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Chaotic transport in few degree of freedom Hamiltonian
systems is of considerable importance in various fields,
including plasma confinement, accelerator physics,
intramolecular dynamics, celestial mechanics, and condensed
matter physics. In two degree of freedom systems represented
by area-preserving maps, we introduce a Markov transport model
to describe various statistical properties in the irregular
components where there are no invariant tori to prevent global
transport. States of the Markov chain are regions delineated by

the stable and unstable manifolds of the hyperbolic periodic

orbits. We show that resonances give a complete partition of the
phase space in the supercritical regime so that almost all
points in the phase space are identified with particular
resonance states. We then apply the Markov model to a purely
chaotic system — the sawtooth map, and derive exact analytic
results for transport rates. These are compared with the
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numerical rates. We conclude that in the chaotic regime, the
Markov model gives reasonably good predictions for transport
properties in the irregular components. In order to calculate
transport rates for real systems in the chaotic regime, we need
to locate highly unstable orbits. We develop a numerical method,
the orbit extension method, for finding both unstable ordered
periodic orbits and the principal heteroclinic orbits between
two resonances. This method actually takes advantage of the
instability in the chaotic regime and gives both a stable and an
efficient prescription for finding unstable orbits.
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Chapter 1

Introduction




Generically, area-preserving maps have a phase space
which is divided between regular and irregular components. In
the regular components, the dynamics is mostly quasiperiodic
rotation on invariant circles called Kolmogorov, Arnol'd and
Moser tori; while in the irregular components, the motion is
chaotic with positive Lyapunov exponents. The task for transport
theory is to study the statistical properties and behaviors of
motions within and transitions between regions in the irregular
components.

Statistical properties of chaotic motions in an irregular
component can be described by a Markov partition, a partition
into regions with a list of allowable transitions between them,
such that for each allowable transition there is a unique orbit.
Indeed Pesin has shown that such a partition exists for
components on which the Lyapunov exponents are nonzero almost
everywhere [Pesin, 1977]. While we can always assign transition
rates between different regions, which may depend on the past
history of the orbit. If the transition rates are independent of
the past history, such a description is a Markov process.

The key concept proposed by MacKay, Meiss and Percival in
their 1983 pioneering work is the concept of partial barriers
formed from hyperbolic invariant sets, which impede transport
in chaotic regions. Transport from one region to another takes
place through turnstiles, the flux regions of partial barriers.
Overlaps of a turnstile with various regions gives the allowable
transitions. Assuming rapid mixing in the irregular components,
the flux from one region to another divided by the area of that
region gives the transition rate. Regions correspond to states in
the Markov chain. A natural choice of regions is through a
delineation of those partial barriers with minimum flux. It turns




out that in the chaotic regime, the minimum flux partial
barriers are characterized by the frequencies of ordered
hyperbolic invariant sets. Partial barriers are formed from
pieces of the stable and unstable manifolds of the corresponding
ordered hyperbolic orbits. For an irrational frequencies, such an
orbit is a cantorus, an ordered invariant set which is the
remnants of the integrable invariant torus. It. has a cantor set
structure. For a rational frequency, there are two partial
barriers with local minimum flux, the upper and lower partial
separatrices; these are built upon the upper and lower
minimizing homoclinic orbits.

- To facilitate practical calculations of transport rates,.
discrete Markov models are proposed. There are basically two.
choice of states: Regions bounded by the partial barriers of
cantori, or regions bounded by the rational partial separatrices.
In the former case, since irrational numbers are uncountable,
there are an uncountably many states in the model. This makes
the model intractable in practice. A discrete approximation can
be introduced by observing that "noble" cantori usually have
local minimum flux across them, so states can be chosen as
regions bounded by partial barriers with noble frequencies (the
noble numbers are countable).

Near criticality, flux through cantori obey scaling
relations, this is reflected in the actual transport properties,
for instance, the diffusion coefficient. However, far from
criticality, the choice of the noble partial barriers does not
seem to be useful to describe the actual transport processes.
This is because, unlike the critical case, we can no longer
restrict only to the noble cantori; in fact, all cantori have a
large flux, and usually these are all of the same order of
magnitude. Therefore, all cantori should be treated




"democratically"; the choice of noble cantori leaves out too
much of the details and structure in the actual transport
process. However, it is unclear how to choose a suitable, but
countable set of cantori to partition the phase space in this
case.

A more natural partition of phase space is to use partial
separatrices. They are formed from pieces of the stable and
unstable manifolds of the hyperbolic periodic orbits. Each
rational number defines two partial separatrices, upper and
lower. They have common end points at the corresponding
ordered hyperbolic periodic orbit. The region delineated by the
upper and lower partial separatrices is called the resonance for.
its kinship with a resonance in an integrable system. A
resonance is uniguely characterized by its rational frequency.
Resonances are countable, and according to both perturbation
theory and numerical results, the size of a resonance usually
decreases exponentially with the level of the rational frequency
in the Farey tree. So a finite state approximation of the Markov
chain is obtained upon neglecting expcnentially small regions in
the phase space.

In the supercritical regime where there are no rotational
invariant tori to prevent "global" transport, resonances must
take over the whole phase space so that almost all points in the
phase space are identified with some state in the Markov chain
and a reasonably good statistical description of the real
transport process i1s given by the Markov model. A more precise
reformulation of the idea of the complete partition of phase
space by resonances is that the area under an invariant set as a
function of its frequency is a complete devil's staircase.




In this dissertation, we show first that the area staircase
is indeed complete in the supercritical regime. We then apply
the Markov transport model to a chaotic area-preserving map —
the sawtooth map, which allows exact calculation of transport
rates. Through comparison of numerical studies and predictions
of the Markov model, we show that for large Lyapunov exponents,
the Markov modsl gives a good and sometimes an exact
description of the transport process. However, as one
approaches the integrable system, the discrepancies become
larger and the transport process is no longer completely
accounted for by the model. We also develop a numerical
technique, the orbit extension method, for finding highly
unstable orbits. This is necessary for the calculation of the.
actual transport rates. '

One topic not investigated in this dissertation is the effect
of boundary circles on the Markov model. Boundary circles are
invariant circles at the threshold of destruction.
Renormalisation theory predicts there is a critical scaling for
boundary circles; however, a complete understanding of these
renormalisation properties is still lacking. Scaling properties
near hierarchical boundary circles are believed to be the prime
reason for the long time correlations in the correlation
functions in the chaotic regimes.

This dissertation is organized a follows. Chapter 2 is a
brief review of Hamiltonian dynamical systems. | include some
basic concepts and techniques, and a few applications of
Hamiltonian dynamics. The material covered is not complete.
Some of the neglected topics are: Poisson dynamics,
perturbation techniques, bifurcation theory, linear stability, and
the Melnikov method.




In chapter 3, we review some basic facts of area-
preserving twist maps of the cylinder. Based on Aubry-Mather
theory, we discuss the recently developed concepts of partial
barriers, turnstiles and resonances and define the area devil's
staircase function. We relate the area function to the devil's
staircase discovered by Aubry [1983a] in the study of the
commensurate-incommensurate transition in the classical
Frenkel-Kontorova model. As a corollary, we show that
resonances give a complete partition of phase space in the
supercritical regime. This result also gives a practical way to
calculate the area under an invariant circle, a quantity which is
useful in applications.

Chapter 4 is a case study of a purely hyperbolic system, the:
sawtooth map. For this system, we analytically construct
partial barriers and resonances, and calculate transport rates.
The motivation is to pin down the effectiveness of the Markov
transport model in irregular components, and to get around
technical difficulties of mixed systems which complicate the
testing of the assumptions, especially the determination of the
locations and properties of boundary circles. We discuss
symbolic characterizations of orbits, construct partial barriers
and resonances, derive analytic formulas for flux and resonance
areas, and study escape dynamics from a single resonance. We
compare predictions of the Markov model with numerical
results, and conclude that the Markov model gives good
predictions for transport rates in the chaotic regime. However,
the theory no longer completely accounts for the transport when
the system is nearly integrable.

Chapter 5 is a discussion of numerical techniques for
finding various orbits important in the calculation of transport
rates. These orbits are typically highly unstable, indeed the




positivity of the Lyapunov exponent implies sensitive
dependence on initial conditions and is a key impediment to
devising stable numerical prescriptions. We develop the orbit
extension method, for finding ordered unstable periodic orbits
and the principal heteroclinic orbits between two resonances.
This method actually takes advantage of the instability and
gives both a stable and an efficient prescription for finding
unstable orbits.




Chapter 2

Hamiltonian Dynamical Systems




2.1 Hamiltonian Dynamical Systems

Hamiltonian dynamics has a paramount importance to the
study of Nature. As Newton says in his Principia, "the laws
which we have explained abundantly serve to account for all the
motions of the celestial bodies and of our sea".

2.1.1. Dynamical Systems

Dynamics is concerned with the motion of systems, that is,
their change of state with time t. The past and future of a
deterministic dynamical system is completely determined by its -
present state. The state of the system is described by a set of
first order differential equations

%%— = V(X)

(2.1.1)
where x is a point on an n-dimensional ¢f+1 differentiable
manifold #/ which we call the phase space of the system (A ¢f+1
manifold is a topological space where each point has a
neighborhood which is ¢f+1 diffeomorphic to &N, here we require
r= 1), v(x) is a ¢ smooth vector field on the manifold. Equation
(2.1.1) are the equations of motion of the system. The vector
field can also be time dependent; in the extended phase space
MxR, it can be treated in a similar fashion as the time
independent vector field.

For example, the equations describing the earth orbiting the
sun in polar coordinates are
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g2 dt r2

d (2d0)_

ot o)™ (2.1.2)

where G is the gravitational constant and Mg is the mass of the
sun. Though (2.1.2) is a set of two second order equations, it is
equivalent to four first order equations. In fact any set of higher
order differential equations is equivalent to a set of first order
differential equations, so there is no loss of generality in
restricting to first order equations.

Let x be the initial condition at time 0. The solution gix of
equation (2.1.1) defines a map gt from a into itself. The basic:
theorem of the theory of ordinary differential equations states
that locally the vector field v is diffeomorphic to a constant
vector field at any nonsingular point v # 0. Therefore, locally
this map exists and is unique, and is a diffeomorphism, since
constant vector field has a unique integral curve passing through
a given point. The ¢' smooth condition for the vector field also
guarantees the uniqueness of the integral curve at singular
points.

The local phase flow gl forms a local one parameter group
of diffeomorphisms

1) g0 = identity,
2) gt+s= gtgs for s,t small enough. (2.1.3)

By patching solutions in small neighborhoods in the phase space,
the solution can be extended uniquely to a finite or an infinite
time interval. In the finite extension case, the motion is
undefined at some finite time, and is referred to as terminating.
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For vector fields with compact support, the solution can be
extended bi-infinitely. Such solution gtis called a phase flow
and forms a one parameter group of diffeomorphisms.




2.1.2. Hamiltonian Dynamics

Hamilton's equations describe motion in a even dimensional
symplectic phase space #2", where n is the number of degree of
freedom (d.o.f) of the system. The coordinate chart is usually
parametrized by z = (q,p) = (1,92, ..., q",pT1,p2, ... ,p"), called
the symplectic (or canonical) coordinates. Hamilton's equations
are

dq _aH(a,p)

dt op

dp __oH(Gp)

dt = oq (2.1.4)
or

dz _

ot = JaH@) (2.1.5)

where J is called the cosymplectic tensor; it maps a differential
one form to a vector field. In symplectic coordinates

{01
J‘(-l 0 (2.1.8)

H is the Hamfltonian function. The vector field JdH is called the
Hamiltonian vector field.

A symplectic manifold (#2h, ®) is an even dimensional
manifold equipped with a closed nondegenerate differential two
form w

12




® =, o) dzixdz]
0 (2.1.7)

A two form is nondegenerate if w(§,n)=0V n < &=0for &, nin the
tangent space T#z. A nontrivial example of a symplectic

manifold is a two dimensional torus, where the symplectic form
is the area form. In symplectic coordinates, o is given by

o= dpiadgi=dp Adqg
i=1 (2.1.8)

which implies that the matrix

o=(9 5]

The two form w associates each vector § in the tangent
space Ta#z at point z to a one form in the cotangent space T*#%

by

Te =0 &)=Y otz .
] (2.1.9)

Since o is nondegenerate, this map in fact is an isomorphism.

Therefore, every one form is also associated uniquely with a
vector. We shall denote the isomorphism by J: Tafz —» T*wMz. J is

the cosymplectic tensor and is nondegenerate
Jij = (@~1)j] (2.1.10)

The most salient feature of the Hamiltonian flow gt is the
preservation of the symplectic area (Fig. 2.1)

JgtﬂmJﬂm (2.1.11)
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Where 2 is a two chain (a two dimensional surface), or
equivalently

(gh)" 0= o (2.1.12)

Area (4)= Area( 4")

Figure 2.1. Hamiltonian flow preserves the symplectic area

In particular, the phase space volume ®nis conserved under the
flow; this is Liouville's Theorem. In fact, the existence of a
Hamiltonian function is not necessary for this property: any
Locally Hamiltonian vector field (the vector field Jygenerated
by a close one form y) preserves the symplectic form. This is
easily verified algebraically by noting that the Lie derivative of
the symplectic form o under the flow vanishes. We give another
proof in section 2.1.3. '

Darboux has shown that locally a symplectic manifold has a
normal form: in a neighborhood of a points z in the symplectic
manifold #2N", one can always choose a symplectic coordinate

14
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(a.p) = (a1,02, ..., gn,p1,p2, ... ,pN) such that the symplectic form
o has the standard form (2.1.8).




2.1.3. Variational Principles and Vortex Flows

The Hamiltonian function in (2.1.4) can also be time
dependent. In this case the equations are essentially unchanged

dq _oH(a.p.t)

dt op

dp _ _dH(a.p.t)

dt oq (2.1.13)

Equations (2.1.13) can be cast into a variational form, the
principle of least action in phase space '

8Jy=0 (2.1.14)

where

y= pidg - Hdt = pdq - Hdt
5 (2.1.15)

under the free boundary condition

v=0at end points

Suppose we make a coordinate transformation from (q,p,t)
to mixed variables z = (20, z1, ..., z2n)

pi = pi(z0, 21, ..., z2n)
al = qi(z0, 21, ..., z2M)
t = 1(20, 21, ..., z2n) (2.1.16)

16




Then the one form (2.1.5) becomes

2n
1=0 (2.1.17)

Now all coordinates are equivalent: formally there is no distinct
time coordinate. Thus it is natural to work in an odd-
dimensional extended phase space #2Nxg in a covariant fashion.
Here vis called the fundamental one form of the Hamiltonian
flow. The fundamental one form is defined up to a gauge
transformation

2n 2n
> yudzh =) y,dz¢+dS
h=0 k=0 (2.1.18)

since the variation vanishes for an exact one form, dS.

The equations of motion are given by taking the variation of
(2.1.15). This is facilitated by introducing a parameter A, which

17

acts as a formal "time" along the flow, so that the variational

integral can be written in Lagrange form

5]de=o (2.1.19)
where
L=2 vy 42
po dA (2.1.20)

The Euler-Lagrange equations obtained from (2.1.19) and (2.1.20)
are




dzv
Wy 24—=0
; 7y (2.1.21)
where
Opy = Yv,u —Yu,v = (dY)uv (2.1.22)

This is called the phase space Lagrangian formulation. Notice
that our Lagrangian has twice as many independent variables as
the number of coordinates in the extended phase space; and is
always linear in "time" derivative. Although this formulation is
more general than the wusual Lagrangian formulation of
Hamiltonian flow, such as Hamilton's principle of least action,

18

when the fundamental form is given by (2.1.15), it is equivalent.

to Hamilton's principle (Arnol'd,1978).

In order that equations (2.1.21) define a unique directional
flow, the two form dy must have a unique null direction at every
point in space v: dy( ,v) = 0, this requires that the rank of dy is
2n at every point. Such a two form is called nonsingular. The
unique flow defined by the null direction of dy is called the
vortex flow. There are 2n+1 equations in (2.1.21), of which 2n
are independent. This is easily seen if we let A = z0 and write
down the spatial and "temporal" components of (2.1.21): the
"temporal” component is a consequence of spatial components.
This is a manifestation of the fact that the rank of dy is 2n.

For the Hamiltonian flow in canonical coordinates, the
fundamental one form is given by (2.1.15), so

®= dpAdq-dH A dt (2.1.23)




which is obviously nonsingular. The unique null direction in
extended phase space is given by v = (Hp, -Hg. 1), which is the

usual Hamiltonian vector field.

Symmetries relate to conservation laws in the vortex flow
formulation since it is in essence a Lagrangian system. The
simplest version of Noether's theorem states that if the
components of the fundamental one form are independent of the
coordinate, say z%, then yy is an invariant of the flow. This is

easy to verify from the equations of motion

dv“ d__ L

(2.1.24)

There is a conserved circulation under the flow (Fig. 2.2),
the integral invariant of Poincaré-Cartan. Consider a closed
curve ¢, everywhere transverse to the vortex flow direction v.
Under the flow, this curve form a tube called the vortex tube.
Any curve ¢2 which encircles the same vortex tube to ¢? under the
flow, since ¢! - ¢? =05, where s is a two cycle representing a
section of the vortex tube. Then

jcz v=f 2y (2.1.25)
This follows from Stokes' theorem:

Jclv-fczwjaﬂ%f sdy
However by definition of the flow, the value of dy vanishes on

any infinitesimal two plane containing the flow vector v,
therefore the integral on the right hand side is equal to zero.

19




p

Figure 2.2. Conserved circulation under the vortex flow.

For Hamiltonian flow in canonical coordinates, the
fundamental one form is (2.1.15). If we choose 1 to be any
closed curve in the constant time phase space #2N, and cz its
time evolution after time t (Fig. 2.3), we get the Poincaré
invariant for time dependent Hamiltonian flow (2.1.11) or
(2.1.12).

20
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> o

Cl

11 t2

Figure 2.3. Poincaré's integral invariant




2.1.4. Autonomous and Nonautonomous Hamiltonian
Systems

If the Hamiltonian function is independent of the time, the
system is called autonomous; otherwise, the system s
nonautonomous. In the following, we show that in canonical
coordinates, an n d.o.f nonautonomous system is equivalent to an
n+1 d.o.f autonomous system with and vice versa. This fact
allows us to apply theorems on autonomous systems to
nonautonomous systems.

22

Consider a Hamiltonian flow given by the Hamiltonian:

function H(q,p,t), where (q,p) = (91,92, ..., gN,p1,p2, ... ,pM).
Define new canonical coordinates (q',p') = (91,92, ..., gN,p'1,p'2,
pn+ly = (g1,92, .., gn,t,pT,p2, .. pN,-E), and the new
Hamiltonian function . .

H'(a',p’) = H(a.p.t) - E (2.1.26)

It is easily verified that equation (2.1.13) is now equivalent to

dq' _ H(a'p)
dt op'

dp' __aH(@.p)

ot o (2.1.27)

_ The above result is not surprising since any 2n dimensional
time dependent flow is equivalent to a 2n+1 dimensional time
independent flow. An additional dimension is introduced in order
to preserve the symplectic structure.




The converse result is also of interest and useful. Given a
time independent n d.o.f. Hamiltonian function H(q,p), then H is
conserved. We can choose any generalized coordinate as the new
"time" variable and the conjugate coordinate represents the new
"time" dependent Hamiltonian. For example, given

H(q,p) =E (2.1.28)

Let (q',p) = (@1,9'2, ..., gM-1,p1p2, ... pn-1) = (q1,02, ..., N1,
p1,p2, ... p-1), 1= g and H(q"p',c) = -pN(q.q2, ..., g1, p1,p2,
...,pN-1, g E), where we solve pN from Eq(2.1.28). Then

dq' _oH' (q', p', 7. E)
dt op'

dp' __oH' (q' p' 7, E)
dt oq’ | (2.1.29)

where E serves as a parameter.

In (q,p) = (1,92, ..., g",p1,p2, ... ,p") coordinates, the
fundamental one form is

Y=Y, pidqi - H(p,q)dt
i=1

In the new coordinates (q1,92, ..., qn-1,p1,p2, ... ,p"-1,gN,E), the
fundamental form becomes

n-l .
V= p'dg" - Edt - H'(p',q',7,E)drt
i=1

The equations of motion are
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dq'_oH' (@ p’ %, E)

dprl _. aHr (qv’ pv’ .T, E)

dt oq" (i=1, ..., n-1) (2.1.30)
dE _

de 0

dt _.oH' (@, P 1. E)

de oE (2.1.31)

The last pair of equations are exactly conservation of energy and-:
the equation of motion for the coordinate gn.
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2.2. Discrete Hamiltonian Systems

A discrete Hamiltonian system is a symplectic (or
canonical) map which maps a symplectic phase space into itself
and preserves the symplectic two form. A symplectic map arises
naturally from the successive intersections of a Hamiltonian
flow trajectory with a surface of section. Reducing a flow to a
map is a great conceptual simplification: the dynamics of the
map contains all the qualitative features of the flow and some
guantitative features near the surface of section. Furthermore,
the dimensionality of the phase space is reduced by one, so that
both mathematical proofs and numerical calculations of
properties of trajectories can be approached more conveniently
and efficiently.

2.2.1. Derivation of the Return Map from Flow

Consider a Hamiltonian phase flow gt and introduce a
formal partition of the time interval { ..., t.n, ..., 1.1, to, t1, ...,

tn, ... }, Then the map Tj = gyli+1, where gili+! denotes the flow
from time tjto tj.q4, is a symplectic map, since the flow
preserves the symplectic form. [t is important that the solution

can be extended to all real time, so that successive applications
of the maps Tjare defined for all integer i.

For time periodic flow with period t, choose the crossing
time as { ..., -nt, ..., -1, 0, 7, ..., nt, ...}. The return map Tjis then

time independent (independent of i); therefore, we reduce the
dynamics to a lower dimension. Since the flow is periodic, it is
time franslational invariant under t, hence satisfies Oty 42t T=
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gt1t2. therefore ggNT = (gg%)N. At any time it, i e 2, the return
map Tjis given uniquely by gg® (Figure 2.4).

1

Figure 2.4. Mapping at a period.

