (A2)

It is apparent that the gas motion is one-dimensional, 8/9z = 8/9y = V, = V,, = 0. We can

then take N = 1 and ¢ = oo in Eqs. (33)-(35), and can omit the curvature term Nv/¢ in
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(33). (Note that r in Sec. 5.2 corresponds to z here.) We also assume that ¥ in Eq. (31) is

independent of time and is equal to po. Equations (30)-(32) then read

Vi = Vaov(() ‘ (A3)
o= poo(() (A4)

where ¢ = z/Vyot.
Basic Eqgs. (33)—(35) may be written as

o.l
vrw-0Z =0, - (46)

bt
(-0 +Z =0, (47)

b/ ' .
(v—{)z—}-v':O. , (A8)
Boundary conditions are given by

o((=-1)=0, . (49)
o(¢=-1)=1, (A
¢=-1)=1, ' (A11)
because { = —1 corresponds to the front of the rarefaction wave propagating into the initial

static magnetized gas layer.
From Egs. (A6) and (A8), we find
b=o, | (A12)

by using boundary conditions (A10) and (A11). From Eqgs. (A6), (A7) and (A12), we obtain

c=(({—-v)?. (A13)
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Inserting equation (A13) into Eq. (A6), it follows that
o = ; . (Al4)

Thus, using boundary condition (A9), we have the solution

2
v= 5(( +1). (A15)
The equation (A13) then leads to
1 , |
The solution can now be summarized as
v, =2y ( ‘ +1> (AL7)
_1 ( z _2>2 (A18)
1 z 2
B,==By|—=-2) . Al9
9 0 (VAot > . ( )

The region where this solution is applicable is ~1 < 2/Vyot < 2. Note that the maximum

velocity is constant, 2V, at 2 = 2V)t.
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Figure Captions

1.

Linear growth rate (iw) of the undular mode of the magnetic buoyancy instability
in the gas layer with an isolated magnetic flux sheet as a function of the horizontal

wavenumber k,. Three cases, fx = 0.5, 1.0, and 2.0, are shown for &, = 0.

The z-distribution of the linear eigenfunction in the case of k, = 0.314 and k, = 0.

The magnitudes are normalized so that (i0;/C's)max = 1.

Simulation results; (a) the magnetic field lines B = (B,, B,), (b) the velocity vector

V = (V,, V.), (c) density contours (log p).

The distributions in z of (a) the vertical velocity V;, (b) the local Alfvén speed Vy,
(c) the horizontal magnetic field (log B,), (d) the density (log p) at £ = Xmpax/2 = 40.
The numbers attached to the curves correspond to the following time (in unit of H/C,);

(1) t = 42.1, (2) 49.6, (3) 57.6, (4) 64.6.

The time evolution of Lagrangian displacement (Az,, = 2, (¢) — 21, (0); solid curve) of
a test particle. The dashed line shows the linear growth with w; = 0.121C,/H, and
the dash-dotted line shows the nonlinear growth with w, = 0.06C;/H.

. The schematic picture of the curvature radius R of a magnetic field line as a function of

the height z, and the classification of the evolutionary stages: I (linear), Il (nonlinear;
exponential time dependence), and III (nonlinear; power-law time dependence). The
solid curve shows the actual (but not exact) curvature radius of a rising magnetic loop,
the dashed curve with R = (A/27)?/z corresponds to the curvature radius of a loop in

the linear regime, and another dashed line (R = cz) shows that of the nonlinear stage.
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7. Schematic illustration of the expanding magnetic flux as a result of the undular mode
of the magnetic buoyancy instability with wavelength A\. Note that the thickness of

the sheet D is much larger than the pressure scale height H outside the flux sheet.

8. An example of the potential magnetic field when the horizontal wavelength is fixed to

A even in the nonlinear stage.

9. An idealized model for the rising magnetic loop with downflow along it due to gravity.
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Summary of Self-Similar Solutions

ZZ]Z*#1 |64 1|N # 0|no solution

N = 0|V, o 727070000 o

By o 778/(1=8)¢=8 o p=6

p o TH/(1-8) 48 o p—t5
a=1/(1-19)

cline2-4 [Z x7°)|6 =1|N # 1|V, oc 7¢71(* < 1/t

|By o r=e¢=1=h o g=hap—1-h

p oc TRmdar—4=2h o (2(1+ha),—4=2h
where h = (N —1/a)/(1 — N)

N = 1|same as the force-free solution

ZZ]7%=1 § # 1lany Nino solution

[Z xexp(ar)]  [6=1|N #1[V, < (exp(at) T

By o ("1P exp(—ar) o r717P exp(pat)
p o< (P exp(—ar) o< r~*% exp(2pat)
where p= N/(1 — N)

, N = 1{no solution
force-free 0=1N=1V, x { xr/t
[Z o 7] Byx 7t

p o T I TH o thEpH
a=1,¢=1,pu = arbitrary
N#1V, x(xr/t

Byx 7t xr?

p o Tﬁcﬁ-l-w o - Wphtw
w=(8+2)N/(1-N)
a=1,¢c= 1,y =arbitrary

Table INote: { = r/Z(7) is Lagrangian coordinate, r is Eulerian coordinate (height measured
from the base of the initial magnetic flux tube), r ~ z for |§] < 1, and § is the exponent of
velocity function (V. o< ).
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