For example, if the flow is a free motion except at time ir,
i e z, when it receives a kick f(q), then the map derived from the
flow has the form "

p'=p + f(q)
a=q+p' | (2.2.1)

where q', p' are the position and momentum immediately before
the next kick. If f(q) is the gradient of some potential function,
f(q) = - VV(q), then this gives a class of symplectic maps and
techniques wused . for continuous Hamiltonian flow, e.g.
perturbation theory can be applied to this class of systems.

For an n d.o.f. autonomous system with a periodic solution,
we can reduce the dynamics in the neighborhood of the periodic
solution from a 2n-1 dimensional energy surface to a local map
around that solution in a 2n-2 dimensional subspace. By "local"
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we mean the map is defined only in a neighborhood of the
periodic solution. The symplectic form in this subspace is again
preserved. We prove this in the following.

Consider a point zg of the periodic solution on the 2n-1
dimensional energy surface and define any 2n-2 dimensional
surface transverse to the velocity vector v(zg) in (2.1.10) as a
cross section. "Since zg is periodic, from any point z
sufficiently near to zg on a cross section, the flow will return
to the section at Tz after some finite time. This defines a local
map on the cross section, the technique is called Poincaré
surface of section. The return map is obviously independent of
the crossing time n, and we show it also preserves the
symplectic area on the cross section.

cross section

Figure 2.5. Surface of section.

Since the flow is identical to an n-1 d.o.f. nonautonomous
flow, near the periodic solution, we can always choose g" as the
new time coordinate. The fundamental one form is

A}
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n-1 . n
Y= 2 pulldqll - Hdt' = Z pidqi
i=1 i=1

By Poincaré-Cartan invariance, the one form is preserved for any
cross section transverse to the flow, hence

Jcl Y=I CZY
or
jTﬂm2=Iﬂm2

This shows the symplectic area is preserved.
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2.2.2. Generating Functioné

A symplectic map T is a map from a symplectic manifold
onto itself which preserves the symplectic form

(a'.p’) = T(q,p)
T'e =o (2.2.2)
In canonical coordinates Eq(2.2.2) is equivalent
ONIDT =J = (0 ! )
-10 (2.2.3),

where ( )t denotes the transpose of a matrix. This means that
the matrix corresponding to the derivative of the map DT is a
symplectic matrix

If the map satisfies the nondegeneracy condition

oq'
det(ap);to

then there is an action formulation for the symplectic map, i.e.,
there exists a local generating function such that

— ol (q’q')
p = a
\ al cllc"

9Pqg (2.2.4)
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or
p'dq’ - pdq = dF(q,q") (2.2.5)

The generating function F(q,q') is defined up to an arbitrary
constant by

"q
F(a,q") = T p'dq’ - pdq
Q,Q’

Where p(q.q') is defined locally by the nondegeneracy condition
on aq'/op, and p'(q,q') by using the map. The point (Q,Q') is
arbitrary and the integral is path independent because the map
is symplectic. The nondegeneracy condition for the action
function is

In this case, an orbit of the map is represented completely
by its configuration { qj,ie z }. If there exists a global

generating function, the equations of motion of the map can be
reformulated by setting the variation of the action

N
W({qaj) = Z F(qi.di+1) (2.2.6)
i=M

to zero with fixed ends qp and qN. The resulting Euler-
Lagrangian equations are
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F1(qi,4i+1) + F2(qj-1,9j)) = 0 (2.2.7)

where the subscript 1 and 2 denote derivatives with respect to
the first and second- argument of the generating function,
respectively. Therefore, by Eq(2.2.4) the two momentum agree at
each point of the orbit. The action formulation plays a central
role in the analysis of symplectic maps.

For symplectic return maps derived from flows given by the
variational principle (2.1.14), there is a relation between the
generating function of the discrete map and the action of the
flow. Take the variation of the integral (2.1.15) with time at
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both ends fixed and allowing configuration points to vary, Then

the map Tj is generated by

p'dq’ - pdg = dFj(q',q)

where
q(ti+1) = q'
Fi(a',q) = sta_[ pdq - Hdt | (2.2.8)
q(t) =g

sta means the integration is taken over the stationary
trajectory from q to q'. If the flow is periodic and the strobing
time is taken as multiples of the period, the generating function
is independent of i.

For the local return map derived from an autonomous flow,
the generating function is again independent of i. Now the end
points are chosen to be at the intersection of the energy surface




and the cross section, which isv independent of the choice of the
crossing i. One simple case is when we have an angular
coordinate qn for the flow, the generating function is

x', qN+1
F(x',x) = j pdq - Hdt | (2.2.9)
x, gn

where x denotes the n-1 components of q excluding gn. For
integrable and near integrable systems, there exists such an
angle coordinate.

Therefore theoretical results of symplectic maps can be
applied to the flow, in principle. However, in practice, this
requires us to do the integral in (2.2.8) or (2.2.9), which is
usually difficult unless it is done numerically. A symplectic
numerical algorithm is discussed in section 2.2.3.

For example, for one d.o.f. time periodic flows, flux and
area have a straight forward meaning and can be obtained by
applying the translation formula (2.2.8). However, for
autonomous flow, the reduction to a symplectic map relies on
the existence of periodic solution, and the map only
characterizes local structures near the periodic motion. The
existence of such a periodic orbit is not known a priori. In fact,
even for two d.o.f. flow, the orbital structure is not completely
understood. The motion depends on the topology of the energy
surface, which is a three dimensional manifold (there are
basically eight distinct topological structures of three
dimensional manifolds). The notion of flux and area in two
dimensional map need to be generalized in this case. MacKay and
Meiss have shown how to generalize flux to two d.o.f. flow
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[MacKay and Meiss 87]; however, the three dimensional
resonance regions and their relation to the resonances of two
dimensional twist maps remain to be clarified.
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2.2.3. Symplectic Algorithms

A symplectic integration algorithm (SIA) is a numerical
scheme which preserves the symplectic nature of the flow.
Symplectic integration is important for practical applications;
for instance, in tokamak experiments, it is important to know
the location of the magnetic islands. This is usually done by
numerically integrating the magnetic field line using the Runge-
Kutta method; however, This scheme does not preserve the
Hamiltonian nature of the field line flow. Therefore in the long
run, the magnetic field is no longer divergence free, and no
longer reflects the qualitative features of the magnetic field in
the tokamak — a monopole field is quite different from a
sourceless field.

Symplectic integration was first studied'by De Vogelaere.
A systematic approach was achieved through the work of Feng
[Feng 1986] and Channell [Channel and Scoval 1988]. We shall
follow the latter.

Consider the Hamiltonian flow given by (2.1.13), starting
from (qp,pg) at time 0. We want to find the phase space

position after a time step 8. The initial position is mapped to
the current position by a symplectic map g%. To devise an
integrator which is symplectic and approximates g% order by
order in &, we seek an order by order canonical transformation.

Consider for example, a genérating function K(q,pg.t), the
transformation is
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_ . 9H(4,po,t)
o= dPo
p=- aH(q1p0,t)
aq (2.2.8)

Expand the generating function order by order in §; the zeroth
order is the identical transformation

K(d,p0.t) = -pod + 8K1(q,po.t) + 82 Ko(q,po.t) + ....

Expanding (q,p) in power series of 3 in terms of (qg,po) gives

§2
A=9d0+0d18+4q2 5 +....

§2
P=pP0+P13+pP275 +.. (2.2.10)
then using Hamilton's equations yields

d1 =Kq,p
P1

I
~

-k

o

q2 = 2(K1,pqd1 + K1.pt + K2,p)
P2 = -2(K{,qqa1 - K1.qt - K2.q)

where the indices after a comma denote differentiation. By
integrating (2.2.13) order by order in 8, we have
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q1 =Hp
P1 =-Hq

q2 = H,pqq1 + H;pp P1 + H’pt
p2 = - Hqqd1 - Hqgp P1 - Hqt

comparing this with the canonical transformation yields
Ki=H
K2 = -(Hp'H,q + H)/2 (2.2.11)
Sometimes it is convenient to use other generating:

functions, for example, the generating function of the second
type K'(qp,p) [Feng 1986]. It is possible to find K' by going

through the same procedure as above; however, it is easier to
find it directly by transforming between different types of
generating functions. For example, the transformation between

K' and K is
K'(p.d0) = K(p.d0) + P-q9 + P0-40 (2.2.12)

or

pao + K'1(p.q0) & + K'2(p,qp) 52
= -pod + pq + podo + K1(po.q) 3 + K2(pg,q)32

move the term pgqo to the left hand side

82 ., .
P1d0 3 + P240 5 + K'1(p,q0)8 + K'2(p,q0)3?




=p19 8 + p2q 523 + K1(p0,4)3 + K2(p0,q)82
From the first order equation, we have
P1d0 + K'1(P0.40) = P1d0 + K1(P0.90)
hence
| K'1 =Kj
the second order equation gives
- p2/2 + p1K'1,p + K'2 = p1d1 + p2/2 + q1K1,9 + K2
hence
K'2 =p1d1 + q1K1,q - P1K1,p + K2
= Ki,p K1,q + K2 = (H,p H.q - H)/2 (2.2.13)

Similarly, we obtain expansions for other generating functions.
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2.3. Invariant Structures and KAM Theorem
2.3.1. Integrable Systems

The symplectic structure imposes strong conditions on
integrable systems. In fact it turns out that, for an n d.o.f.
Hamiltonian system, we only need to know n first integrals to
integrate the equations instead of the 2n first integrals
required for general ordinary differential equations. |f the
motion lies on a connected and compact manifold, then the
latter is topologically an n dimensional torus in a 2n
dimensional symplectic manifold. Furthermore, this torus is
geometrically a Lagrangian manifold (The symplectic form: o
vanishes on the torus) [Arnol'd 1978].

The above result is formalized in Liouville's theorem. We
first introduce the Poisson bracket. On a symplectic manifold,
the Poisson bracket {F4,F2} of two functions Fq, Fo is
o(JdFq,JdFo). Two functions are in involution with each other if
their Poisson bracket is zero. For example, if a canonical system
can be integrated by the method of Hamilion-Jacobi, then it has

n first integrals in involution. Since the new canonical momenta
Pi are constant and clearly in involution.

Theorem: Given n functions in involution on a 2n-dimensional
symplectic manifold

Fq, ... ,Fn {F1,Fo} =0 ihj=12,..,n
consider a level set of the functions F;

i ={ x: Fij(x) = f; , i=1, ... , n}
Assume all Fj are independent on w/¢ (i.e., dFj are linearly
independent at each point on a45). Then
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1. &t is a smooth manifold, invariant under the phase flow with
Hamiltonian function H = Fj (i =1, ... ,n).
2. If a4 is compact and connect, then it is diffeomorphic to the
n-dimensional torus . :
3. The phase flow with Hamiltonian function H determines a
conditionally periodic motion on 4%, i.e., in angular coordinates
¢ = (¢1, ... ,.0pn), we have

do/dt = v(f) . (2.3.1)
4. The canonical equations with Hamiltonian function H can be
integrated by quadrature.

Since dFj are linearly independent at each point of af, by
the implicit function theorem, #fis an n-dimensional
submanifold of the 2n-dimensional phase space. The functions
F1, ... ,Fh give n tangent vector fields JdFjon ¢ These vector
fields commute with each other: the commutator of two vector

fields is their Poisson bracket, and hence is zero. They are
independent since dF; are independent and J is nonsingular. JdF;j

are tangent (parallel) to a/¢ since the derivative of the
functions Fjin the direction of the field JdFjis the Poisson
bracket (Fi,Fj) hence vanishes. The only n-dimensional connected

and compact manifold parallelizable by n independent vector
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fields is the n-torus. Hence the motion occurs on an n-torus .

which is called an invariant torus.

The invariant torus ¥ is a Lagrangiah manifold. Since the
vector fields { JdFj } form a basis of the tangent space at each
point, and w(JdFj,JdF)) is the Poisson brackets hence vanishes.

The action angle coordinates can be constructed by
integrating the one form pdq over primitive cycles. Let ¢y, Co, ...,
c,, be a basis for the one dimensional cycles on the n torus aj,

then




I(f) =—21;f pdq

(2.3.2)

are the action variables. ¢ are angular'coordinates on the torus
M+$, The transformation from (p,q) to (1,¢) is canonical. The

action angle variables are not unique, since any transformation
o' =0 + c(l) will give a new set of angle variables.

When the Fjcease to be independent for some values of f,
then 4/¢ ceases to be a manifold. Such critical values of f

correspond to separatrices dividing the phase space into
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different integrable regions. Some of these regions can have:

unbounded motion similar to the unbounded motions in the
pendulum system.




2.3.2. KAM Theorem and Ilts Applications

Integrable systems are extremely rare, however they can be
considered as first approximations to real systems. For
example, the motion of the earth can be regarded as an
integrable Keplerian motion around the sun with only small
perturbations due to other planets.

A near integrable system is given by the Hamiltonian in
action angle variables

H = Ho(l) + eH{(1,6) | (2.3.3)

Poincaré called the study of motion in this system the
fundamental problem of dynamics.

The fate of the motion described by (2.3.3) depends on the
frequencies of the unperturbed system and is answered by the
celebrated Kolmogorov-Arnold-Moser theorem (KAM theorem). It
was first suggested by Kolmogorov from a non-rigorous
perturbation theory (method of averaging), later proved by
Arnol'd for analytic Hamiltonians and Moser for two
dimensional, sufficiently smooth, twist maps from an 2n
dimensional annulus to itself of the form

I' =1+ ef(l,9,e)
'=¢+o() +eg(loe) le B oe " (2.3.4)

where 3 is a solid ball in 1. Obviously, under the nondegenerate
condition to be defined below, the Poincaré map derived from
(2.3.3) is a twist map (the technique of surface of section is
always possible since we have angle coordinates). Conversely,
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Douady [1982] has shown that any twist map of the form (2.3.4)
can be derived from Poincaré surface of section of some
Hamiltonian of the form (2.3.3). Therefore, the theorem for
twist maps can be deduced from Hamiltonian flows and vice
versa.

For the integrable system given by Hg(l), the motion is a

rotation on an invariant torus with frequency vector. w(l)
oHo(l)/ol. A torus is said to be nonresonant (incommensurate) if
the frequencies are rationally independent: if k e zN, and (k,») =
0, then k = 0. The unperturbed motion system is said to be
nondegenerate if the frequencies are functionally independent

a(D'_ azHo
det ( o ) =det ( Py )#0

(2.8.5)
The unperturbed .system is -called isoenergetically
nondegenerate if one of the frequencies does not vanish and the

ratios of the remaining n-1 frequencies to it are functionally
independent on the energy level Hp = const

9°Ho 9Ho
] GO
det £0 (2.3.6)
oHo
ol 0

In a nondegenerate or isoenergetic system the resonant tori
form a dense set of full measure. The sets of resonant tori with
any number of independent frequencies greater than one are
dense and have measure zero.
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For the map case, the unperturbed mapping is said to be
nondegenerate if

0w
det (—)=#0 . .
G (2.3.7)

Theorem (KAM for flows, [Arnol'd 1988]): Consider Hamiltonian
(2.3.3) such that Hg(l) is nondegenerate or isoenergetically
nondegenerate, then for a sufficiently small € most nonresonant
invariant tori are only slightly deformed, so that in the phase
space of the perturbed system, there are invariant tori densely
filled with conditionally-periodic phase curves, with the
number of independent frequencies equal to the number of
degrees of freedom. These invariant tori fill most of phase-
space in the sense that the measure of the complement of their
union is small, in the case of isoenergetic nondegeneracy the
invariant tori fill most of each level manifold of the energy.

Theorem (KAM for maps, [Arnol'd 1988]): Consider the twist map
(2.3.4). Suppose the unperturbed map is analytic and
nondegenerate. Then for any sufficiently small perturbation of
class ¢’ with r > 2n+1 in the annulus 8 U 7 there exist invariant
tori close to the tori | = const, and the measure of the
complement of their union is small when the perturbation is
small. The iterates of each point on an invariant torus densely
fill the torus.

The invariant tori in KAM theorem are called KAM tori or the .
Kolmogorov set. The measure of the complement of the
Kolmogorov set does not exceed a quantity of the order v, which
is the typical size of the resonances which arise in perturbation
theory. The deformation of the preserved torus depends on the




arithmetic properties of the frequencies and typically is of the
order +€.

We can say more about the perturbed motions of (2.3.3) in
the case of two d.o.f. systems. In fact the fate of almost all
invariant tori can be decoded. First, for an isoenergetically
nondegenerate system with two d.o.f., for all initial conditions
the action variables remain forever near their initial values;
since the energy level sets are three dimensional, and the KAM
tori are two dimensional and fill a large part of an energy level
set. Each such two torus divides the three dimensional energy
level manifold. A phase curve starting in a gap between two
invariant tori of the perturbed system remains forever trapped
between these two tori. The oscillations of the action variables
do not exceed a quantity of order vefrom perturbation theory,
because the measure of the difference between a torus and its
unperturbed counterpart are bounded by quantities of this order.

The perturbation treatment fails for resonant tori. To give
an approximate description of the fate of resonant tori, we
average nonresonant terms and retain only one resonant term in
the Hamiltonian [Chirikov, 1979]. This Hamiltonian, generically,
has the form of a pendulum, and the size of the separatrix is of
order +&. However, the neglected terms through averaging have
the effect of splitting the separatrices: the periodic solutions
are preserved by the Poincaré-Birkhoff theorem [see, for
instance, Arnol'd and Avez 1968], the surfaces asymptotic
(homoclinic or heteroclinic) for t — 4+, and t » -« to these
periodic solutions are no longer necessarily identical, in fact
they typically cross each other transversely, which is the main
reason for chaotic motions in two d.o.f. Hamiltonian systems.
Far from the separatrices one finds all the tori obtained through
averaging, except for an o(exp(-c/vE) region, where ¢ is a
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constant. Near separatrices a special analysis shows that there
exist tori exponentially close to the separatrices, so the
separatrices are confined in a zone of exponentially small width
and the angle between the split separatrices is exponentially
small. It is possible to estimate the splitting between
separatrices, which gives a way to prove the nonintegrability of
the system. This involves perturbation near the separatrix and
is called the Melnikov integral method. The validity of the
perturbation treatment near separatrices is not obvious and is
proved through a deep mathematical theorem.

An important application of the KAM theorem is the
nonlinear stability of motion near periodic solutions. The
tangent motion near fixed points or periodic solutions is mostly
understood now, the latter corresponds to fixed points of the
return map on the surface of section. There is a whole well
developed machinery [MacKay 1986a, Howard and MacKay 87] to
analyze the linear stability of a fixed point or periodic motion.
For a finite time interval, the nonlinear motion near fixed points
can be studied by applying Birkhoff's normal form. This, in fact,
gives proofs for stability of the solar system for a finite but
long time. However, the analysis of nonlinear stability of a fixed
point or a periodic orbit requires more mathematical
sophistication and is resolved only through application of the
KAM theorem.

Assume the equilibrium position is stable in the linear
approximation so that the characteristic frequencies around it
are defined. Arnol'd proved that if there is no resonance relation
of order less than or equal to four among characteristic
frequencies, then almost all motions around the equilibrium
point are quasiperiodic rotations on invariant tori [Arnol'd
1978]. This holds for autonomous flows, time periodic flows, as
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well as symplectic maps. Therefore the equilibrium point is
stable.

Notice, when n > 2, the stability is different from the usual
Lyapunov stability. The periodic orbit is stable only in the
measure theoretical sense. There exists the so called "Arnol'd
Diffusion": points arbitrary near the elliptic periodic orbits can
diffuse out, since the n-dimensional invariant tori do not divide
the (2n-1)-dimensional energy level manifold. In this case, the
"gaps" corresponding to different resonances are connected to
one another, so that the tori do not prevent a phase curve
originating near a resonance from wandering far away. This is

called the "topological instability", since the KAM theorem

basically proves the metric stability. So the Arnol'd diffusion is
analogous to a drift in a fibered (by the invariant tori) sponge
through resonance holes of the order +&.
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2.3.3. Variational Principle for Invariant Tori and
Cantori

Integrable and near integrable systems have been our key
focus up till now. Far from integrability, the invariant tori and
elliptic islands are destroyed; the regions with no invariant tori
or elliptic islands are called the zones of instability. There are
other more exotic invariant structures in the zones of
instability. In the case of two dimensional area-preserving
maps, some of the structures are known; they are cantori and
horseshoes. We discuss cantori here.

An invariant torus on which the motion is incommensurate
is the extremal of a variational principle. In the case of a
symplectic twist map given by action principle (2.2.3), an
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incommensurate motion on a torus X is parametrized by a family

of angle variables 8: x = xx(6), p = px(0), such that {x(6g+vt),
p(6g+vt)} is an orbit. The motion is a stationary state of the
following action

’
J F(x(8),x(6+v))de | (2.3.8)
0

where J. d6 means integration over (61, 62, ..., 6n).

Now if {x(8g+Vt), p(6g+vi)} is an orbit, the variation of the
action is




1
J -p(0)6x(0) + p(6+Vv)6x(6+v)de = 0
0
since x(0), p(6) are periodic.

On the other hand, the variation of (2.3.8) gives
F1(x(8),x(6+v)) + F2(x(6-v),x(8)) = 0

where the subscript of F denotes taking derivative with respect
to the first or second argument in the generating function. These
are equations of motion (2.2.5) for a discrete Hamitonian
system. Therefore {xx(6),px(0)} represents an invariant torus if
and only if the variation of the action (2.3.8) is zero.

Aubry [Aubry and Le Daeron, 1983] and Mather [1982] showed
that for twist maps on the cylinder, there are always minima of
the variational principle (2.3.8) in the space of monotone
functions for every irrational frequency v. If the solution x(0) is
continuous, then it represents an invariant curve homeomorphic
to a circle, and its restriction to this curve is topologically
conjugate to the rotation through an irrational angle v. If x(8) is
discontinuous, then, the discontinuity points are dense on the
circle, so the set given by the closure of {x(06+vt)} is totally
disconnected. It is also closed and perfect, therefore it is a
Cantor set. These invariant Cantor sets were named cantori by
Percival. Motion on the cantori is characterized by an irrational
frequency v. Cantori can be thought of as remains of destroyed
invariant tori. They occur generically in area-preserving maps.
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Although cantori do not form absolute barriers to transport
as invariant tori do, they can form partial barriers and restrict
motion to one side or the other for a long time period, though
trajectories finally leak through gaps in the Cantor set. Further
details of partial barriers formed from cantori are considered in
the next chapter.

We do not know if there are Cantor set solutions generally
in higher dimensional Hamiltonian systems. However, there are
examples of nearly hyperbolic four dimensional symplectic maps
where there exist stationary Cantor set like solutions. it is not
known -if they are minimizing configurations [Chen, MacKay, and
Meiss 1989]. ’

The generic structure of two dimensional area-preserving
maps is clear. When the system is nearly integrable, there are
invariant tori and elliptic island chains in phase space. The
island chains are hierarchical, so there are islands around
islands. As the nonlinearity increases, some of the invariant
tori are destroyed, and they are replaced by invariant cantori.
The elliptic island chains are also destroyed, and they are
usually replaced by other Cantor set like structures called
horseshoes.
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2.4. Applications

In this section, we give some few degree of freedom
Hamiltonian systems arising from practical applications. The
dynamics we discuss can all be reduced to two dimensional
area-preserving maps. Other applications can be found in a
reprint collection compiled by MacKay and Meiss [MacKay and
Meiss, 1988].

2.4.1 Magnetic Field Line Flow as a Vortex Flow

For purpose of plasma confinement, if a static equilibrium
with surfaces of constant pressure exists, the associated
magnetic field must have nested toroidal flux surfaces, i.e. the
magnetic field is exactly integrable. This is because if a
magnetically confined plasma is in mechanical equilibrium, and
if the plasma is sufficiently isolated so that it is characterized
by a nearly scalar pressure P, then the force balance gives

VP = JxB (2.4.1)
where B is the magnetic field which satisfies

VB =0 (2.4.2)
and J is the current density

J = VxB (2.4.3)

The above set of equations are called the magnetostatic
equations.
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As a consequence of (2.4.1)
B-VP =0 (2.4.4)

This implies the field lines lie in the constant pressure
surfaces. For confinement, such a surface must be closed and
bounded (compact), and the magnetic field can have no null
points on it (any such point breaks the guiding center
approximation and leads to eventual leakage of the plasma out of
the surface). The only such physical realizable surface is
topologically a torus. These surfaces are called flux surfaces
[Hazeltine and Meiss 1985].

To study the feasibility of forming these nested toroidal
surfaces, we need to investigate the magnetic field line flow,
i.e. find the integral curve whose tangent vector-is parallel to
the given static magnetic field [Cary and Littlejohn, 1983]. This
corresponds to the lowest order motion of the confined plasma
(neglecting all gyromotion and guiding center drifts). The
equations for the field line flow are

Bxdx/dA = 0 | (2.4.5)

where A is a parameter of the integral curve. Eq(2.4.5) can be put
in a variational form

8/A=0
where the fundamental one form is the vector potential

A = AqdxT + Aodx2 + Agdx3 (2.4.6)
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As we discussed in section 2.1.3, this defines a Hamiltonian
flow if the two form

dA = B3 dxTAdx2 + By dx2adx3 + By dx3adx] (2.4.7)

is nondegenerate. Here the B; are the components of the
magnetic field. This implies the magnetic field is non-null
(nonsingular). This condition is satisfied for the toroidal
configuration. However, singular magnetic fields are important,
for instance, in space plasma problems.

Therefore the generic magnetic field line flow s
equivalent to a one and half degree of freedom Hamiltonian flow,
hence  flux surfaces exist for all values of the rotational
transform (to be defined below) if the system possesses a
‘perfect symmetry (Noether's theorem). For instance, azimuthally
symmetric gebmetry gives a system with nested toroidal flux
surfaces. The problem with azimuthal symmetric geometry is
that the rotational transform can only be produced by an internal
toroidal current. This is the mechanism of Tokmak confinement.
Toroidal devices with the rotational transform produced by
external coils are called stellarators; as far as is known, they
can only be achieved without perfect symmetry. :

It is instructive to consider the field configuration with
- azimuthal symmetry

¥ = Ag(z,R)0z + AR(zR)AR + Ag(z,R)do (2.4.8)
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where Az, AR, A¢ are the components of the vector potential in

cylindrical coordinates (z,R,¢)  (Figure 2.5). From Noether's
theorem, A¢ is conserved and we write

N
vy

Figure 2.6. Cylindrical coordinates of the field line flow.

V@R) = - AoR) (249

v plays the role of the Hamiltonian function. The surfaces Yy =
const. are the flux surfaces. These surfaces are azimuthally
invariant, hence if they cut a closed curve in the z-R plane, they
generate a torus by rotation about the z-axis. The innermost

torus, which is an extremal of vy, is degenerate and is a closed
curve. The poloidal flux between two flux surfaces ¢, and cgis

.[v —Iv= 2r (va - ¥b) ' (2.4.10)
Ca‘ Cp :

Hence is basically the poloidal flux.

The action variable is




u= 1/2nf A,(z,R)dz + AR(z,R)dR (2.4.11)

The contour is given by wy(z,R) = const. u is a function only of the
energy y. By Stokes' theorem, u is the toroidal flux. The quantity
du(y)/dy = q(v) is called the safety factor.

Hence in action angle variables, the fundamental one form
has the canonical form

Y = udé —ydo ) (2.4.12)
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‘The angle variable 6 is not unique and can be chosen in different-

ways depending on the problem. The field line equations in these
coordinates are

de/d¢ = 1/q
du/dé = 0 (2.4.13)

So the safety factor is the inverse of the rotation transform 1 of
the field line flow.

Perturbations of the perfect symmetric field result in the:

breakup of the pressure surfaces with rational rotational
transform and magnetic islands (resonances) emerge. In this
case, it will be more fruitful to investigate the return map of
the field line flow.




2.4.2, Passive Scalars and Drift Wave Instability

In hydrodynamic systems, it is useful to use small particles
to visualize the fluid flow. ldeally these particles are massless;
they are driven by the velocity field of the flow u(x,t), hence
are called passive scalars (PS). Some local physical quantities
such as temperature or the density of a second fluid can be
regarded under some conditions as PS. Therefore it is important
to understand the dynamics of PS in the theory of mixing of
fluids.

For two dimensional flows, the motion of a passive scalar
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is- described by Hamilton's equations. Let ¥ be the stream:

function of the flow, then

dx . 9¥
t oy
dy _o¥
dt  ox ’ (2.4.14)

Hence x serves as the canonical momentum, y the canonical
coordinate, and ¥ the Hamiltonian function. Therefore steady
two dimensional flows are integrable and mixing of fluids is
highly inefficient. However, if the stream function is time
dependent, PS typically undergo the same kind of chaotic motion
arising in two d.o.f. Hamiltonian systems and the transport is
strongly enhanced. This enhancement of transport is known as
chaotic advection.

A similar problem arising in Plasma physics is the study of
the drift wave instability. This instability occurs in a plasma
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with density gradients and produces anomalous transport of
particles across the confining magnetic field. Drift waves are
low frequency electrostatic waves in which the cross field
particle motion is given by the ExB drift of the guiding center.
The motion of the test particle is Hamiltonian

dx _.c9¢
dt B dy
dy _c9¢
dt B ox (2.4.15)

where o¢(x,y,t) is the electrostatic potential. This is a one and
half d.o.f. system.

In the presence of N drift waves of a plasma bounded in x
and periodic in y, the electrostatic potential is

N
o(x.y.t) = -Ex + D, Agsin(kyx)cos(kyy-ot+Bk) (2.4.16)
1

where K = (nn/Lx,an/Ly) are the eigenmodes determined by the
boundary conditions. For a single drift wave, the system is
integrable, and it can only produce a localised convection of the
plasma with no net transport. However, the presence of a small
secondary drift wave produces stochastic motion along the
boundaries of the convective motion and give rise to a net
plasma transport. The onset of global transport can be treated
by the Melnikov function method [Horton 19886].




2.4.3. Cyclotron

The map (2.2.1) can also describe the motion of particles in
a cyclotron (Fig. 2.6). Suppose there is a time dependent voltage

drop V(t) accross a narrow azimuthal gap in a magnetic field B =
Bpez. The time for an electron to go one cycle is

A B

Figure 2.7. The cyclontron. -

T = 27/Q = 2emyc/eB = 2nE/eBc

where E is the particle energy myc2. The change in energy upon
traversing the gap is

AE = -eV(t)

Let (E,t) be the energy and time just before the gap; then after
one cycle, their new values are

E'=E - eV(t)
t =t + 2nE'/eBe (2.4.17)
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Let y = E/e, x = tBc/2zn, f(x) = V(2rx/Bc), we recovers the map
(2.2.1)

y' =y + f(x)
X'=X+Y
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Chapter 3

Resonances and the Devil's Staircase

in Area-Preserving Twist Maps
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In this chapter, we introduce a Markov transport model
based on the flux and resonance theory of transport for twist
maps of the cylinder. The main result of this chapter is to show
that in the supercritical regime when there are no rotational
invariant circles, resonances give a complete partition of the
phase space. Section 3.1 to 3.3 is a review of twist maps of the
cylinder: minimizing and minimax orbits, the construction of
partial barriers and resonances, and the definition of flux and
area devil's staircase function. In section 3.4, we show that
there is a simple relation between the average Lagrangian of a
minimizing orbit and the area under this orbit, i.e., the area
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function is the derivative of the average Lagrangian with.

respect to frequency. This implies area function is a complete
devil's staircase in the supercritical regime. In section 3.5, we
introduce the Markov model.
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3.1. Twist Maps of the Cylinder
3.1.1 Twist Maps

Consider the cylinder M = 71x® parametrized by canonical
coordinates (8,y), where 8 € [0,1) is the angle coordinate, y € %
can be considered as the action variable. The area form is

®=dy A de | (3.1.1)

An area-preserving twist map of the cylinder ar = 71x% is an
orientation preserving ¢! diffeomorphism T: a7 —» a

(6"y") = T(6,y) | (3.1.2)

such that T preserves the topologiCal ends of the cylinder and
the area form (8.1.1), and there exists a constant K such that

00'/0y 2K > 0 (3.1.3)

If the map is derived from a flow, it neccesarily preserves
the topological ends since the flow provides a smooth
connection of the mapping to the identity mapping. Twist is also
a common condition. For example, near a typical elliptic point,
there exists a coordinate system such that the return map is
given by a Birkhoff normal form which satisfies the twist
condition

r'=r + h(r,0)
0' =0 + 27w + por2 + ... + pgkrzk + g(r,8) ' (3.1.4)




Here h and g are o(r2K), and thus as small as one likes.

It is often useful to lift the map to the plane &2, which is
the universal covering space of the cylinder. The lift of a map f
is a diffeomorphism F: 82 — %2, such that =F = fr, where = is the
covering map =(x,y) = (x mod 1,y). We shall denote the lift
coordinates by (x,y). Let R be the translation R(x,y) = (x-1,y),
then F commutes with R, hence x'(x+1)y) = x'(x,y) + 1. If F' is
another lift then F' = FRK, for some k e z.

If F is the lift of a twist map, then ox'/oy = K > 0, therefore,
the first iterate of a vertical line (x = const) tilis to the right.

yil——4 T

y2—1 [

Figure 3.1. Twist Condition.

Hence the map (x,y) — (x,x') is invertible, (x,x') can be chosen as
good coordinates on %2. |
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We shall also use the concept of a reversible area-
preserving map. An area-preserving map T is reversible if there
is a reversor S with S2 = Id which conjugates T to its inverse
T-1 = STS. The fixed points of S form curves called symmetric
lines [MacKay, 1982]. Near any fixed points of a reversor, there
exist normal symmetry coordinates (x,y) such that S(x,y) = (x,-

y).

For reversible maps, there always appear to be symmetric
periodic orbits of all rotation numbers on each of the symmetry
lines. Furthermore, in some cases, there appears to be one
symmetry line on which occur periodic orbits of nonnegative
residue (see section 3.2.3) for all rotation numbers. Such
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reflection lines are called dominant. Maps with dominant lines

are said to possess dominant symmetry.

TC

M Area(T\T 1)

Area(T‘a\‘U) C

Figure 3.2. The net flux.




Let ¢ be a loop encircle the cylinder once and u be the
region under ¢, then ¢ is an open set homeomorphic to the
cylinder. The net flux of T is

F = Area(T(u)\u) - Area(u\T(u)) (3.1.4)

The net flux is independent of the choice of ¢. It can be thought
of as the flux of area across a rotational circle. Therefore, a
map which has a rotational invariant circle must have zero net
flux.

>

<~

RIC

N~

Figure 3.3. A rotational invariant circle (RIC).

We shall be interested in twist maps with zero net flux.




3.1.2, Action Principle

Area-preserving twist maps have an action representation,
and orbits of the map can be obtained from a variational

principle.

Theorem: Let T: %2 — %2 be a lift of ¢ area-preserving twist
map with (x,y") = T(x,y). Then there exists a ¢'*+1 function F: g2
— R such that

y'dx' - ydx = dF(x,x") (3.1.5)
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The function F is called the generating function of the map T. It

is uniqgue up to addition of constant and satisfies the twist

i 0°F
condition XX <C«<0.

If F is the generating function of T, so is F'(x,x") = F(x-1,x'-
1), since T commutes with R(x,y) = (x-1,y). Thus F(x,x") - F(x-
1,x'-1) is a constant. This is in fact the net flux of the map T, as
we will see from the fundamental area formula (3.3.1).

The generating function F, of n iterates of the map T is
given by the sum of the generating function F.

n

Fn , Xn ) = st F (Xt, Xis
(X0, Xn) Sa[ga (Xt, Xts1) ] (3.1.6)

where sta means all x; are taken as the stationary values of the
total action with fixed ends xg and xp. ‘
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A state is a bi-infinite sequence { { xt }: xte %, te 2 }. A
segment { x\qN } of the state is a finite subsequence { x;e %, M <
< N }. An orbit is a state whose arbitrary finite segments 'xM N

are stationary configurations of the action

N
W ({x})= Z (Xts X1 ) | 3.17)

In this sense, we refer an orbit as a stationary state.

Equation (3.1.7) defines the classical Frenkel-Kontorova
model (F-K model) as a one dimensional chain of atoms with
nearest neighbor interaction F(xj,xj;+1). A large class of

generating functions have the form
F(x,x") = K(x-x) -V(x) (3.1.8)

where K is the spring function, which is convex to satisfy the
twist condition, and V is a periodic potential function so the
map is of the cylinder and has zero net flux.

A periodic orbit { xt} is of type (m,n) if for all t, Xtpn = Xi
+ m. Let Xmn = {{Xt}: Xt4n = xt + m, t € z}. Define the action

Wm n by

n-1
Wi ({%}) =2Fxt,xt+1 Xn = Xo+M
{= (8.1.9)

It is obvious that orbits of type (m,n) corresponds to stationary
~ states of Wy n with respect to variations preserving xn = xg +

m.




3.1.3 Example
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An example of the twist map with zero flux is the much-

studied standard map where

2

F(x,x) = & éx) ) (2::)2 cos(27x)
or

y'=y - ék; sin(2wx)

X'=X+Y

The symmetry reversor is

S(x,y) = (-X+Y,y)

(3.1.10)

(3.1.11) .

(3.1.12)

The standard map has zero net flux since F(x+1,x'+1) =
F(x,x"). The y coordinate of the standard map is also periodic. So

the phase space can be wrapped to a torus.




3.2. Monotone Sets and Minimizing Orbits
3.2.1. Monotone Sets and Frequencies

Let T be the lift of an " area-preserving twist map and let =
be the projection n(x,y) = x. If for a given point x € &2 the limit

v(x) = lim (n(Tt(x) - m(x))/t | (3.2.1)
t - teo I
exists, then v is called the frequency or rotation number of x for

T. The limit is obviously independent of the choice of point on an
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orbit and hence it is the frequency for the orbit. A type (m,n).

orbit has frequency m/n.

A nonempty set # which is both invariant under T and ® (the
translation) is monotone if n|4s is injective and

x,X' € M, n(X) < n(x') = n(T(x)) < n(T(x")) | B (3.2.2)

We say an orbit of { xt } is monotone if all of its translates are
monotone

Xt +j<Xp+i = Xtpe] +] < Xt'pq + ' (3.2.3)
Monotone sets are called ordered in this sense.

All monotone orbits have frequencies [MacKay and Stark
1985].




3.2.2. Continued Fraction and Farey Tree

The structure and organization of monotone orbits depends
on the number theoretical properties of their frequencies.

The continued fraction expansion [Hardy and Wright, 1979,
Khinchin, 1964] of v is

v =[ag,aq, ... ,aj,...] =ag + /(a1 + 1/(... + 1/(aj+...))) (3.2.3)

where the aj's are positive integers. If v is rational, this
expansion terminates and has two representations: [ag,a1, ... ,an].
and [ag,a1, ..., an-1,1] with ap > 1; Otherwise if v is irrational;
the expansion is infinite. ‘

If the continued fraction is periodic, it is a solution of a

quadratic equation with integer coefficients, therefore is called
a quadratic” irrational. If aj= 1, for all integer i larger than

some integer j, then the number is called noble. The noblest
number is the golden mean y = (V5+1)/2 = [1,1,1,...]. If all aj are

bounded, the number is of constant type.

Truncations at some finite stage give the convergents of a
continued fraction

mi/nj = [ag,aq,...aj

These are the best rational approximants to v in the sense that
[v-m/n] > |v-mij/nj| for all other m/n with n < nj,4. Note that

successive convergents to v approximate v from opposite sides.
Every convergent is close to the number it approximates in the
sense that




|nv-m]|<C/n

where C = 1. However, if C is too small (C < 1/\/§), there exists v
such that only finitely many convergents satisfy the inequality.

A Farey tree is a method for organizing all rationals
between a given pair in a binary tree. Begin with a pair of
neighboring rationals m/n and m'/n', which satisfy the relation
mn'-nm' = +1 (we assume +1 here so that m/n < m'/n"), level one
of the tree is generated from these two by adding their
numerators and denominators: m"/n" = (m+m')/(n+n'). This
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rational is called the mediant of m/n and m'/n'. It is easy to see.
that m" and n" have no common divisor, and m"/n" is a neighbor -

to both its parents. To construct the second level, find the
mediant of m"/n" and each of its parents. Continuing this
construction leads to a binary tree. which gives all the rational
numbers between m'/n' and m/n. For example, starting from 0/1
and 1/0, we get the master tree which gives all nonnegative
rational numbers.

The sum of the continued fraction elements of m/n gives the
level which it occurs in the master tree

i ,
Level([ag,aq, ... ,a]) = Z a
j=0

The parents of a rational can easily be obtained from its
continued fraction expansion:

m/n = [ag,aq,...aj]
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With the convention that the final element a; >1, the continued
fraction expansion for their parents are [ap,aq,...aj.1 aj-1] and

[ag.a1,...aj-1]




3.2.3. Minimizing Orbits

A segment XN is minimizing if W is globally minimizing
with respect to fixing the end points xp and xpN. A state { x¢ } is
minimizing if every finite segment is minimizing. A minimizing
state is called a minimizing orbit.

Minimizing orbits have the following important properties:
a) Aubry's fundamental lemma: If {u}, {v} are two minimizing

states, then up - vq has at most one change of sign or zero in z.
Furthermore, if up - vn does have a change of sign or zero, then
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‘Up - Vpn is uniformly bounded away from zero everywhere else;.

and in particular {u} and {v} cannot be asymptotic to each other.

b) Every minimizing orbit is monotone, and hence in particular

has a rotation number.

Therefore minimizing orbits are characterized by their
frequencies. There are recurrent minimizing orbits for each
frequency.

c) All recurrent orbits with frequency m/n are periodic orbits of
type (m,n). There exists at least one periodic minimizing orbit

of type (m,n). The set of all periodic orbits of type (m,n) is
denoted as #m/n. This is a monotone set.

We can define periodic orbits in #m/n to be adjacent if
there is no other orbit in #y/n between them. Note if { xt } is a
minimum of W pn, s0 is Xt = Xt4r + 8, for r,s € z. These

correspond to the orbit on cylinder |If there is only one
equivalent minimizing orbit in #m/n, the right and left adjacent




(or neighboring) orbits of { xt } are { x't = Xt4r - 8 } and { xly =
Xt4| - | }, where r,s, |,j are given uniquely by

mr-ns=1, m-n=-1, rl<n

d) For every irrational number v, there exists a monotone set a4,
of recurrent minimizing states of this rotation number. ary is
either a rotational invariant circle or an invariant cantor set.
Furthermore every orbit in a1, is dense in #y. My can be
parametrized by two hull functions f+(6) and f-(6), which are
precisely the minimizing solution of Percival's action (2.3.8) in
the space of monotone functions. f+(8) and f-(6) satisfy

f£(9) are strictly increasing.
f£(6+1) = f£(6) + 1.

f-(0) is left continuous
f+(0) is right continuous.
f-(0) < f+(9)

If f-(6) = f+(0) =1f(8) is continuous, then 44, is a rotational
invariant circle; otherwise, if f+(8) and f(8) are discontinuous,
then a1, is an invariant cantor set called a cantorus. The
discontinuities come in orbits under 6 — 6 + v. The
discontinuities of f+(0) and f(8) correspond to endpoints of
gaps in the cantorus. Since the orbit is monotone, these
endpoints do not cross upon iteration, therefore, we can define
the left end and right end orbits { x't }, { Xt } for the cantorus.

There are also nonrecurrent minimizing orbits for each
frequency v. They are orbits heteroclinic to the gap endpoints.
When v is rational, these orbits are crossing points of the stable
and unstable minimizing orbits (minimizing orbits are usually

73




hyperbolic). When v is irrational, these orbits fall in the gaps of
the cantorus. Let Min,, be the set of all minimizing states of

frequency v, we find the following classification of the
minimizing orbits.

Classification for v irrational The set 4, is unique and all
recurrent minimizing states of rotation number v belong to it. If
My is a circle then every minimizing state of rotation number v
is recurrent, and lies in #y. If 44y, is a cantor set then every
state in Miny is either in @/, or lies in some gap of 4y and is
asymptotic to the orbits of the end points define that gap. Miny

is thus a monotone set.
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Classification for v = m/n rational All recurrent orbits in-

Minm/n are periodic orbits of type p,q and thus are in #y/n. Any
other orbit in Minm/n must either satisfy x4t > Xt + m or Xpit <
- Xt + m. The former are called advancing orbits and.the latter
retreating orbits. Any advancing or retreating orbit is
heteroclinic to a pair of adjacent periodic orbits, and is
confined to the gap defined by these periodic orbits. An
advancing orbit with frequency m/n is denoted by (m,n)t orbit,
and the corresponding retreating orbit is denoted by (m,n)- orbit.
Conversely for each neighboring pair of periodic orbits there are
at least two minimizing heteroclinic orbits, one advancing and
one retreating.
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3.2.4. Minimax Orbits
Let us define the residue of a period n orbit as
R = (2-Tr(DTN)Y/4 = (2 - A- -1 )/4 (3.2.3)

Where A, A-1 are the eigenvalues of the linear map of the
periodic orbit. The residue is related to the linear stability of
the orbit as follows

R < 0, regular hyperbolic

R = 0, regular parabolic

0 < R < 1, elliptic

R = 1, inversion parabolic

R > 1, inversion hyperbolic (3.2.4)

Theorem (Poincaré-Birkhoff): Let T be an area-preserving twist
map of the cylinder with zero net flux. Then for every rational
number p/g, T has at least two periodic orbits of type p,q: one of
non-positive residue and one of non-negative residue.

Given a minimizing (m,n) periodic orbit { My}, let { Ml } be
the same orbit shifted to the right of { M{}. { My } has the same
action as { M;} since the net flux is zero. Since the space is

compact, there must be a saddle in between. This gives another
periodic orbit, the minimax orbit { St }. In a similar fashion, one

can show the existence of minimax (m,n)* and (m,n)~ homoclinic
orbits.
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If the rotation number of the minimizing set is irrational,
and a4y is an invariant cantor set, let { It }, { rt } be the orbits of

the endpoints of some gap in 44, the sum

AW(x) = X [Flxxeet) - Flyip]

t=-00
converges for sequences lying in the orbit of the gap,
It < xt < r

[t can be shown that AW(xy) is differentiable and nonnegative
and is zero for { It } and { r; }. Mather [1982] proved that there.is.
a minimax orbit { St } in between. It is homoclinic to the Cantor
set. The action difference between the minimax orbit and the
minimizing orbit is denoted as AW,,. Mather proved that this is a -
continuous function of v at the irrationals, and it is zero if and
only if there exists a rotational invariant circle with rotation
number v.

The difference of the action between a pair of minimizing
and minimax orbit has a physical interpretation as the flux
across the partial barriers. This is discussed in the next section.

A result of MacKay and Meiss [1983] states that a
minimizing orbit has nonpositive residue, and a minimax
periodic orbit has nonnegative residue. Therefore, minimizing
orbits are usually hyperbolic.




3.3. Partial Barriers, Turnstiles ahd Resohances
3.3.1. Irregular components

An irregular components is by definition the complement of
invariant circles, elliptic periodic orbits and invariant circles
around them.

For a hyperbolic period n orbit, the linear mapping has two
vectors corresponding to the stable and unstable directions. The
stable manifold theorem implies the stable and unstable
directions can be continued nonlinearly into stable and unstable
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manifolds: WS = { z, TNiz - zg as j —» « }, where zg is some -point:

on the orbit; similarly WU = { z, T-Niz — zp as j —» ). Stable and
unstable manifolds typically intersect with each other
transversely, and such intersections are called heteroclinic
points if the manifolds correspond to different periodic orbits,
and homoclinic if they are the same periodic orbit. The
advancing (m,n)* and retreating (m,n)- minimizing. orbits we
discussed in section 3.3.3. are homoclinic orbits to the (m,n)
minimizing periodic orbit.

Whenever there is a transverse crossing of the stable and
unstable manifolds, there is an irregular component. In fact, by
following the lobes of the stable and unstable manifold, one can
construct an invariant set called a "horseshoe", whose points are
labeled by a doubly infinite sequences of 0s and 1s, such that
iterating the map is equivalent to shift the symbol sequence one
place to the left.




Numerical experiments show that an irregular component
has a dense orbit, has a positive measure [Umberger and Farmer,
1985]. Furthermore, it appears to be ergodic and has the same
positive Lyapunov exponent

= lim In(Tr(DTN(z)))/n > O

N — oo

almost everywhere.

For twist maps of the cylinder, irregular components are
usually bounded by two rotational invariant circles. These

invariant circles act as absolute barriers between irregular.
components. We are interested in global transport where all

rotational invariant circles are destroyed. In the following, We
assume that all minimizing orbits are hyperbolic. More
precisely, we assume that the lower bound of the average
Lyapunov exponents for all minimizing orbits is greater than
zero. This implies there is no rotational invariant circle [MacKay
and Percival 1985].
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- 3.3.2. Flux, Partial Barriers, and Resonances
A useful concept is the flux from one region to another.
Consider a closed loop ¢ encircling its interior 1, and their

iterates ¢' and I' (Fig 3.4), the flux across cC is

F = Area(l-I') = Area(r-I)

Figure 3.4. Flux.

If we choose ¢ as a rotational circle, since the net flux is zero,
the upward flux is equal to the downward flux.

A rotational circle acts as a "partial barrier" for the map.
The simplest way to construct a partial barrier is to use the
minimizing and minimax periodic (m,n) orbits. Choose a gap in
the minimizing orbit, called the principal gap, if the map
possesses a dominant symmetry, the gap is chosen to be the one




across the dominant line. Fill the gap with an arbitrary line £g

passing through the minimax orbit. Take n-1 preimages of this
curve to fill the remaining gaps. This results a rotational circle,
a partial barrier. Take one more preimage of g, we get L. It
must get back to the principle gap with the same end points as
£g and must cross £g at the point in the (m,n) minimax orbit. The
region below g and above <., is the region which crosses the
partial barrier from below to above on one iteration of the map.
Similarly the region below L.y but above g crosses the partial
barrier from above to below upon one iteration of the map. The
union of these two regions has a figure-of-eight structure
called a turnstile.

minimax turnstile

minimizing

Figure 3.5. Partial barrier of a (2,5) .robit.

A more naturally constructed partial barrier is a partial
separatrix. Consider the minimizing (m,n) periodic orbit; it has
two minimizing homoclinic orbit, the advancing (upper) (m,n)*
orbit and the retreating (lower) (m,n)- orbits. Consider the
advancing (m,n)* orbit (Fig. 3.6); choose a principal gap in this
orbit. Connect it with a segment of the unstable manifold ug;

this segment naturally goes through the minimax homoclinic
orbit. Take preimages of the unstable segment wg and they
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converge to the minimizing periodic orbit and together they

form part of the unstable manifold of the minimizing periodic
orbit. We also take images of the stable segment sg in the

principal gap. The set { @4, t<0}u {5t t > 0}, which is the
union of the unstable segments for t <0 and the stable segments
for t > 0, forms the upper partial separatrix. If the stable and
unstable manifolds join together smoothly, this gives the usual
upper separatrix for an integrable system. Again, the turnstile

is formed by taking the preimage of the partial barrier. Each
segment has a preimage on the partial barrier, except for 51,

which becomes $g in the principal gap. The left lobe of the
turnstile is the set of points which will cross the partial
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separatrix from below to above in the next iteration and. the.

right lobe from above to below.

Uy
U.4 5

So

Figure 3.6. The upper partial separatrix.

, The lower partial separatrix is formed using the same

procedure, which is the union of the unstable segments fort <0
and the stable segments for t > 0. The region bounded by the
upper and lower partial separatrices is the (m,n) resonance
[Channon and Lebowitz 1980, MacKay, Meiss and Percival 1987].
A resonance has an island chain structure. We call the island
formed in the principal gap the central island. Fig. 3.7 shows the
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upper and lower partial separatrices for the (1,3) resonance of
the standard map. The upper turnstile area of an (m,n) resonance
gives the total flux from the (m,n) resonance to all other
resonances above it. Similiar!y, the lower turnstile represents
the flux to all resonances below the (m,n) resonance.

Figure 3.7. (1,3) resonance for the standard map in symmetry
coordinates. M; are points on the period 3 minimizing orbit, St

are points on the period three minimax orbit; M+t and M-t are
points on the minimizing homoclinic orbits, S*t and S-t are

points on the minimax homoclinic orbit.




~In general, a different choice of homoclinic point at which
to switch from unstable to stable manifold gives different
shape to the resonance; however, the area of the resonance is
independent of the choice of the switching point. A consistent
choice is important in order that resonances of different
rotation numbers do not intersect with each other and fit
together to give a complete partition of phase space.

For maps with dominant symmetry, there is a natural choice
of the principal gap, which is the dominant gap for all the
minimizing orbits. The minimizing orbits never have points on
the symmetry line; therefore, the two points nearest to, and on
different sides of the symmetry line define the dominant gap. of
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a minimizing orbit. This fits all resonances nicely in phase

space, and they never overlap. Since all turnstiles are in the
dominant gap, their union forms a "chimney" on the dominant
line. All flux between resonances takes place in this region.

We can also form partial barriers from cantori. The idea is
again to use the stable and unstable sets. Define the stable set
s(x,y) of (x,y) to be the set of points (x',y') such that the
distance between Ti(x',y") and Ti(x,y) goes to zero as t—e; and
the unstable set a(x,y) of (x,y) to be the set of points (x'.y') such
that the distance between Ti(x'y') and Ti(x,y) goes to zero as

t—-—e. Choose a principal gap in the cantorus; the end points -

have the same stable set and unstable set, since they converge
together in both directions of time. Furthermore, the minimax
orbit belongs to both sets. We denote the stable and unstable
sets in the principal gap by sg and wg. Let £t = Ti(sg) for t > 0,
and £t = Ti(wg) for t < 0. If there is only one family of gaps, then
the set { Lt,te z } forms a rotational circle (A Cantor set

always has a countable set of gaps, so there is at most a




84

countable number of families, so we can repeat the construction
for each family). The preimage of .4 is 5. 5 and ¢4 must cross

| each other at the minimax orbit, and they form a turnstile.

U 52 (UO 51

So

Figure 3.8. Partial barrier of a cantorus.




3.3.3. Flux, Areas and Actions
A. The Fundamental Area Formula

Starting from the action principle for twist maps, we can
derive formulas for the flux across and the area under partial
barriers constructed from both cantori and homoclinic orbits

Let ¢ be a directed curve in the plane. Parametrize it by A
ranging over [0,1] so c(A) = { x(A), y(A) }. Define the algebraic
area, A, under ¢ to be the signed area bounded by the loop formed
from ¢, the vertical lines x = x(0) and x = x(1) and the horizontal
line y = 0. The direction of loop is set as that of increasing A
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~over . Let ¢ be the image of ¢ under the map T. The area under ¢"

is denoted A'. Integrate (3.1.5) yields
AF = F(x(1),X(1)) - F(x(0),X(0)) = A" - A o (3.3.1)

Thus the difference between the areas is the difference between
the generating functions evaluated at the end points. Note the
curve ¢ does not enter explicitly in (3.3.1).

C 1
c /‘/
(x',p")
(x,p)
A A’
&
x(0) x(7) x(1) x'(0)x"(A) x'(1)

Figure 3.9. lllustration of the fundamental area formula.




B. Flux through of a Pair of Periodic Orbits

As a simple application of the fundamental formula, let us

calculate the flux through the turnstile in a pair of periodic
orbits. Let Ag be the area under the segment Ly connecting the

point Mg on the minimizing orbit with Sg on the minimax orbit.
- Similarly, At are the iterates of this area. The fundamental

formula reads
At - A1 = F(St-1,St) - F(Mt-1,My)

The area of the turnstile is Ag - A

: 0
Flux = Ag- An = D, [ F(St-1,St) - F(Mt-1,My) ]
’ t=-n+1
n-1
=2 [ F(St-1,S1) - F(Mt-1,Mp) 1 = AW (1 n) (3.3.2)

—

=0

The flux is simply the difference in action between the minimax

and the minimizing orbits; therefore it does not depend on the
choice of the curve g connecting Mg and Sp.

C. Stable and Unstable Segments

Consider an orbit { Mi} which is hyperbolic (this includes
the case of a cantorus whose Lyapunov exponent is positive).
Any two points on the stable or the unstable manifold of { My}
are called future or past asymptotic; If they are on both
manifolds, they are homoclinic. The area under a stable or
unstable segment between two homoclinic points can be
calculated by the fundamental formula (3.3.1).

86




Parametrize the stable segment Siof a future asymptotic
pair {Yi} and {Zi} by A, such that St{(0) = Yi, St(1) = Zy and
St1(A) = TSt(X). Then the area under Stis

ASt = ASt,q-AFt = AS{ 0-AFt 1-AFt = ... = 2 AFj = -AW fi
_ i

Similarly if {Y{} and {Z{} are past asymptotic, and AU the
area under the unstable segment, then

AU; = AWP;

I {Yt} and {Z{} are homoclinic, the signed area between the
unstable and stable segments is independent of t

AUy - ASy = AW = 2 AFj (3.3.3)

j=-oo

Once the total area under a single segment is known, the
total area under all the segments Si after time t is

(=]

Afp = X AStk =- 2 AWk = -2 kAFgk
k=1 k=1 k=1

Similarly the area under all unstable segments at time t and
before is

0 0 0
APy = > AUk = > AWP k = - 2 k AFt Kk

=00 k_— k:—oo
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Finally if {Y{} and {Z;} are homoclinic, the total area under all
the future stable segments and the past unstable segments is

0
At= AP+ Aft=- 2 kAFpk (3.3.4)

==
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In general, (3.3.4) is not independent of t, in fact, Atp1 = At

+ AW, where AW is given by (3.3.3). Our applications involve pair
of orbits whose action difference is zero; therefore, the area is

independent of t.




D. Area Devil's Staircase Function

The area under the gaps of a cantorus is given by

== 2 t[F(xTexTee1) - Fddexlie)] (3.3.6)

t=-c0

where { M't} is the orbit of the left endpoints of a gap in the
cantorus and { Mr} the orbit of the right end points. The action
difference between { M't} and { Mt } vanishes, hence the-area is
independent of the choice of crossing points. The total area
under the partial barrier is the sum of (3.3.6) and the area under
the cantorus. Since hyperbolic cantori have zero length [MacKay,
Meiss and Percival 1987], the area under the partial barrier is
given by (8.3.6).

We can also find the area under the upper and lower partial
separatrices of a resonance. It suffices to consider the period
one case, since any period n resonance is period one under n
iteration of the map. The upper area is given by (3.3.4) where {
Yt} ={ Mt} is the minimizing homoclinic orbit, and { Z{} = {
M+i.q4 }, its right shift. Subtracting the action of the fixed point
{ xp } from the first term in the bracket while simi;ltaneously

adding it to the second term, we have

(=]

A+O) = X [Fixttctte) - Fxrox)]

t=-c0

Now it is easy to find the area under the upper partial
separatrix of a period n resonance
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et = 0 5 {8 [Ftrtmicnain - Fssan)])

t=-00 " =0
(3.3.7a)

where { x*t} is the (m,n)* minimizing orbit. The term in the
curly bracket can be interpreted as the action sum of the map
™.

Similarly, the area under the lower partial separatrix is

“(m/n) = _i {Z;, [ (XiXi+1) - F(X'tn+i,X'tn+,i+1)]}

(3.3.7b)"
where { x7t } is the (m,n)- minimizing orbit.

Now, we can define area as a function of frequency: for
~rational frequency, it has two values, the upper area is given by
the area under the upper (partial) separatrix, and the lower area
is the area under the lower (partial) separatrix; For irrational
frequency, it is either given by the area under the rotational
invariant torus or the area under the invariant cantorus with
that frequency. So the area as a function of frequency has a
jump at each rational number and is monotonically increasing;
therefore, it is a devil's staircase function. A devil's staircase
function is called complete if the sum of its jumps equals to its
total variation. An area devil's staircase function is plotted in
Figure 4.4.




E. Flux Through Partial Separatrices and Cantori

Formula (3.3.3) can be used to calculate the total flux

through a partial separatrix or a partial barrier formed from a
cantorus. In the former case, we choose { Yi} to be the

minimizing homoclinic orbit { M*t}, and { Z;} the minimax
homoclinic orbit { S*;}. The total flux through the upper partial
separatrix is called the upper flux of the resonance, AW+(m,n);
and the total flux through the lower partial separatrix is called
the lower flux, AW-(m,n).

For a partial barrier formed from a cantorus, { Yt} is an
orbit { Mt} on the cantorus, { Zt} is the minimax homoclinic
orbit { St} to the cantorus. This is precisely Mather's AW,

(section 3.2.4)-

We can also find the flux from one resonance to another. In
this case, we choose orbits which are heteroclinic between the
resonances: Take { Y} the left heteroclinic orbit { Hlt h{Zy}

the right heteroclinic orbit { H't} (see Fig.3.5). Numerically, we
find { H|t} is locally minimizing, and { Hft+} is locally minimax
(see section 5.3.3 for more detail).
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Figure 3.10. Flux between two resonances.

In fact, there are possibly four such pairs of heteroclinic
orbits. For a given pair of resonances (m,n) and (m',n") (m/n <
m'/n'), the heteroclinic orbit from upper partial separatrix of
(m,n) to the upper partial separatrix of (m'/n') is denoted by
(m/n+;m'/n'+), and the corresponding flux is AW(m/n+—m'/n'+).
Similarly, we define AW(m/n+—-m'/n'") etc.. The function
AW(m/n*—v) can be interpreted as the flux of the upper partial
separatrix of (m,n) resonance to all resonances beyond the
frequency v. Therefore for rational v = m'/n', there is a jump in
AW(m/n+—v), one corresponds to the flux from the (m,n)
resonance to all other resonances beyond frequency m'/n'
including the (m',n") resonance, which is AW(m/n+—m'/n't); the
other excluding the resonance, which is AW(m/n+—m'/n'"). For
irrational frequency v, there is only one AW(m/n+—v). This
defines a devil's staircase function, which is discontinuous at




each rational frequency, and continuous at each irrational
frequency. We shall see that this function is complete.

The flux from one resonance to another is

F(m/n-m'/n") = [ AW(m/n*—=m'/n't) - AW(m/nt—>m'/n'") ]
~[AW(m/n-—-m'/n'+) - AW(m/n-->m'/n"") ] (3.3.8)

Flux satisfies the balance equation by zero net flux

2 F(m/n-sm'n") =2 F(m'/n'->m/n) (3.3.9)
m'/n' m'/n’'

which says that the total flux out of a resonance is equal to the
total flux into that resonance.
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3.4. Relation to Average Lagrangian
3.4.1. Average Lagrangian

Of all the minimizing configurations in the F-K model, the
one with the lowest action is the ground state. It has trivially
frequency zero. Consider a chain of atoms in an external field of

strength E, we want to find the ground state frequency v as a
function of E. The action for a finite segment of state { xi } is

N

W({x})= ; (Xts Xte1) = E(Xteq -Xt) (3.4.1)

Therefore, the ground state is given by minimizing the action
per site, L(v)-Ev, where L(v) is the average Lagrangian for a
minimizing orbit of frequency v

N'-1
> F (%, Xta1)

fim t=N
L =
M=y Now WoN (3.4.2)

We show L(v) is a well defined function of frequency v.

For a periodic orbit, the average L‘agrangian is obviously
equal to the action of the orbit divided by the period. For a
homoclinic orbit {x*i} with frequency m/n, the average

Lagrangian is

_L

k-1 n-
) _ z F xln+|’ Xi-a+l+1 )
L(@m+y- lim  i=k I=0
(n ) k"k—)"o (kl - k)n

Since the homoclinic orbit converges exponentially to the
minimizing (m,n) orbit {x;}, the limit in k'-k exists, and is
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n-1
2 F (Xt, Xt+1)

n

This shows L(v) exists for each rational frequency.

To show that L(v) exists for irrational frequencies, we need
the following ergodic theorem:

Theorem [Arnol'd and Avez 1968]: If R is a rotation of the unit
circle represented by [0,1) through an irrational angle, and f is a
Riemann integrable function, then the time average of the
function f |s equal to its spatial average, i.e.

N-1
i Z (Xt , Xt1 ) 1
lim =0 ’ J f(e) de
0

N —eo
” N (3.4.3)

For an irrational frequency v, the minimizing orbit is either
an invariant circle or a cantorus. In either case there exists a
monotonically increasing function f such that:

xp = f(nv+or) (3.4.4)

Besides its explicit dependence on the frequency v in its
argument, the functional form of f also depends on the frequency
v. For a subcritical invariant circle, f is analytic, and for a
hyperbolic cantorus, f can be written as the sum of step
functions:

; (x-X4) (3.4.5)

where H(x) = 1, x = 0; H(x) = 0, x < 0 is the Heaviside function
and f; is the discontinuity across a gap of the cantorus. For

convenience, we shall let x(8) = f(8) in the following.
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It follows from the ergodic theorem that for an irrational
frequency v:

i
L(v) =J F(x(0),x(6+v))d6 (3.4.86)
0

Indeed, this average action is the action for an invariant torus
or cantorus as formulated by Percival (see section 2.3.3).

L(v) is a convex function of v. Given v4{, vo, we construct a

state by choosing a fraction A of points from the minimizing
orbit of frequency v4, and a fraction of (1-A) from the

minimizing orbit of frequency vo2. This state has frequency .
Avi+(1-A)vo and average Lagrangian AL(vq)+(1-A)L(v2). However,
it is not the minimizing orbit of frequency Av1+(1-A)vo since it
is not ordered, hence '

AL(v{) + (1-0)L(vo) S L(Avq{+(1-M)va) (3.4.7)

i.e., L{(v) is a convex function. Any convex function L(v) has
monotonically increasing left and right derivatives L'-(v) and
L'*(v) which are equal almost everywhere [Rudin 1987].

The function v(E) now is given implicitly by minimizing
L(v)-Ev with respect to v, giving

L'(v) € E < L'*+(v) (3.4.8)

Hence v(E) is continuous, monotonically increasing, and has a
flat plateau at each rational frequency. This is a devil's
staircase function.
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3.4.2. Area Devil's Staircase and Average Lagrangian

Now we show that the derivative of the average action with
respect to frequency gives the area devil's staircase:

dL(v)
A =
n dv ly=m/n
Aw) < 9L
dv ly irrational (3.4.9)

Let us calculate L'+(v) and L'-(v) for a rational frequency
m/n. To approach the minimizing (m,n) orbit from above and
below, we wuse the minimizing (mk+mq,nk+n4) and
(mk+mo,nk+no) periodic orbits, respectively, and let the integer
k go to infinity [MacKay, Meiss and Percival 1987]. The integers
m4, n{, M2, no are uniquely determined by:

min-nim=1, man-nom=-1, nq,Nn2 <n

As k goes to infinity, these two orbits limit to the upper and
lower minimizing orbits homoclinic to the (m,n) orbit,
respectively. Let { xk+t} denote the minimizing (mk+mq,nk+nq)

orbit, then the derivative of L(m/n) from above is given by:




nk+nq-1 n-1
Fxt, Xe1) D, F (X, Xte1)
_t=0

L|+ (m) = “m 1 =0
n" k—emk+my /nk+nqy - m/n nk-+n4 n

im nk+n4-1 n-1
=i Y F (ke xu1) - nkeng X F (4, X))
- t=0 t=0

n-1
=n Z z [F(X$+t’xm+t+1)'F(thxt+1)]
i t=0

Similar result holds for L' (v). Since these equations are
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identical to Eq(3.3.7), this implies EQq(3.4.9) for rational

frequency.

For a subcritical circle with irrational frequency, x(6) in
(8.4.6) is analytic, so we can interchange the order of
differentiation and integration; therefore,

]
dL(v) _ dx(8+v)
v _L Fo(x(8) , x(6+V)) 48 do +
1 1
IX(6+V) j 9x(6)
Fa(x(8) , x(8+v)) —=—2d6 + | F1(x(8) , x(8+v)) =+ d6
J; | ov A 1 ov

Where again the subscripts 1 and 2 of F denote derivatives with
respect to the first and second argument of F. The partial
derivative o0x(6)/0v is due to the dependence of the orbit x(6) on
the frequency v. Using eq(3.1.4), this becomes:




1 1 1
dL(V)=J D(0+v) dx(6+V) + I p(e+v) ZE4V) de-I p(6) ) 4o
0 0 0

1
=J P(6) dx(8) = A(v)
0

In fact, the condition that x(6) be analytic can be relaxed. As
long as x(8) is monotone and transitive, the above equation holds
so that it is applicable to the critical invariant circle.

For a hyperbolic cantorus, since x(0) is a sum of step
functions, the integrand F(x(0),x(6+v)) in (3.4.6) is also a sum of
step functions:

-]

F(x(6),x(6+V)) =t_2 FiH(0-6y) (3.4.10)
where
8t = vt+a mod 1 , v (83.4.11)

Fi is nothing but the discontinuity of the generating function at
the gap in the cantorus. Let { x't } be the orbit of the left
endpoints of a gap in the cantorus, { x't } the orbit of the right
endpoints, thus:

Ft= FiX't, Xt41) - Fixltxlpeq) (3.4.12)

The function on the right hand side of (3.4.10) is periodically
extended to the whole real line in 6.
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Taking the derivative of the average action L(v) yields:
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where in the last equality, the integrand of the first term is the
shift in the 6 variable by an angle v of that of the second term.
These two terms cancel due to the periodicity of the integrand.
Thus: ‘

vyav = - X [ F(xTy, xTpeq) - Fidgxlyq) ]

t=-00

This is exactly the same formula as Eq(3.3.8).

Aubry [1982] showed thatthe derivative of the average
Lagrangian with respect to frequency is a complete devil's
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staircase when the lower bound of the Lyapunov exponents of all
the minimizing orbits is positive; this implies all invariant
circles are destroyed and all cantori are hyperbolic; Since we
have shown that the area devil's staircase is identical to the
derivative of the average action, resonances fill the entire
phase space.
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3.4.3. Implications for AW(v—v')

As an immediate consequence of the completeness of the
area devil's staircase function, the function AW(m/n+—-v) and
AW(m/n-—v) are complete devil's staircase functions: since the
total area of partial barriers of cantori is zero, there is no flux
to these partial barriers.

In Figure 3.11, we plot the function AW(1/3—v). Figure 3.11a
is for the standard map at k =1.40, In fact, it is an overlay of
two functions, AW(1/3+—v) for v > 1/3, and AW(1/3-—v) for v <
1/3. The heteroclinic orbits are found using the orbit extension
method (chapter 5). The behavior of the function AW(v—-v') is
more clearly illustrated in Figure 3.11b. We plot the function
AW(1/3+—v) for v > 1/3 for the sawtooth map at k = 0.08 (the
sawtooth map will be discussed in detail in chapter 4). The
upper turnstile of (1,3) resonance overlaps with the lower
turnstile of (2,5) resonance but not with its upper turnstile.
Therefore, upon one single step, a point trapped in (1,3)
resonance can go no farther up than the (2,5) resonance. In the
figure, v is varied over all the rationals from 1/3 to 2/5 up to
period 28. The point shown at v = 1/3 is the upper turnstile area
of the (1,3) resonance, i.e., AW(m,n*). The function AW(1/3+—-v)
is necessarily decreasing as |v-1/3| increases because the
overlap area must be smaller than the area of the turnstile
itself. Furthermore AW(1/3+—v) has discontinuities across
every rational since the overlap with the (m,n)* turnstile is
significantly different from that with the (m,n)- turnstile,
because the area corresponding to the (m,n) resonance itself
intervenes. For example, the area of overlap of the (1,3)* with
the (8,8)" turnstile is AW(1/3+—3/8-) = 0.95 x 10-3, while the
overlap of the (1,3)+ turnstile with the (3,8)* turnstile is
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considerably less (0.49 x 10-3). The function AW(1/3+—v'") is a
complete devil's staircase. In fact, the sum of the total jumps
up to period 27 is 1.392 x 10-3, while the total area of the
upper turnstile is 1.400 x 10-3, so the difference is less than

0.8 x 10-5.
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Figure 3.11a. The function AW(1/3—v) for the standard map at k
= 1.4.
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Figure 3.11b. The function AW(1/3+—v) for the sawtooth map at
k = 0.08.
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3.4.4. Application to Calculating the Area Under an
Invariant Circle

Equation (3.4.7) gives a convenient formula for computing
the area under an invariant circle, which is useful in practical
applications [see, eg. Dana and Reinardt, 1987]. We use periodic
orbits whose frequencies are the successive rational
approximants of the irrational frequency of the invariant circle
to obtain the derivative of the average action.

The results for the golden mean invariant circle at two
parameter values for the standard map are shown in table 1. A(l)
is the area calculated using rational approximants at level.l, the

‘convergence rate () is defined as:

() = (A(+1) - AMYAQD - A(-1)) (3.4.10)

Notice this method converges considerably faster than the
linear interpolation method (see table 2). In the latter case, we
compute the area under a periodic orbit by connecting
neighboring points with straight lines. The convergence rate is
so slow that it virtually impossible to find the area without the
cost of extremely Iong approximating periodic orbits.




Table 1
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Area under the golden mean invariant circle calculated by the
method mentioned in this paper at different parameter values.

Orbits are calculated

to precision

10-12, A(l) is the area

calculated from the [(th) rational approximating periodic orbit
of the golden mean circle, () is the convergence rate at the
level | defined by eq(3.4.10).

k =0.9

Level M/N A(l) S(l)

4 5/8 0.6104229 .

5 8/13 0.6164991 -0.39350
6 13/21 0.6141081 -0.39701
7 21/34 0.6150573 -0.39712
8 34/55 0.6146804 -0.39303
9 55/89 0.6148285 -0.38682
10 89/144 0.6147712 -0.38299
11 144/233 0.6147932 -0.38205
12 233/377 0.6147848 -0.38165
13 377/610 0.6147880 -0.38197
14 610/987 0.6147868




k =ke = 0.971635406

Level  M/N A(l) (1)

4 5/8 0.6103039 .

5 8/13 0.6157595 -0.37235
6 13/21 0.6137281 -0.37417
7 21/34 0.6144882 -0.37174
8 34/55 0.6142056 -0.37373
9 55/89 0.6143112 -0.37233
10 89/144 0.6142719 -0.37326
11 144/233 0.6142866 -0.37266
12 233/377 0.6142811 -0.37304
13 377/610 0.6142831 -0.37280
14 610/987 0.6142824 -0.37295
15 987/1597 0.6142827 -0.37286
16 1597/2584 0.6142826




Table 2

Area under the golden mean
linearly
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invariant circle calculated by
interpolating the neighboring points of the periodic

orbits. All Orbits are calculated to precision 10-12. A(l) is the
area calculated from the I(th) rational approximating periodic
orbit of the golden mean circle, 8(I) is the convergence rate at
the level | defined by eq(3.4.10).

k =0.9
Level  M/N A(l) S(1)

4 5/8 0.7081045 o

5 8/13 0.6708096 0.38843
6 13/21 0.6563233 0.96231
7 21/34 0.6423830 0.60258
8 34/55 0.6339828 0.78309
9 55/89 0.6274048 0.67063
10 89/144 0.6229934 0.69026
11 144/233 0.6199483 0.63581
12 233/377 0.6180122 0.63471
13 377/610 0.6167834 0.61881
14 610/987 0.6102303




k =ke = 0.971635406

Level  M/N A(l) 5(1)
4 5/8 0.7058759 .

5 8/13 0.6688289 0.38648
6 13/21 0.6545110 0.93595
7 21/34 0.6411104 0.58059
8 34/55 0.6333304 0.75352
9 55/89 0.6274674 0.66256
10 89/144 0.6235831 0.71557
11 144/233 0.6208036 0.69140
12 233/377 0.6188818 0.70734
13 377/610 0.6175225 0.70114
14 610/987 0.6165694 0.70601
15 987/1597 0.6158965 0.70456
16 1597/2584 0.6154224 .
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3.5. The Markov Transport Model

The numerical observation that an irregular component has a
positive Lyapunov exponent allows a stochastic description of
the transport process: since any uncertainty in the initial
positions in the phase space is amplified exponentially under
iterations of the map till it is of the same order as the size of
the system under study. So we are forced to "coarse grain" the
actual underlying dynamics, and give a probabilistic description
of the transport.

In the supercritical regime partitioning of the phase space
by resonances gives a natural discrete coarse grain procedure.
First, resonances are nonintersecting and cover the whole phase
space area, so that almost all positions in the phase space are
inside some resonance state. Secondly, the stable and unstable
manifolds of a minimizing periodic orbit typically cross each
other transversely, so there is a stochastic layer inside any
resonance in which the motion can be regarded as mixing,
therefore rapidly losing memory of its history. Lastly, the
overlaps of turnstiles of partial separatrices with other
resonances give all the allowable transitions between
resonances. All these suggest a Markov description of transport
where we assume there is an immediate loss of memory within
resonances.

Consider a random motion of a particle through a discrete
set of states. A Markov chain is a stochastic process where the
transition probability from one state to another at time t is
independent of t, i.e., if 2(i,t— j,t+1) is the probability of
starting the particle in state i at time t and finding it in state j
at time t+1, then
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(it jt+1) = 7(,05),1) = T (3.5.1)

The transition probability Zjj (or transition matrix) is
nonnegative and satisfies

2 Tj=1 (3.5.2)
j

Let Pj(t) be the probability in state i at time t, the evolution
equation of the probability distribution is

Pi(t+1) = 2 Pj(t)7ji (3.5.3)
I

This is called the master equation of the Markov chain.

In the simplest version of the Markov model, states are

resonance islands labeled by (r,s), where r denotes the
resonance type (mg,ny), in fact we can use the frequency of the

resonance my/nyasr;ands =0, 1, ..., n,-1 denotes the island.
By convention, we choose s = 0 to be the central island in the
resonance chain, and (r,t) to be the inverse iterate of (r,t+1 mod
ny) fort > 1.

The transition matrix elements are specified as follows:

1) For s = 0, each iteration maps (r,s) to (r,s+1), the next island

in the same resonance chain. Hence the transition matrix from
(r,s) island to (r,s+1 mod ny) island is 1 and to any other is 0.

2) Transitions between different resonances take place in the
(r,0) island. Let the flux between resonance r and r' (r =) be
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F(r,r"), the total flux out of resonance r be Frux(r) (= >, F(r,r'),
rl

and the stochastic area in the central island of the resonance r
be A(r), which is the area of the central island minus the area of
regular motions in it, then

2(r,0—-1r",1) = F(r,r')/A(r)
2(r,0—>r,1) = 1 - Flux(r)/A(r) (3.5.4)

All other ftransition matrix elements are zero.

With the above specification, the transition matrix
obviously satisfies

> qrs—r.s) = 1. (3.'5.5)
rs'

We discuss a few consequences of this model.

a) The simplest prediction of the Markov model is that for
escape from a single resonance the survival probability decays
exponentially. We may restrict consideration to the escape from
the central island of a period n resonance, since the other
islands are iterates of each other. Hence

P(nt) = (1 - Fluxg/A)l
so the escape rate is

o = (log(1-Flux/A))/n (3.5.6)
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Numerical studies show exponential decay of escape rate, and in
some cases, the escape rates compare favorably with the
prediction. A model system is studied in detail in chapter 4.

b) Another consequence of the Markov mode! is that if the phase
space is compact, then any initial probability distribution will
approach to a uniform distribution equilibrium state

lim Pr g(t) — cA(r) (3.5.7)

t— oo
where ¢ is the normalization constant.
A steady state Py g satisfies

Prs=2 Prg (rs'—r,s) (3.5.8)

rs'
Using (5.3.7), and write 2(r',s'-r,s) = F(r',s";r,s)/A(r'), we get

A(r)=z F(r',s';r,s) ZFrsrs

rs' r,s'

where in the last equation, we used the balance condition for the
flux. This is exactly Eq(3.5.5).

c¢) Dana, Murray, and Percival [1989] have investigated the
diffusion coefficient for periodic maps of the cylinder using the
Markov model. Since the map is periodic in the vertical
direction, we can use another integer index | to label the
repeated cell structure in the vertical direction. They start with
an arbitrary initial distribution, and compute the quantity
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D="™ 12p(r,s,1:t)/2t (3.5.9)

t—e0

which in some sense is a coarse grained diffusion coefficient.
They show that D is independent of the initial probability
distribution and is related to the largest eigenvalue B(k) of the
transition matrix in the Fourier representation as follows

D = - d2B(k)/dk2|k=0 (3.5.10)

This result shows some agreement with the actual diffusion
coefficient. An interesting topic along this direction is to
calculate the correlation function of the Markov model.

We can refine our Markov model to incorporate the effects
of stable elliptic regions within a resonance. This can be
achieved by subdivision of the resonance states into a
hierarchical tree of states. In fact, we can subdivide a
resonance by higher class resonances, this is possible as long as
there are elliptic islands inside so that the map has twist
around the elliptic orbit. However, for a hyperbolic system, we
do not know any natural subdivision.




Chapter 4

Symbolic Dynamics of the Sawtooth Map
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4.1. Introduction

The Markov model discussed in the last chapter allows rapid
computation of transport rates and is being used in applications
[Meiss et. al. 1984, Davis 1985], but it depends on some
statistical assumptions that need to be checked carefully for
their accuracy.

In this chapter, we use the sawtooth map as a test case for
the Markov transport model. It has several advantages:

1. Cantori, partial barriers, turnstiles and resonance boundaries.
can all be obtained analytically, as we show in this chapter.

2. These" structures resemble those of smooth maps like the
standard map (unless the perturbations are close to critical, so
the sawtooth structures are useful first approximations for
smooth systems under large perturbations. This is shown in
Figure 4.1. They are also identical to those of certain piecewise
linear maps in some parameter ranges.

3. For all non-zero values of the parameter, the sawtooth map is
a completely chaotic K-system. However, this property is also a
disadvantage, because the map cannot represent the effect near
critical boundary circles, where the invariant tori have just
been destroyed. The behavior near boundary circles is important
for smooth systems like the standard map, and is believed to be
the mechanism which gives long time tails in correlation
functions in area preserving maps [Meiss and Ott, 1986].
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As we shall see, a purely chaotic system has more
structures than its name suggests. The skeleton of the chaos is
a bounded invariant set. This invariant set has intriguing
properties: its dynamics is characterized by the shift map on a
restricted symbol sequence space.

The sawtooth map has been studied extensively by various
authors [Percival 1980; Cary and Meiss 1981; Aubry 1983b;
Percival and Vivaldi 1987a, 1987b; Bird and Vivaldi 1988]. In
particular, the minimizing orbits were first obtained by Aubry
in 1983.
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Figure 4.1a. Resonances of the sawtooth map for K = 0.1 up to
period 10.
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Figure 4.1b. Some resonances of the standard map at K = 1.972.
Note that away from the principal gap, around x = 0, the
resonances have a rectangular shape similar to the sawtooth
map.
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4.2. The Sawtooth Map and Its Orbital Structures

The sawtooth map is derived by linearizing the standard
map about the latter's fixed points. It is defined by

Pt+1 = pt + Ki(xt)
Xt4] = Xt + Pty mod 1 (4.2.1)

where x is the configuration coordinate, x e 71, and p the
momentum coordinate, p e ®; we shall take 71 as the unit
interval [0,1). t is the discrete time variable, K is the
"stochasticity parameter", and the force function is

f(x) = x - 1/2 for x € (0,1) (4.2.2)

The force is temporarily undefined at x = 0, 1. Note the force is
discontinuous on the line x = 0. This discontinuity is the basic
source of "nonlinearity" in the sawtooth map. Notice that the
map is also periodic in p; define a unit cell 0 <p<1,0<x <1,
the orbit structure is repeated in unit cells that are one unit of
momentum apart. We shall consider the parameter range K > 0
where the map is hyperbolic.

The lift of the sawtooth map to its universal covering

space, the plane ®2 is

Pt+1 = Pt + KS(Xy)
Xt+1 = Xt + Pts1 (4.2.3)

or its Lagrangian or Newtonian form is

Xt - 2Xt + Xtq = KS(Xy) (4.2.4)
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where X e R is the lifted angle coordinate. S(X) is the periodic
sawtooth function defined by

S(X) = X - 1/2 for X e (0,1)
S(X+k) = S(X) fork e z. (4.2.5)

The sawtooth map has a reversor R (section 3.1.1)
R(x,p) = (-x+p,p) (4.2.6)

In the following, we shall use the Newtonian form of the map;
however the p coordinates are easily retrieved by using the
original map (4.2.3).

Orbits of the Ilift map correspond to stationary
configurations of a one dimensional Frenkel-Kontorova chain of
particles connected by harmonic springs with action given by

(Xeat - X¢)2

W (X)) =12

K 2
> (804)) (4.2.7)

The potential is periodic, and within each well it is quadratic.

It is convenient to decompose X into a fractional part and an
integral part

Xt = Xt + My (4.2.8)
Then Newton's equation becomes

Xt41 = 2%t + Xt-1 - K(xt-1/2) = -( Mty - 2Mt + Mt )
= - (Ct- Ct-1) = - bt (4.2.9)
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where we have introduced the so called linear codes
Ct = M1 - My
bt =ct- ct.q (4.2.10)

Therefore if xi crosses the discontinuity line k time(s) upon

iteration, the ¢ code is k. If the crossing is from left to right, k

is positive; if the crossing is from right to left, k is negative.
The integer M; labels the potential well where the t(th) particle

sits. The code ct represents the shift in the well number

between successive particles, hence gives a crude integer
measure of the stretching in the string between these particles; .
and bt represents the integer part of the shear in the stretching.

The equation of motion (4.2.8) is a second order
inhomogeneous difference equation. To solve it, we need to
invert the infinite tridiagonal matrix. This can be achieved by a
Green function which satisfies the equation

Gt+1,s - 2Gts + Gt-1,5 - KGig = Stg (4.2.11)

Since Gi,k s+k satisfies the same equation as Gig, the solution
only depends on the difference t-s

Gts = Git-s,0
The unique bounded solution is given by

Gis = -A-It-sl//D (4.2.12)
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where A is the greater root of the homogeneous difference
equation, which is also the greater eigenvalue of the linear map

A=1+(K+VD )/2
D =K2 4+ 4K (4.2.13)

therefore

Xt -1/2 = Z Gts ('bs)

S =-c0

-t_ -
XV'D_S'bS £ 1/2 (4.2.14)

Nk

Xt =
8

Hence, the angular coordinates of an orbit are uniquely
characterized by the b-code, and vice versa. The relation
between the angular configurations and the b-code is linear. The
b-codes characterize equivalent classes of orbits on the torus,
we call it the "linear code". In the same way, the c¢-codes
characterize equivalent classes of orbits on the cylinder, and
the M-codes characterize orbits on the plane.

Not all linear codes give physical orbits. There are an
infinite number of constraints for the code corresponding to the

requirement that

0<xt<1

or
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- 2.~ t-s|
-1/2 b 1/2 4.2.15
< sgm o 0s < (4.2.15)

We shall refer orbits that do not satisfy the above constraint as
"ghost orbits". Note that as K increases, the coefficients of the
b's decrease. Hence ghost orbits may become real orbits as K
increases. This occurs when one or more points of a ghost orbit
hits the discontinuity lines at x=0 and x=1, and move inward
from there.
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4.3. Minimizing and Minimax Orbits

Symbol sequences for minimizing orbits are given by the
their monotone property. Although the potential here is not
differentiable, Aubry-Mather theory (section 3.2) still applies to
this model.

Theorem (Aubry 1983b) For a minimizing orbit- with rotation
frequency v, there exists a phase constant o such that the
configuration points X; belong to the interval [M;, My+1], where

M; = int(vi+a).

Hence minimizing orbits are monotone. This follows
immediately from the above theorem

Xt+j<Xt'+j'@Xt+1 +j<Xt!+1 +j’ . (431)
4.3.1 Minimizing Periodic Orbits

A periodic orbit of type (m,n) satisfies Xt+n = Xt + m. Note
that the symbol sequence of a periodic orbit is also periodic.
Summing up the series in Eq(4.2.12) gives

n-1 -8 n-s
A+ A7) 1
Xt = z —————Dgyt + -
s=-.0 YD (1-2M 2 | (4.3.2)

The symbol sequence for the (m,n) minimizing orbit is

My = int( + T

>+ (4.3.3)
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A few simple relations for the symbol sequence of periodic
minimizing configuration are useful. Letting [ be the unique
solution of the Diophantine equation m/ = -1 mod(n), £ < n. This is
equivalent to letting j// the left convergent of m/n

mi-nj=-1,(<n (4.3.4)
A simple calculation using Eq(4.3.4) gives

bty = bi 1<t<n-1
biyr=b1 -1

bn-14,=bn-1 -1 |
by = b + 2 (4.3.5)

An important characterization of these orbits is the "gap"

function, which we now define. In the following discussion, it is
convenient to let xg be the leftmost point of the orbit in the

unit interval [0,1). The neighboring point to the left of xtis Xt4p

The gap function at time t for the minimizing periodic
configuration { &;} is the distance between x{ and Xiir

Et = Xt - Xt40+ 80t . (4.3.6)

For minimizing periodic orbit, the equation satisfied by &t is

Et+1 - (24K) &t + Et-q
= (-by + btyr+ 80 t+1 + 80,t-1 - 280,1) - KdQ ¢
= - kSQ,t (4.3.7)

hence for a period n orbit

£ - K A8+ A"S)
D (1-2M (4.3.8)
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where we use the superscript n to emphasize that the gap
function depends only on the period of the orbit, and not its
frequency. Eq(4.3.8) was first obtained by Percival and Vivaldi
[1987b] by a continuity argument.

An immediate consequence of Eq(4.3.8) is that the leftmost
point of the minimizing orbit is given by

(n) _ &8']) __K@+ah
2 2D (1-2M (4.3.9)
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4.3.2 Cantori and Minimizing Homoclinic Orbits

Let 6 e {+.,-}, and define intS(x) and {x}° to be the right and

left continuous integral and fractional parts of x. The M-code
which gives the orbit corresponding to the gap end points of a
cantorus with frequency v is

MO; = intO(vt) (4.3.10)
The orbit of right or left gap end points (for ¢ = + or -

respectively) is

- lnl
xOp= >, & A= b0+ 1/2

N= -0

X0t = lv-lﬁnl [{v(t+1+n)}9-2{v(t+n)}O+{v(t-1+n)}O] + 1/2

il

= - M{vt}G + (A +2-1-2) wﬁ{v(t"'n)}c'l' 1/2

"M8

1l

)10 +1/2

nN=-co
Introducing the sawtooth function

s(0) = {8+1/2}0-1/2
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and replacing vt-1/2 by 6, we obtain a continuum of orbits
{xO(6+vn) | n e z}

x0(8) = {6+1/2)0- K 2, %Isc(ewn) | (4.3.11)

N=-o

As we shall show, 0 < x9(8) < 1, Hence

- Nl
X0(6) = 04+1/2- K 2 S50(6+vn) (4.3.12)

N=-
We note the following properties of XO(8)

a) XO6(0) is o-continuous. This follows immediately since {6}C is
c-continuous.

b) The derivative of X9(6) vanishes at all points of continuity.
Since the series for X%(6) is uniformly convergent, its
derivative can be computed term by term. Evaluating the
derivative at a point of continuity

I
9X5(6)/30 = 1 - K Z" -0

N = -0

c) XOo(6) is a monotone function of e The jump across a point
Omn = m-nv-1/2 is

AXp = Ka-INlVD
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This in fact is the gap function of the cantorus. The total
variation of Xo0(8) from -1/2 to 1/2 is the sum of all jumps.
Hence X9(0) is a sum of step functions

XG(G) = ZAXnHG(e"emn) + const.
where HO(6-0mpn) is the left or right continuous step function.

d) A bound of the norm of x©(8) can be obtained by noticing x9(0)
= 1/2 and xO(8) is odd almost everywhere. The value of x%(8) is
the sum of the jumps corresponding to discontinuities 6émnp €
[0,8]. Providing |6] < 1/2, the term AXqp does not contribute, hence

IO (6)-1/2] < 1/2(X AXp) < 1/2
Therefore
0 < x0(8) < 1
The invariant set indeed is inside the fundamental unit interval.

The closure of the set #,, = { x9(0),x9(6+v) |6 € R, 6 € {+,-} }
is a Cantor set. Since xO(8) is o-continuous, 44, has no isolated
points, hence is perfect and closed. Now between any two
distinct points x4, xo of 41, corresponding to parameter values
01, 62 of x0(0), there is a jump at 6jn = m-nv-1/2 € (61, 62),
Hence a4y, is totally disconnected. Therefore 44y, is a Cantor set.

The gap function for a cantorus is defined as the gaps
between the end points of the Cantor set. It is easily obtained
from formulas for the right and left end points or by taking the
limit n to infinity for the periodic gap function
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&t = KM-IHAD (4.3.13)

Note the cantorus gap function for the sawtooth map does not
depend on the frequency. This also applies to the gap function
for the minimizing homoclinic orbits, the latter can be viewed
as a limiting cantorus when the frequency tends to a rational
number.

Equation (4.3.13) has interesting implications; e.g. the
fractal dimension of any cantorus for the sawtooth map is zero.
In fact, for a hyperbolic cantorus, it can be shown that the
projected measure is zero and the gaps go to zero exponentially,
and there are only finitely many orbits 'of, gaps. Therefore the
projected measure after removing the n largest gaps is at most
Ca-N, for some C. So one can cover s/, with n intervals I; of
length Ca-N. Thus Kp(s) = 2 [Ij|S < nCa-N. The Hausdorff
dimension DH(a4y) =inf{s = 0: Kn(s) - 0 asn — 0} = 0. This fact
was first discovered for the golden mean cantorus in the
standard map [Li and Bak, 1986], and later was proved for any
hyperbolic cantorus [MacKay 1987].

When the frequency v is a rational number and is equal to
m/n, equation (4.3.10) gives the symbol sequence for the upper
or lower (m,n) homoclinic orbits. Eq(4.3.13) also gives the gap
function for the upper or lower (m,n) homoclinic orbit.
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4.3.3. Minimax Periodic Orbits

The ordered periodic orbit given by (4.4.2) and (4.4.3) is the
ordinary hyperbolic one, which minimizes the action sum. For
maps with sufficiently smooth functions f(x), the Poincare-
Birkhoff theorem guarantees the existence of a second ordered
periodic orbit with the same winding number. This orbit is
elliptic or hyperbolic with reflection, and minimaximizes the
action sum. For the sawtooth map, f(x) is discontinuous, and the
existence of such an orbit is not self evident. We show here that
a second ordered periodic orbit indeed exists if f(x) is defined
on the discontinuity line as follows:

f(x=0) = 0 o (4.3.14)

This definition is a natural one, since it leads to an
antisymmetric function f(x) = -f(-x). The map is then invariant
under inversion (x,p) — (-x,-p). The new orbit has a point on the
discontinuity line x=0, so that its linear stability is undefined
(the tangent space does not exist). However, the orbit is
obviously unstable, since the map is hyperbolic everywhere else.

We shall now show, by explicit construction, that there are
ordered minimax periodic orbits for the sawtooth map. First we
note that any minimax periodic configuration, if it exists, must
have at least one point at the maximum of the potential, x=0. If
this were not true then the action on the orbit would be
differentiable, with a second variation given by
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n-1 n-1
82W({Xi}) = 2. 2 Hs t3Xs8Xt
s=0t=0
Hs,t = - 8s,t-1 - 8s,t+1 + (2+K)8s ¢ (4.3.15)

where the indices s,t are assumed to be cyclic modulo n, the
period of the orbit. Thus 82W > 0, for K > 0, i.e. this
configura'tion is always a local minimum of the action. On the
other hand, a minimax (m,n) configuration can have at most one
point at x = 0 since each point of an ordered (m,n) configuration
lies between the two points on the corresponding (m,n)
minimizing configuration.

Now we claim that the minimax orbit { x't} of rotation

number m/n has the same symbol sequence as the minimizing
(m,n) orbit { xt } and is given by

X'o=(xg+x-1/2=0 .
X't = (Xt + Xtg.0)/2 t=0modn (4.3.16)

The geometrical meaning of (4.3.16) is simple: the points on the
minimax periodic orbit are exactly halfway between the
- neighboring points of the corresponding minimizing periodic
orbit. For 1 <t < n-1, Eq(4.2.9) becomes

X't41 - 2X't + X't - K(X't - 1/2) = - (bt + bt4.()/2
= -bt

We need also to verify Eq(4.2.9) for t = 1 and t = n-1. It suffices
to consider the case t = 1

X'9 - 2X'{ + x'9- K(x'{ -1/2) = - (b1 + by + 1)/2
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=-b1

The equation for the rﬁinimax orbit at t = 0 is automatically
satisfied

X4 +X1=1=-bp
Finally it is not difficult to see that the action, Eq(4.3.15), has

precisely one downward direction, corresponding to the
variation of the coordinate Xg.

We can also start directly from the gap function to find the
minimax orbit

E't=8"%-8&'t4r+ 80t

Assuming that { x't } has a unique point at x=0 and has the same
linear code as the minimizing periodic orbit, we have

X't41 - 2X't + Xt-9- K(X't+-1/2) = -bt + Kép,1/2

The term Kog t/2 comes from the correction at t=0 where the
force is zero. The equation for &'y is

E'teq - 2&'t + E't-q- KE't = -K8ot + K(30,t - 80,t4+0/2

where the second term is due to the definition that the force
term is zero at x = 0. therefore

E'vpq - 28"t + E'rq1- KE't = -K( 80,t + 80,t+/)/2

or
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§'t= (&t + Et4r)/2 (4.3.17)

which again says the minimax orbit sits exactly halfway
between the minimizing orbit. In fact, this also applies to the
minimax homoclinic orbits and orbits homoclinic to cantori.
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4.4. Partial Barriers, Turnstiles and Resonances
4.4.1. Partial Barriers and Turnstiles

The flux across the (m,n) minimizing orbits is obtained by
constructing the turnstile of the orbit. We connect the
neighboring points of the (m,n) minimizing orbit by straight line
segments, then iterate these line segmenis one step backwards.
The construction is shown in Figure 4.2. Note that these line
segments pass through the (m,n) minimax orbit. Due to the
discontinuity of the sawtooth map on its dominant symmetry
line, one line segment is broken to two pieces. The region
bounded by the dominant symmetry line, the broken pieces and
the original line segments is the flux region, or turnstile. It is
shown as the two shaded triangles in Figure 4.2. Hence the area
of either one of the two triangles gives us the flux AW across
the (m,n) minimizing orbit

AW(m,n) = T ApxQ
where Ap is the discontinuity in p at x = 0. By Eq(4.2.1)
Ap' = Ap - K

Since the discontinuity maps to a continuous segment after one
iteration, Ap' = 0, so

Ap = K

thus using Eq(4.3.9) we obtain
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K2 (1+ A"
AN =515 A (4.4.1)

The flux across a cantorus or a homoclinic orbit is given by
letting n tend to infinity

AW, = K2/8YD (4.4.2)

/

One can also find the flux by taking the action difference of
the corresponding minimax and minimizing orbits

AW(m,n) = W(XY) - W(Xe)
' n-1
=3 {2Ke0- 2 [ (a1 - 02 + k22 ]}
t=0

which, by Eq(4.3.8), yields Eq(4.4.1) again.
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Figure 4.2. Flux across the (3,8) periodic orbit at K = 0.1. The
crosses are the points on the minimizing orbit. The dots are on
the minimax orbit. The shaded region is the turnstile.
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4.4.2. Resonhances

An (m,n) resonance is the region bounded by the upper and
lower partial separatrices for a minimizing (m,n) orbit. For the
sawtooth map, the stable and the unstable manifolds of any
periodic orbit are straight line segments: the slope does not
depend on the period of the orbit. Thus the resonances of the
sawtooth map are constructed simply by drawing the unstable
(stable) manifolds of the points on the periodic orbit till they
intersect the stable (unstable) manifolds of the neighboring
points; these define the upper and lower partial separatrices of
the resonances. Some of the resonances of the sawtooth map are.
shown in Figure 4.1a. Note they are all parallelograms.

It is straight forward to calculate the area of an (m,n)

resonance, This is illustrated in Figure 4.3 for the (1,2)
resonance. For an (m,n) minimizing orbit, the leftmost point is
given by Eq(4.3.9), that of the homoclinic orbit is obtained by
taking n to infinity; thus hy = K/AD and hy = x(N)g - x (=)g =

K/YD (A" - 1)). Simple geometry gives

h = ho(tana + tanp)

where tana and -tanp are the slopes of the unstable and the
stable manifolds

tana = K/(A - 1) tanB = K/(1 - A-T)

h(m,n) = ho(tana + tanp) = k/(AN - 1) (4.4.3)

2
A(m,n) = nh(hq+ ho) = ﬁ(k”nfx“- > (4.4.4)
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Figure 4.3. llustration of the calculation of resonance area for
the (1,2) resonance.

One can verify that formulas (4.4.3), (4.4.4) also apply to
(0,1) and (1,1) resonances if we take them as the same
resonance.

Note the area is inversely proportional to the absolute value
of the residue. This seems to hold generically. The numerical
computations of MacKay, Meiss and Percival [1987] show that
for smooth maps the resonance area is, within numerical errors,
inversely proportional to the absolute value of the residue for
large residue minimizing orbits.

There are two complete staircases in the sawtooth map, one
is given by the height function (4.4.3), the other by the area
function (4.4.4) (Figure 4.4). Since these two quantities depend
only on n, we denote them by h(n) and A(n). It is not difficult to
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prove these two devil's staircases are complete. For height
function, we sum over all the steps

2.0(n) h(n) = 1

n=1

Wheré o(n) is the Euler ¢-function [Hardy and Wright 1979], i.e.
the number of positive integers not greater than and relatively
prime to n. The above sum is a standard result

(o o)

k 2 on)/@an - 1) =K/ +a-1-2) =1 (4.4.5)
n=1

Introducing a new variable 6 defined by A = e®, we can rewrite
Eq(4.4.5) as -

o0

2. 0(n)/(en® - 1) = [4sinh2(8/2)]-1
n=1

Taking the derivative with respect to 6, we get

(=]

D, 0(n)n/sinh2(n8/2) = cosh(8/2)/sinh3(6/2)
n=1

which is exactly the completeness condition for the area
staircase
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20(MA(M) = 1 (4.4.6)

n=1

The complement set of the resonances cuts a vertical line in
a cantor set. From Eq(4.4.5), we see that this set again has zero
fractal dimension. We expect this to hold generically for
supercritical area-preserving maps.
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Figure 4.4. The area devil's staircase function in the sawtooth
map at K = 0.3. Only half the staircase is plotted. Another half
can be obtained by the reflection symmetry: A(1-v) = 1 - A(v)
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4.4.3. Generalized Turnstiles

The geometrical form of the total flux region defined as the
union of the upper and lower turnstiles undergoes qualitative
changes which distinguish dynamics inside a resonances. There
are basically three distinct cases, 1 < AN <2, 2 < AN < 3, and AN >
3. For the last case, the shape of the escape region changes, and
we call the new structures "generalized turnstiles”.

Let us restrict to the central island of the (m,n) resonance
(the one surrounding x = 0). For small AN, motions near the
center of the island are quite "regular": Consider a point on the
left side of the discontinuity, near the center of the island. The
orbit is determined by the stable and unstable manifolds of the
left unstable periodic point. So it moves on a hyperbola till it
crosses the discontinuity line from left to right; Then it moves
on a right hyperbola till it crosses the discontinuity line from
right to left; and so on. Therefore, the orbit rotates around the
center of the island, in a similar fashion to a stable elliptic
island for the smooth map case. However, this analogy is not
complete: almost all points in the central island will eventually
rotate out of the island and escape since the map is hyperbolic.
For small AN, the escape time can be very long, and the island
structure is prominently seen. Figure 4.5 Shows such a behavior
for the (1,2) resonance. '
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Figure 4.5. An orbit wandering around the (1,2) resonance at
K = 0.001 or A2 = 1.056.

This island structure is "modified" if the upper and lower
turnstiles touch each other. This occurs when

h(m,n) = 2Ap = K

or

AN = 2 (4.4.7)

For AN > 2, the escape region (the union of the turnstiles) is a
connected component, and it cuts the resonance into two
disjoint pieces. This has interesting implications for the
dynamics inside the resonance. In particular, the trapped
invariant set becomes a Cantor set.



144

The form of the escape region undergoes a further
qualitative change when the upper turnstile cuts across the
lower boundary of the resonance and the lower turnstile cuts
across the upper boundary (see Figure 4.6.). This occurs when

h(m,n) = Ap = K/2
or
AN =3 (4.4.8)

For A" > 3, only parts of the upper and lower turnstiles remain

inside the resonance (the trapezoidal regions CEMJ and DFNIuin
Figure 4.6). The regions outside the resonance can no longer be

regarded as the flux regions. We call these trapezoidal regions

the upper and lower "generalized turnstiles”.

In this case, the total flux is no longer 2AW given in section
4,41, but the sum of the areas of the shaded parallelogram
_ regions

Flux = K2 [1- ) ‘ '
4D " (12 (4.4.9)

It is easy to verify that at AN = 3, the total flux is one third of
the area of an island.

According to the Markov model, the probability of escaping a
period n resonance per iteration is

Peo\ln = FIUX(m,n)
Area{m,n)/n
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Hence
Pe(AN) = AN+ A-N-2)/4 AN <3
=1-2)\"N AN >3 (4.4.10)

It is easy to verify that Pg increases monotonically from 0 to 1
as AN varies from 1 t0 .



Figure 4.6. Schematic illustration of the
general resonance, in the case A > 3,
turnstiles (shaded regions).

central
with its generalized
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4.4.4. Application to Piecewise Linear Standard map

We remark here that the sawtooth map is intimately related
to various piecewise linear, continuous area-preserving maps
studied by Bullet [1986]. Define a new force function in (4.2.2)

by

K(e-1)x/e 0<x<gel2

fix) =  K(x-1/2) el2 <x<1-¢/2
K(e-1)(x-1)/e 1-e2<x<1 (4.4.11)

where 0 < ¢ < 1. If the size of the main gap §(°°)0 is larger than e,
then all the minimizing and minimax configurations for
Eq(4.4.11) are identical to those for the sawtooth map with the
same parameter value. This is because all points of a
minimizing orbit fall inside the hyperbolic region { x: |x-1/2] <
(1- ¢ )/2 }, where the maps are identical. Furthermore a minimax
orbit will have only one point outside this region (at x=0), but
both maps have F(0) = 0. Thus the minimizing or minimax orbits
of the sawtooth map are also the minimizing or minimax
periodic orbits of the piecewise linear map. The critical
parameter value for which &(<)g =¢

Kcr = 482 /(1“ 82) (4412)

As shown by Bullet, above this critical value there are no
invariant tori. For K = Kgr invariant tori of all frequencies can

be constructed by connecting the neighboring points of the
corresponding minimizing homoclinic orbits or cantori by
straight line segments.
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The resonance structure of these piecewise linear maps at
or above this critical value is therefore identical to that of the
sawtooth map. For instance the resonances of the piecewise
linear standard map (e =1/2) studied by Bullet at K = 4/3

correspond to those of the sawtooth map at K = 4/3 (where
g(=)g = 1/2), except in the region of the principal gap. The
turnstile of an (m,n) periodic orbit above the critical parameter
value is constructed in Figure 4.7, and it is easy to see the flux
is given by

AW(m,n) = K((N)g-€)/8 . (4.4.13)
Similarly the flux through a cantorus is
AW = K( E(>)g - ¢ )/8 (4.4.14)

Near the critical parameter value, Eq(4.4.14) implies that the
flux through any cantorus grows as

AW = g(1-e2)(K-Kgr)/16 + O(K-Kgr)2 (4.4.15)

That AW grows linearly with K-Kgr is unusual since for a

smooth map renormalization theory predicts an exponent of 3.01
for any noble cantorus [MacKay, Meiss and Percival 1984].
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Figure 4.7. Flux across the (3,8) periodic orbit for the piecewise
linear map for ¢ = 0.1 at K = 0.1. The shaded region is the
turnstile.
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4.5. Invariant Sets within Resonances

Orbits which are trapped within a resonance give rise to the
islands around islands structure for smooth systems [Meiss
1987, Meiss and Ott 1986]. This structure impedes the escape of
orbits from a resonance because outside the last vibrational
invariant circle around the minimax periodic point there are
vibrational cantori. Each cantorus has a turnstile which impedes
the transport of orbits. This structure is repeated hierarchically
for each stable island within the resonance. It is natural to ask
if such a structure exists in the purely hyperbolic sawtooth map
and how it affects the escape dynamics.

In the smooth case some of the trapped orbits can be
characterized by their rotation frequency about the central
elliptic point, or their rotation frequency about another trapped-
orbit. For the sawtooth map, it is more convenient to
characterize the set of trapped orbits in terms of an extension
of the linear code. This gives a complete characterization of the
trapped set.

An orbit is uniquely determined by the linear code { bt}. For
a trapped orbit, however, it is convenient to use a modified code
which more naturally describes its properties. The new code is
constructed from two characteristics: the resonance within
which the periodic orbit is trapped, (m,n), and an -8 symbol
sequence { aj} of the orbit. To construct the latter, consider the
central island of the (m,n) resonance. The discontinuity line
divides it into two halves, call them ~ and ® for left and right,
respectively (Figure 4.8). A periodic orbit within the (m,n)
resonance has a'period which is multiple of n, say gn; it has g
points in each island. To construct the code, pick a starting
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point xp in the central island and let ap=0 if xg is in 2,
otherwise ap=1; continue for the remaining q points, letting
aj=0 if xjn is in £ and so on. Therefore { aj} has period g. For

example, the vibrating ordered orbit with rotation frequency
3/8 (rotation number relative to TN) has a £-® symbol sequence
[1,1,0,1,0,0,1,0], where we use the square brackets to denote
the periodicity. There are two vibrating ordered orbits for odd
period, one has an extra point on the left side of the
discontinuity, and the other has one more point on the right.
They are reflections of each other under the reversor R given by
(4.2.6). For example, -® symbol sequence for the 2/7 orbits are:
[1100110] and [1100100]. This symbol sequence is natural and
corresponds to the usual symbol sequence for a hyperbolic
horseshoe. In fact, this coding scheme, i.e., resonance type plus
L-® symbol, gives a general code for almost all orbits of the
sawtooth map, since the resonances fill the full measure of
phase space.

Figure 4.8. lllustration of the £-® coding for the (1,2) resonance.
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The linear code { by} can be easily obtained from the above

two characteristics. Suppose the c-code for the (m,n) orbit is
[co, ¢1, €2, ..., En-1], where time O corresponds to the leftmost
point of the (m,n) orbit. The c-code for the island orbits is then
given by [1-ap, ¢4, ¢2, ..., cph-2,a4,1-a4, ¢4, C2, ... , Cn-2,22, ...,
1-ak.1,¢1, -. ,ap]- There is no change in the code for points other
than those in the central island. Since this orbit follows the
rotation order of the (m,n) orbit, if aj=0, the crossing is
deferred to the next step, while when aj=1, the crossing occurs
at the same step. This explain the occurrence of the pair (aj,1-
aj) at times (in-1,in). Using Eq(4.2.10), the linear b-code for
times (in-1,in,in+1) is given by (1,-1,0) when aj= 1, and is
(0,1,-1) when aj= 0.

The above analysis assumes that the resonance period n > 2.
The cases n = 1 and n = 2 are special. For (m,n) = (1,2), using the
same argument, the c-code is given by: [1-apg,a1,1-a1, ... ,1-an-
1, ag], therefore the linear code at time (2i-1,2i) is (1,-1), if
aj=1; or (-1,1), if aj=0. The c-code for (m,n) = (0,1) is: [aq-
ap,az-aq, ... ,ap-an-11, therefore bj = aj 1 - 2aj + aj-1.

Although we only discussed periodic orbits within a given
resonance, it is obvious that the same analysis applies to any
orbits which are forever trapped inside a resonance. Therefore
the L-® symbol sequence characterizes the entire invariant set
of the resonance.

If the £-® symbol is of period 1, and is [1], the linear code is
the same as that of (m,n) orbit. If the -& symbol is [0], the
linear code is that of (m,n) orbit shifted to the left once. These
two cases therefore do not give trapped orbits, but the usual
(m,n) orbit. Heteroclinic orbits from left to right are given by
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(...,0,0,1,1,...). In a similar fashion, one can construct codes for
heteroclinic orbits approaching higher period orbits in different
time directions.

Orbits corresponding to a given linear code do not
necessarily exist: one has to check that all configuration points
satisfy 0 < x < 1. However, when AN > 3, all -8 codes indeed
occur. This criterion is exactly that for the formation of
"generalized turnstiles" (see EQq(4.4.8)).

To show that all codes occur, consider the central island of
the resonance under the map TN (see Figures 4.9). Using the
boundary of the upper and lower turnstiles, we divide the
central island into three regions (Figure 4.9a). Upon one
iteration, the upper homoclinic point G is mapped to E, and the
lower homoclinic point H is mapped to F; therefore, the vertical
strip 74 is mapped to #1, and %o to. #o, Figure 4.9b. The middle
strip #¢, which is the union of the generalized turnstiles, is
mapped out of the island. This defines an orientation preserving
horseshoe map (except that points mapped'out of the resonance
may return at some later time; however, this does not affect the
structure of invariant set inside the resonance). The invariant
set is given by the nonescaping region of the central island
under repeated application of the map in both the forward and
the backward time directions. The result is a Cantor set which
is naturally hyperbolic, thus the dynamics on this invariant set
is a full two shift, i.e., is topologically conjugate to a shift map
in the space of bi-infinite sequences with two symbols. This
justifies our choice of -8 symbols to code the dynamics. The
periodic horseshoe orbits are shown in Figure 4.10 for
illustration.
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Figure 4.9 Construction of the horseshoe for trapped orbits. For
A > 3, a) the two trapped regions %1, Y2 and the union of the

turnstiles in the central island; b) upon iteration by TM, 24
becomes 71 and %> becomes #>5. c) When. 2 < A < 3, the union of
the turnstiles gives #f, and the trapped regions are 71 and 7.
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‘Now it is easy to see why the [0] and the [1] orbits
correspond to the same periodic orbit. Under TN, the coding
implies that the orbit stays in the left or the right rectangle in
each level, therefore it is identical to the (m,n) orbit.

As AN decreases from 3, some of the trapped orbits hit the
discontinuity line and disappear; the horseshoe is replaced by a
fractal structure. When AN is near 1, we see an obvious island
structure which is the reminiscent of a stable, elliptic island.
These are illustrated in Figure 4.10 and Figure 4.5.

There are horseshoes in the sawtooth map even for very
small K, since for large enough n there will be always a
resonance with AN > 3. Furthermore, island orbits do not always
correspond to collapsing orbits (A periodic orbit which
collapses on to an orbit of lower period at some parameter
value. [Bird and Vivaldi, 1988]) — the latter bifurcate only from
integer parameter values (cat maps and the twist map). In fact,
even the orbits which are purely rotating about the minimax
point (ordered orbits under TN) are not all collapsing orbits. This
is illustrated in Figure 4.11 for the ordered orbit with rotation
frequency 3/10, where we follow the orbit as the parameter K
increases. For small parameter values two of the points fall
outside the interval 0 < x < 1, and thus the orbit is a "ghost". It
appears only at some finite parameter value.



156




157

)

v Y,
baes,

.
Weg 0,00
AN




158




159

Figure 4.10. Trapped periodic orbits in a resonance, computed
using the L-R coding up to a maximum period. a) A = 3.2, period
8; b) A = 2.4, period 12; ¢) A = 1.8, period 12; d) A = 1.2, period12.
Trapped rotational (ordered) periodic orbits in a resonance up to
a maximum period. ) A = 3.2, period 20; f) A = 2.4, period 20; @)
A = 1.8, period 20; h) A = 1.2, period 30.
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Figure 4.11. Trapped rotational periodic orbits. Each figure
shows the points in a single orbit as a function of A as A varies
from 1 to 3. a) 1/10 orbit; b) 1/11 orbit; ¢) 3/10 orbit.
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The number of periodic points trapped in a resonance grows
exponentially with the period. For a period n resonance the
exponent is given by the topological entropy of TN restricted to
the central island of the resonance. Let Nnh(q,A) be the number of
periodic points in the (m,n) central island with period ng at
Lyapunov exponent log (A). It has the universal form (see below)

Nn(a,A) = N1(a,AN)

The topological entropy of TN, restricted ‘to the central island,
is defined as

ent( AN ) = lim log( N(g,A) )/q | (4.5.1)

g e

In Figure 4.12, we plot log{ N(gq,A) ) as a function of q; the
straight line is the entropy multiplied by the period.

When AN > 3, the dynamics is a full two shift; therefore,
there are 24 period q points, and the entropy is log2.

The fact that Np(qg,A) has a universal form follows from the

fact that the dynamics in the central island can be described
geometrically. As is clear from Figures 4.9 and 4.10, there are
basically three cases: AN > 3, 2 < AN < 3, AN < 2. In each of these
cases we can divide the central island into three regions. The
central strip a is given by the union of the turnstiles or the
generalized turnstiles (Figure 4.9); therefore, in studying the
invariant set, we can neglect this strip. The remaining two
strips, labelled £ and g, are defined as the regions which stay in
the resonance upon one iteration, and do not include the points
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on the discontinuity line. For these strips, the map is
geometrically equivalent to squeezing by a factor AN in the
stable direction and stretching by a factor AN in the unstable
direction; the left and right (m,n) periodic points remain fixed,
respectively. As shown in Figure 4.9, the detailed shape of the £
- and R stripes depends only on AN; therefore, the number of
periodic points under the map TN depends only on AN.

hZO

Figure 4.12. Number of periodic points trapped in a resonance as
a function of period at A = 2.4. The number is shown on a
logarithmic axis with a base 1.859 which is the exponential of
the entropy. For period 18 and 19, N(i) deviates from the
exponential due to numerical error in checking the existence

condition (4.2.15).




163

4.6. Escape Dynamics

The simplest transport problem is the escape dynamics from
a single resonance: iterate the (m,n) resonance t times and
determine the area Ap(t) which remains in the resonance at time

t. The survival probability at time t is
Pnh(t) = Aq(t)/An(0) (4.6.1)

We expect a priori that this probability decays exponentially,
since the map is hyperbolic, and so define the escape rate

an (&) = - lim In(Pp(1))/t (4.6.2)

t— o

Since escape takes place only in the central island, we may
restrict consideration to it under the map TN. As discussed in
Sec. 4.5, the dynamics only depends on AN; therefore the escape
rate has a universal form |

on A) =a1(AN)/ n ' (4.6.3)

Hence we need only study escape from the (0,1) resonance,
which facilitates the numerical simulation considerably. For
simplicity, we drop the subscript 1 in the following discussion.

When A > 3, we can obtain a closed form for the escape rate,
because the dynamics restricted to the central island is a
horseshoe map. Upon each iteration, the central strip is mapped
out of the resonance; the ~ and the <K strips are squeezed
uniformly by a factor A in the stable direction and stretched
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uniformly by a factor A in the unstable direction, 2/A of the
original area remains either in the L strip or the & strip.
Therefore the survival probability at time t is given by

Pt) = (@)t
hence the escape rate is
o(A) = In(A) - In(2) (4.6.4)

In this case, the dynamics is purely mixing: under each iteration
the remaining area is stretched uniformly in the unstable

direction, covering uniformly the width of the resonance. Thus'.
the escaping probability in each iteration is the same for all

time. This means the escape is a Markov process when A > 3.

The Markov transport model predicts the probability of
escape per step is Flux/Area; therefore,

P(t) = (1-Flux/Area)t | (4.6.5)

Using the flux and area formulas (4.4.2), (4.4.9) and (4.4./4), the
Markov rate is

apM(A) = -log(1- A+ A-1-2)/4) A <3
= log(A) - 10g(2) A>3 (4.6.6)
Thus this rate is exact for A > 3.

Equation (4.6.4) can also be interpreted in the following
way. Let 7 be the trapped, invariant set of the resonance. Then,
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according to the ergodic theory (the so called "thermodynamic
formalism"), the escape rate is the difference between the
Lyapunov exponent and the topological entropy of 7:

el (7) = L(2) - ent(7) (4.6.7)

This is generally true for hyperbolic systems [Bohr and Rand
1987; Grebogi, Ott, and Yorke 1988; Hsu, Ott, and Grebogi 1988].
For the sawtooth resonance, when A > 3, the topological entropy
is In2, therefore, the escape rate is given by (4.6.4).

When A < 3, the entropy, and hence o, can be determined

numerically by computing the growth rate of the number of.
periodic orbits. This number decreases with 1/A as the various
£-R® coded orbits cross the discontinuity, and cease to exist (see
Sec 4.5). Checking the existence of the periodic orbits, involves
large computations which we find are prohibitive when A < 1.5.

Numerical calculation of the escape rate can be done by a
Monte Carlo experiment: begin with a large number of points
(typically 106-107) chosen on an equally spaced grid within the
resonance. lterate each point, computing the number of points
still trapped at time t. Figure 4.13a shows the log plot of the
survival probability. An average escape rate at time t can be
defined as

B(t) = - log(P(t))/ t (4.6.8)

At t = 1, this rate is exactly given by (4.6.8), since this rate
refers to the fraction of area lost after one step. The numerical
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computations show that the rate oscillates wildly for small
time, and then relaxes to a fixed value (Figure 4.13b). This
oscillation is more prominent for small Lyapunov number A.
Beyond the oscillation region, the survival probability decays
exponentially until there are too few trapped points remaining
(around 103) to obtain good statistics. We derive a numerical
escape rate by a least square fit to the exponential regime.

‘ Figure 4.14 shows escape rate as a function of A. The smooth
curve is the Markov rate (4.6.6). The second curve is the
Lyapunov rate (4.6.7); this is computed by finding all the trapped
periodic orbits up to a period such that the relative error in the
rate is 2%. We are unable to calculate the entropy for small A
because the convergence with period is extremely slow and
excessive computations are needed. The numerical rates, from a

fit to (4.6.2), are plotted as triangles. At moderate values of A
(1.5 < A < 3.0), the numerical rates tend to fall close to o .

However, o) is not far off, the largest discrepancy is about
10%; therefore, we conclude o). is a reasonable estimate of the

exact rate, especially because computing the entropy requires
considerable CRAY time.

For small A, the deviation between o) and numerical rates

is larger; in fact, the two rates approach zero with different
functional forms. This is shown in Figure 4.15a, which plots the
escape rates as a function of absolute value of the residue

For small residue, from Eq(4.6.6), ap scales linearly with R

Fig 4.15b shows the numerical rate scales with a different
exponent. The least square fitting gives an exponent of 1.4 + 0.1.
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This error estimate is not reliable, due to the difficulty of
‘fitting the numerical escape rate data to an exponential. It
seems reasonable that the exponent for the escape rate will be
the same as the exponent for the flux at small residue, which is
1.5. The deviation from the Markov model for small nonlinearity
is not surprising: to properly describe escape from a single
resonance, we need to compute the area which has entered the
resonance from the incoming turnstiles. This area corresponds
to empty regions which are seen in the Monte Carlo simulations.
When the Lyapunov exponent is sufficiently small, these regions
are not very well mixed, and the Markov description is no longer
valid.
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Figure 4.14. Escape rate as a function of the Lyapunov number. The
smooth line is the Markov rate. The dark line is the Lyapunov rate,
which is determined numerically within a 2% relative error. The
Triangles are numerical rates.
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numerical rates The smooth curve is the least square fit to a
scaling behavior.
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Chapter 5

Orbit Extension Methods for Finding
Unstable Orbits
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5.1. Introduction

Calculation of flux and resonance area requires the
computation of various orbits. These orbits are typically
unstable; indeed, the stochastic region is characterized by
positive Lyapunov exponents, which implies sensitive
dependence on initial conditions. It is a delicate procedure to
locate highly unstable orbits for Hamiltonian systems.

As we have seen, periodic orbits play important roles in the
dynamics in the chaotic regime. The set of periodic orbits are

usually dense in the invariant set of the dynamics. Quasiperiodic:

orbits and homoclinic orbits are well approximated by periodic
orbits, the error of the approximation decreases exponentially
with the increase of the period, the exponent is negative of the
Lyapunov exponent [MacKay, Meiss and Percival 1987]. Hence in
studying chaotic dynamics, small period orbits usually give good
approximations to the real orbits. We shall mostly concentrate
on periodic orbits; however, methods to locate heteroclinic and
homoclinic orbits are also discussed.

The easiest method to find periodic orbits is by iterating
the map, searching for a point which returns to itself. This is
particularly useful when the map possesses a reflection
symmetry (involution). The method is well documented [MacKay
82], and is successful in locating periodic orbits with small
residues. However, this method is doomed to failure due to the
exponential growth of numerical errors when the orbit is highly
unstable (even if the orbit is followed by continuation of
parameter from a stable region). A variation of the method is to
implement the usual two dimensional Newton method to root
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search the equation TN(x,p) = (x,p). However this suffers the
same disease that plagues the iteration method.

The fact that twist maps are Lagrangian systems makes it
possible to design stable numerical methods to find highly
unstable orbits. Orbits  are stationary configurations of the
action

. .
W ({X:}) =Z F(Xt,Xt41) - (5.1.1)

For type (m,n) period orbits, the variation is under the
constraint Xp = Xg + m.

Aubry has introduced the gradient flow method [Aubry
1983a; Peyrard and Aubry 1983]. This consists of integrating
the set of n coupled differential equations to find the minimum
of W

aXi_ .
a - W | (5.1.2)

where <t is an integral parameter. Starting with an initial
condition of uniform rotation with frequency m/n: Xi(0) =
int (%Hoc), the limiting configuration {Xi(=)} gives the
minimizing (m,n) orbit [Angenent 1984]. This method converges
well for unstable orbits but requires the integration of a large
number of coupled differential equations, one for each point on
the orbit, and is often too time consuming.

Im/plementing Newton's method for the Lagrangian system
gives a more stable iteration scheme [Schnellnuber et. al. 19886].
lts main disadvantage is that the computation time grows
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rapidly with the increase of the period. With the usual brute
force LU decomposition to invert the matrix, the computation
time grows as n3 [Press et. al. 1986], where n is the period of
the orbit. However, for Lagrangian systems, the computation can
be arranged so that the time to find an orbit is proportional to
its period [Mestel and Percival 1987, Kook and Meiss 1989b].
Another problem with this method is that it is so sensitive to
the initial configuration that one often ends up with a different
orbit than that desired: in chaotic regions there are many close
periodic orbits with the same period. Thus careful choice of
initial configuration is necessary for success, and most of the
effort in finding an orbit is often spent searching for good

starting points. This slows the method considerably (especially-

for long orbits) and diminishes its advantage.

In this chapter, we address the above two problems. We
first review the Green function method for Newton iteration
scheme proposed by Mestel and Percival [1987], then a few
relevant methods for determining good initial configurations. A
detailed account of the orbit extension method for finding both
ordered periodic orbits and principal heteroclinic orbits is
presented in section 3. The latter can be viewed as both a stable
and an economic prescription for finding unstable orbits and
resolves the initial configuration problem with Newton's
method. We have applied the method to the determination of flux
from one resonance to another, this requires the calculation of
highly unstable orbits heteroclinic between two resonances. The
Newton iteration program for periodic orbits is published
elsewhere [Chen and Mestel 1988]. |
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5.2 Newton's Method
2.1 Twist Maps

We will consider a twist map acting on a phase space (X,p)
given by

Pt+1 = Pt - V'k(Xy)
Xt41 = Xt + Pt+1 (5.2.1)

or equivalently in Lagrangian form by
Xt41 - 2%t + Xtq = - Vik(Xy) (5.2.2)

Here V' is the derivative of a potential, Vk, which is assumed
to be an even, periodic function of X, with period unity:

Vi(Xe1) = Vi(X) = Vi (-X) (5.2.3)

The periodicity condition implies that- X can be folded into the
unit interval (e.g. modulus unity) so the phase space can be
considered as a cylinder. We shall denote the angle variable in
the half open unit interval [0,1) by lower case letter x.

The evenness condition (5.2.3) implies that the map has a
reflection symmetry about x=0, and is not necessary for our
method, but convenient for the exposition. Without loss of
generality, we also assume that the extremum of V at x=0 is a
minimum. For simplicity, we also suppose that this is its only
minimum. Equation (5.2.3) then implies that its maximum occurs
at x=1/2. Finally, the potential depends on a parameter k, which
governs its height, and thus the strength of the nonlinearity.
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An orbit is denoted by its configuration { Xt, t = ...,-1,0,1,... }.
Orbits are stationary points of the action

N
({X)) = 2 F(Xt,Xt41) (5.2.4)

where the generating function is
FOX,X) = (X-X)2 /2 - VK(X) (5.2.5)

If the orbit has period n, we denote it by {X1, X2, ... , Xp-1}, with
the additional conditions Xi,n = Xt+m for some integer m. Of

course, knowledge of the configurations also gives the momenta-
through (5.2.1).
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5.2.2 Newton's Method

There are two steps to find a periodic orbit with Newton's

method: i) choose a trial configuration, and ii) invert the tangent
map. For a given trial configuration {Xi} (on the real line), the

tangent map or Hessian matrix is
Hij = 8is1,j - 28)j + Bi-1,j + 8i,jV"(X)) , (5.2.6)

where & is the Kronecker delta, and we have omitted the "k"
subscript on V for clarity. To obtain the correction, {AXi}, to {Xt}

one must solve the linear problem

2 Hij AXj = Ry, (5.2.7)
j

where Rj is the residue vector of the trial configuratibn:
Ri = Xizq1 - 2Xj + Xj-1 + V'(X)) . (5.2.8)

Solution of (5.2.7) requires proper consideration of the boundary

conditions of the desired orbit. For example, suppose we are
interested in an orbit which begins at X.{ and reaches X after

n+1 iterations. In this case the Oth and (n-1)St rows of H must
be changed since AX.{ and AXp are zero. In contrast, to find a

periodic orbit, we set AX;; = AXg and AX.1 = AXp-4, but allow
AX_.q4 and AXp-1 to vary. In this case the Hessian becomes a

periodic matrix.

Consider first the case of periodic boundary conditions.
Define a periodic n x n Hessian matrix h by
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ho,j = 81 7] - 280,j + 5n-1,j + ao’jvn(xo)
hij=08i+1,j - 28jj+ 3j-1,j + 8j jV"(Xj) 0<i<n-1
hn-1,j =80,j - 28n-1,j + 8n-2,j + 3n-1,jV"(Xn-1)
hi+n,j+n = hI,J (5.2.9)

The inverse matrix g which we call the periodic Green's
function satisfies

-1
Zhumx=&x

n
=0

[—

Since h is periodic and symmetric, the inverse matrix is also
periodic and symmetric.

n-1
2 hijok,j = 31 k (5.2.10)
I=

Let Gk,j be the Green function of Hj; in (5.2.6), it satisfies
_ZFme=&x (5.2.11)
J=-eo

Following Mestel and Percival [1987], We represent the Green
function gk j by Gk,j in the fundamental interval k < j < k+n for

fixed k and periodically extend gk, j

gk+n,j = gk’j.I.n = gk,j = Gk’j k<j<n+k (5.2.12)

Hence

K+n-1

AXk = Z gk’jRj

(5.2.13)
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Let wtj, w'j be two linearly independent solutions of the
homogeneous equation

)y Hijwj = wisq- (2-V'(Xj)wj + wj.q= 0 (5.2.14)

Then we can write
Gk,j = Akw*j +Bgwj iz k (5.2.15)

Gk, satisfy the inhomogeneous equation (5.2.11)
_2 Hij Gk,j = Gk,i+1- (2-V"(X))Gk,i + Gk,i-1= dj k (5.2.18)
]=-oo

Note that all éomponents of (5.2.16) for fixed k are satisfied by
gk,j except for the j = k and k+n-1 components

gk, k+1- (2-V"(Xk))9k,k + Ok k+n-1 = 1 (5.2.17a)
Okk - (2-V"(Xk-1))9K, k+n-1 + Ok k+n-2 = 0 (5.2.17b)

The second equation will be identical to the k+n-1 component of
(5.2.16) if we choose

Gk k = Gk k+n (5.2.18a)
Now consider the k+n component of (5.2.16)
Gk, k+1+n- (2-V"(Xk))Gk,k+n + Gk k+n-1 = 0

This will be identical to (5.2.17a) if




182

Gk,k+1 - Gk k+n+t =1 (5.2.18b)

Equations (5.2.18a) and (5.2.18b) determines gk, j completely
through (5.2.12) and (5.2.15).

The Wronskian of two solutions ut, v¢ of the homogeneous
second order difference equation (5.2.14) is

Wr(ut,vi) = UtVied-Utsq Vi (5.2.19)

It can be verified that it is a constant.

Solving (5.2.18) for Ak and Bk, we get
gk,j = [(Wken-wk Jwtj - (WHgn-wHi)w-jl/a (5.2.20)
where A is determined by the equation

A = Wr(w- wi+) 4+ Wrw+,wn-) + Wr(wn+ w-) + Wr(w-,wt)

(5.2.21)

and

WNH= whn .t

WN=t= Wn 4t
Hence (5.2.7) becomes

AXk= [(Wk4+n-Wk )CTk - (WHkn-wHk)ckl/A (5.2.22)

k+n-1
cte= 2 wtiR; (5.2.23)

j=k
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and similarly for c'k. The time for computing AXK can now be
arranged to be linear in n [Mestel and Percival 1987].

To find an orbit with given initial and final points x.{ and
Xn, we again use the Green function, with a slight modification
in boundary conditions. The Hessian matrix h at the endpoints is
now given by

hO,j = 61,1' - 260,1' + So’jV”(Xo)
hij=38i+1,j - 28jj + 8j-1,j + 8 jV" (X))
hn-1,j = - 28n-1,j + 3n-2,j + 8n-1,jV"(Xn-1) (5.2.24)

For k = 0, n-1, we can again write the solution ok, j in terms of
Gk,j- Go,j, Gn-1,j will satisfy the same equation by g0 j, 9n-1,]
i f

Go,-1= 1, Go,n= 0
Gn-1,-1= 0, Gn-1,n= 1 (5.2.25)

For k # 0, n-1, we write b

gk,j = Gk, 0<j<
gk,j = G'k,] k<j< n-1 (5.2.26)
where

Gk,j = Akw+j +Bgw-j
G'k,j = Akwtj +Bywj

The boundary conditions are now given by
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Gk,-1= 1, G'kk+1 - Gk k+1 = 1
G'%n= 1, Gkk-1 - Gk k-1 =1 (5.2.23)

Asymptotic boundary conditions can be treated in exactly
the same way as the fixed boundary condition so long as we
know the asymptotic behavior.

The linear problems for all three boundary conditions are
identical for those points of the orbits far from the boundaries.
Thus, if the corrections to the boundary points are small, the
method used in the periodic case can even be used for the other
boundary conditions without much error.
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5.3. Orbit Extension Method

The success of Newton's method depends critically on the
choice of initial configuration. Unlike the gradient flow method,
for which one is able to find the basin of attraction (in fact,
order is preserved by this method [Angenent 1984]), The basin of
attraction for Newton's method is a very complicated fractal
set in n dimensional complex space for a period n orbit. This
makes the choice of the initial configuration an extremely
delicate matter. There are two cases for which a simple choice
suffices for ordered orbits: when the orbit is stable or has
small residue, uniform rotation gives a sufficiently good initial
guess; when the residue is extremely large, all points of the
orbit fall into the minimum of the potential, and a sensible
initial configuration can be perturbatively obtained to first
order in 1/k. '

While these techniques work reasonably well in the two
limiting cases, they still suffer from the problem that many
iterations are required to find the correct orbit; this makes the
method very time-consuming for long orbits. Furthermore they
are applicable only to ordered orbits. Our purpose is to develop a
method which will be quicker and more flexible.

The orbit extension method is motivated by the fact that
often a short orbit segment already contains a lot of
information about a related longer orbit. This is familiar in the
case of quasi-periodic orbits, which can be approximated by
periodic orbits with nearby frequencies. The orbit extension
method is a technique for systematically exploiting the
bunching of points on an unstable orbit.
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5.3.1. Bunching

Our method for finding orbits of twist maps is based on the
observation that the configuration points of an orbit tend to
cluster into groups as the nonlinearity is increased. Examples of
this are shown in Figure 5.1a for the (m,n) = (8,21) minimizing
orbit of the sawtooth map, and in Figure 5.1b for the standard
map. These figures show the configuration points { x(j), j =
0,1,...20 }, where j denotes the order in the unit interval, as k is
varied from 0 to 3.5.

At k = 0 all orbits are simple rotations. For a minimizing
orbit, as k — 0+, xt —» {mt/n +1/2n} ({X} is the fractional part of
X}. The rotation frequency determines the relationship between

the spatial and temporal ordering of the points: upon iteration
each point shifts m to the right, thus if x(j) = xt, then x(j+m) =

Xt+1. The ordering is preserved as k varies since the curves do
not cross in Figure 5.1. |

However, as k increases they tend to bunch together in
groups. For k = 0.2 for the sawtooth map, and k =1.5 for the
standard map, some of the poinis cluster together in pairs,
leaving thirteen well separated points or pairs of points. As k
increases these clusters successively approach each other in
pairs, until near k = 3 there are five distinguishable groups, and
for k =10 there are only three. In fact, as k — o all the poinis
approach x = 1/2, where the action is minimum. The way in
which this bunching occurs is determined by the Farey sequence
for the frequency m/n.
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Figure 5.1. Configuration points of the (8,21) minimizing orbit
as the parameter k varies. (1a) is for the sawtooth map and (1b)
for the standard map. At k=0 the points are equally spaced, but
as k increases bunching towards the minimum of -V(x) occurs.
These orbits were obtained by the extension method.
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For a rational number on the Farey tree, the "mother" is
defined to be the rational parent with the larger denominator;
the "father" is defined to be the parent with the smaller
denominator. Note that the mother is closer to its child than the
father is. The parents can easily be obtained from the continued
fraction expansion of their child:

m/n = [a1,a2,...aj] =aq + 1/(ag + 1/(... + 1/aj)) (5.3.1)

where the aj's are positive integers. With the convention that
the final element Y >1, the continued fraction expansion for the
mother is [a1,a2,...aj-1,aj-1] and for the father is [a{,a2,...aj:1)

The Farey sequence for a rational is its maternal lineage:
thus for 8/21 one obtains the sequence {1/2, 1/3, 2/5, 3/8,
5/18}. In this case the Farey sequence is identical to the
sequence of continued fraction convergents; more generally
when the aj# 1, "intermediates" as well as convergents are
included in the Farey sequence. Each convergent in the Farey
sequence gives a best approximation to m/n. For example, 2/5 is
the nearest rational to 8/21 for any with denominator less than
8.

As is seen in Figure 5.1 the bunching of points on an orbit
occurs with groups defined by successive levels of the Farey
sequence (for even periods the cluster around x = 0.5 must be
arbitrarily separated into two groups).

The bunching leaves gaps in configuration space, and as k
increases, the largest of these increases in size. For a
minimizing orbit, this "principal” gap occurs around x = 0 where
the generating function has a maximum. Because the points on
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the orbit are ordered, we know that the iterates of the
endpoints of a gap are also gap endpoints. Thus we can follow
the orbit of a gap, delineated by its endpoints. For the orbit in
Figure 5.1, the image of the principal gap is the gap around x =
0.4, and its preimage is the gap around x = 0.6. These are both
narrower than the principal gap. In fact the size of a gap
decreases approximately exponentially with time away from the
principal gap; the mean rate is the Lyapunov exponent of the
orbit. This implies that strong bunching is only present when the
orbit is strongly unstable, and is the reason that there is no
bunching when k is small for the standard map. For the case of
the sawtooth map, the local exponentiation rate is spatially
constant, and the bunching can be analyzed exactly.

For one period of a Farey parent, the orbit of the principal
gap is ordered according to the parent's frequency. For example,
when k = 3 in Figure 5.1b, the orbit of the principal gap follows
the ordering of the 2/5 parent for -3 < t < 3, but for larger |t| the
gap collapses to a small spatial scale, and the 2/5 ordering is
not sufficient to describe the motion. Similarly, when k =2 the
principal gap follows the 3/8 ordering for -5 < t < 4.

The bunching properties of unstable orbits will be exploited
extensively below.
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5.3.2. Ordered Periodic Orbits

The spatial ordering of points for an (m,n) orbit is defined
by their positions in the unit interval [0,1) (in this section,
configuration points are taken modulus one). We denote the
configuration points in the unit interval by x(j) where |
designates the spatial ordering:

0 < x(0) < x(1) < ... < x(n-1) < 1 (5.3.2)

It is observed that minimizing orbits have all points
nonzero, and a minimax orbit has x(0) = 0. The principal gap in
the orbit is the gap around x = 0. For a minimizing orbit, we
focus on the endpoints of the principal gap which, since our
convention is to put points in the interval [0,1), are x(0) and
x(n-1). On the other hand, a minimax orbit has a point in the
center of each gap, so we focus on the center point of the

principal gap, which is x(0). Choose the origin of time such that
xgo = x(0).

There is an easy ftranslation between time ordering and
spatial ordering for an ordered orbit; it is based on the Farey
sequence for the orbit frequency. Let p/r and qo/f (p/r < g/f) be
the parents of m/n. Suppose x(j) = xt, then its spatial neighbors

are given by:
X(-1) = X4, X(j+1) = Xtpr (5.3.3)

i.e. the right neighbor is obtained upon r iterations, and the left
neighbor upon [ iterations. With the above formula, we are able
to find the endpoints of the largest gap by successive iteration
from any point on the orbit. For example, for a minimizing orbit,
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since xg is the right endpoint of the pfincipal gap, Xy is its left
endpoint.

The extension method is based on iteration on the levels of
the Farey sequence, and is given by the following algorithm:

1) Find the Farey sequence of m/n. Begin at a level which has a
sufficiently small period, say < 5. Denote the frequency at this
level by p/q.

2) Find an approximate configuration {xi, t = 0,1,....9-1} at the
lowest level. It is sufficient to choose a simple trial as
discussed in section 2.3, and iterate Newton's method twice.

3) Proceed to the next Farey level with daughter rotation
number p'/q'; denote the denominators of the parents by r' and /.
4) Obtain the the initial guess for the new configuration at
this level. For a minimizing orbit, {x't}, is obtained from {xi}
first by setting the new endpoints of the principal gap equal to
the old. This means that the largest gap in the new trial orbit is
approximafed by the largest gap in the old one. We then set the
second largest gaps equal, and so forth. Since the gaps decrease
approximately monotonically away from the largest, this is done
by identifying temporal neighbors of the principal gap. Continue
to do this until all g' points on the new orbit are assigned:

-

X't = Xt

X'pt = Xt t =0,1,2,... [£/2],

X'q-t = Xg-t

X'['+t = X[t t = 1’2"“ [(q'-[')/Z] ’ (534)

where [ ] indicates integer part of a number. Note there is
overlap in the assignments for [' or g'- (' even. If this is the
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case, the best strategy is to use the average of the two
assignments. For a minimax orbit, the situation is simpler,
since there is only one point to assign per gap:

X't = Xt t=0,1,2,... [q/2],
X'g'-t = Xg-t t=12, ... [g/2], (5.3.5)

5) Apply Newton's method with periodic boundary conditions to
the current configuration.

6) If g < n, remove the primes on the symbols to indicate a
transition to the next Farey level, and go to 3).

7) Otherwise, this final configuration is used as the initial
guess of the (m,n) orbit. It generally takes only one or two more
iterations of Newton's method to obtain the (m,n) orbit to a
given precision. ’

Several levels of orbit extension are shown for the
minimizing (13,34) orbit in Figure 5.2 The top configuration is
that of the 2/5 orbit; the assignment of the points for the next
level (3/8) gives the second configuration. Upon iteration the
points split apart, resulting in the third configuration. Below
that is the result of the next two iterations, giving
approximations to the (5,13) and (8,21) orbits. The final
configuration shown is indistinguishable from the actual (8,21)
orbit, and on the scale of the graph, from the (13,34) orbit as
well.
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Figure 5.2. Four levels of the orbit extension method for an orbit
of the standard map at k = 2.0. The uppermost configuration is
the exact configuration of the (2,5) orbit. The next shows the
reassignment of the points to give the (3,8) ordering. The third
is the result of a single Newton iteration on this trial. The last
two show the results of iterating the (5,18) and the (8,21)
orderings. The final orbit has a residue of order 1010, and higher
levels cannot be distinguished on this scale.
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Figure 5.3. Phase space plot of the final configuration in Fig. 5.2.
Note that configuration space bunching implies phase space
bunching.
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The orbit extension method has the advantage that it only
needs the approximating configurations of small period orbits.
Newton iteration is applied only once to the intermediate
configurations because the general structure of the bunching is
only qualitative. It is quite efficient considering that most of
the intermediate configurations have very short periods. So the
effective time cost of all the intermediate steps is just that
for two or three Newton iterations of the (m,n) orbit.

Theoretically, there is no limitation to the period of the
orbit one wants to find. Numerically, because of the exponential
divergence of the elements of the Hessian matrix with . the

period of the orbit, very long orbits cannot be found dueto-

computer overflow. We have been able to find periodic orbits up
to residue 1025 using a double precision (128 bit) algorithm on
the ICL 2988 computer; This is far better than that needed for
physically motivated studies because the smallest gap on an
orbit scales as the inverse of the residue; so orbits with residue
larger than the inverse of the precision are numerically
indistinguishable. Similarly, quantities such as the Lyapunov
exponent, and the flux also have errors of order the inverse of
the residue.

Typically the orbit extension method converges with less
than half the computational time c¢han that required for
Newton's method on simple ftrial configurations of the full orbit.
However, the extension method can be slower when the orbit has
small residue: the analysis of bunching is based on the existence
of a positive Lyapunov exponent, which certainly breaks down
for small residue orbits. Thus, the orbit extension is useful
when the absolute value of the residue of the orbit is larger
than one. By contrast, the most efficient method for smaller
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residue is to iterate the map for one period, forcing the
trajectory to return to its origin by a two dimensional secant

method.
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5.3.3. Principal Heteroclinic Orbits

When we study transport, we are primarily interested in
quantities such as area and flux. The flux out of a resonance is:
determined by the orbits homoclinic to the resonance. The flux
from one resonance to another is determined by the
corresponding heteroclinic orbits.

A type (m,n) principal homoclinic orbit is an ordered orbit
which approaches a periodic (m,n) orbit in both directions of
time. Let hg represent a point on such an orbit in the gap
(x(0),x(1)) of the (m,n) orbit. Ordering implies that subsequent.
points on the homoclinic orbit are in the corresponding gaps of
the periodic orbit, and furthermore that hjn, — x(1) and h.jn —
x(0) as j - <. Such an orbit is called right (left)-going and
denoted with superscript "+" ("-") if the limit is approached as |
— o (j = —) . The existence of such orbits is proved by Aubry
[Aubry and Le Daeron, 1983]. There are actually two such orbits
of each type: they are obtained at minimum and minimax values
of the action, and will be denoted by M and S, respectively (see
Figure 5.4). Choose t=0 such that STp= 0 and M*g is the leftmost

point on the minimizing orbit. Ordering then implies

M+in < Sty < Mty : .
M tin < St < M. (5.3.6)
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Figure 5.4. Sketch of points on orbits homoclinic to and
heteroclinic between minimizing periodic orbits M1 and M2. The
solid lines are segments of stable and unstable manifolds
forming the lower and upper boundaries of the M1 and M2
resonances, respectively. The dashed lines are extensions of the
right-going manifolds forming the turnstiles. Points on principal
heteroclinic orbits, S'=2" and M2, occur at the intersection
of turnstile boundaries. Past points of these orbits fall on the
right-going unstable manifold of M1, and future points on the
right-going stable manifold of MZ2.
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A heteroclinic orbit denoted by (mq,nq4)—> (mo,ns),
approaches an (mq,nq) orbit in the forward time direction and an
(mo,no) orbit in the backward time direction. Such orbits

clearly do not exist when there is an invariant circle between
the two periodic orbits; however, Birkhoff has shown that non-
existence of an invariant circle is sufficient to guarantee the
existence of an orbit which goes from some neighborhood of
(mq,n4) to some neighborhood of (mg,n2) [Birkhoff 1950, p.111].
Furthermore, Mather has proved that heteroclinic orbits do exist
in this case. Since all absolutely minimizing configurations are
either periodic or quasiperiodic, a principal heteroclinic orbit
cannot be absolutely minimizing; however, Mather's result
implies the existence of locally minimizing and minimax orbits
[Mather, personal communication, 1985; Hall 1987].

There are possibly four types of (mq,nq1)—(mo,n2) orbits,
depending on whether the orbit leaves (mq,nq) on a right- or
left-going unstable manifold and whether it approaches (mo,no)
on a right- or left-going stable manifold. Using the superscripts
+ and - to indicate right- or left-going, respectively, then the
orbit denoted, for example, by (mq,nq1)"— (mo,n2)* leaves
(m4,n4) on a left-going unstable manifold, and approaches
(mo,no) on a right-going stable manifold. At each point on a
heteroclinic orbit the unstable manifold of (mo,n2) intersects
the stable manifold of (mo,no) as shown in Figure 5.4.
Corresponding to each (m1,n{)—(mo,no) orbit there is also a
(mo,n2)—(m1,nq) orbit; the latter occur at the unlabeled stable-

unstable manifold intersections in Figure 5.4. By Eqg. (5.2.3)
these two orbits are equivalent upon reflection about the origin:
they are not symmetric themselves. As we will discuss below,
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these heteroclinic orbits characterize the transport from
(m4,nq) to (Mmo,no) and vice versa.

A principal heteroclinic orbit is a heteroclinic orbit which
is partially ordered in the following sense. Consider for example
(m1,nq1)"—(mo,no)+ and suppose mi/n{ > mo/no. Let M1- and
S1- be the minimizing and minimax (mq,nq)"- orbit, etc. Let xg
be the leftmost point on the heteroclinic orbit: S2+q , S1-g < xg
< M2+qg , M1-g5 (by convention S2+g = S1-g = 0). The partial
ordering condition is:

S2+; < xt < M2+, t > 0
S1't < Xt < M1't, t<0 (5.8.7)

Similarly, the ordering conditions can be easily given for
the other three types of principal heteroclinic orbits.

The non-existence of invariant circles is not sufficient for
the existence of principal heteroclinic orbits. These exist only
when the turnstiles of the two resonances overlap.

Since a homoclinic orbit lies on the unstable and stable
manifolds of the corresponding minimizing periodic orbit, its
behavior in the neighborhood of the periodic orbit is governed by
the latter's characteristic exponent. Indeed, most points of a
homoclinic orbit typically lie very near the corresponding
periodic orbit. Furthermore, the ordering condition (5.3.7)
implies that a heteroclinic orbit is well approximated by the
corresponding homoclinic orbits near the periodic points. This
suggests the use of segments of homoclinic orbits as the initial
guess for the corresponding heteroclinic orbit. This idea
corresponds to the method used by Mather in his existence proof.
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The method for finding the principal homoclinic orbits is
reviewed in [MacKay, Meiss and Percival 1987]. Suppose we want
to find the homoclinic orbits for resonance (m,n). We first find
the parents (p,r) and (q,l) of m/n (p/r < g/l). The left-going
principal homoclinic orbit is approximated by the (mj+p, nj+r)
orbit and the right going one by the (mj+q, nj+l) orbit for j large
enough. These periodic orbits can be found by the extiension
method, as before.

The orbit extension method to find a minimizing (mq,n4)"
—(mo,no)* orbit consists of the following steps:

1) Find the minimizing (mo,no)* orbit {x2+} and the minimizing
(m4,n4)" orbit {x1-}.

2) Position the time origin of the homoclinic orbits at their
leftmost points, take a segment of the (mq,n4)- orbit from some
time -T, up to time zero, and a segment of (mo,n2)+ orbit from
time zero up to T. The initial guess for the (m4,n1)"—=(mo,no)*
heteroclinic orbit consists of the union of these two segments,
with the choice of one of the two points at t = O:

x1-.1, ..., x1-.1, max( x1-9,x2+g), x2+4, ..., x2+7}
(5.3.8)

3) Apply Newton's method with asymptotically periodic

boundary conditions once.
4) Append another segment of the minimizing (m1,nq)" orbit

from -2T to -T-1, to the negative time end and the minimizing
(mo,no)*t orbit from T+1 to 2T to the positive time end of the

resulting orbit.
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5) Repeat 3) and 4) until the orbit is sufficiently long to achieve
the desired accuracy.

6) This final configuration is used as the initial guess for the
(mq,nq4)"—=(mo,no)*+ orbit; however, usually only one or two

Newton iterations are required for convergence at this stage.

Similar prescriptions can be developed to find the other
principal heteroclinic orbits.

We find numerically that the principal heteroclinic orbits
are locally minimizing or minimax. These two orbits are labeled
as M1-—2+ and S1-—2+ respectively in Figure 5.4. The time
used to find a heteroclinic orbit is of the same order as the time
used to find a periodic orbit of the same length. In cases where
the principal heteroclinic orbits do not exist, Newton's method
does not converge.

We have used this method to calculate the flux function
from one resonance to another. This is discussed in section
3.4.3.



Chapter | 6

Summaries and Conclusions
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In summary, chaotic transport from one part of phase space
to another can be described as successive transitions between
different resonance islands. Resonances are regions delineated
by pieces of the stable and unstable manifolds of the hyperbolic
periodic orbits. Resonances give a complete partition of phase
space in the supercritical regime where there are no rotational
invariant circles: they cover the whole phase space except for a
measure zero set. Resonance boundaries are called partial
~separatrices. When an orbit enters a resonance island, it follows
the rotational order of that resonance till it reaches the upper
or lower exiting turnstile, where it makes a transition to
another resonance. If the turnstiles of two resonances overlap,
then there is a direct transition between these resonances;
otherwise, a transition requires successive entering and exiting
intermediate resonances. Resonances, partial separatrices and
turnstiles provides a framework of our picture of chaotic
motions.

Resonances form a natural partition of the phase space in a
statistical description of transport. They are chosen as coarse
grained states in the Markov chain. The overlap of turnstiles of
resonances specify all the transitions between these
resonances. Assdming a complete "randomization" under the
dynamics, the transition rate from one resonance to another is
given by the overlapping turnstile area, the flux, divided by the
area of that resonance. Resonances form a countable set, their
areas decrease exponentially with their period. These properties
make them particularly suitable for a finite state approximation
of the model in an actual calculation of transport rates. One
expects rapid convergence in any reasonable truncation scheme.
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The statistical assumptions made in the Markov model
require careful verification. Numerical studies show that there
are basically three regimes: In the strongly chaotic regime, the
mixing rate described by the Lyapunov exponent is fast enough
to smooth out any nonuniformities in the distribution, this
corresponds to the occurrence of horseshoes (or generalized
turnstiles) in the resonance islands. When the mixing rate is
slower, transport rates deviate from the predictions of the
Markov model. However, they are not very far off and can be used
to give an economic estimate of the actual transport rates. The
model breaks down for nearly integrable systems.

In order to estimate transport rates for real systems from:
the Markov model, we need to calculate flux and resonance
areas. The action formulation allows these calculation through
determination of periodic, homoclinic, and heteroclinic orbits.
However, these orbits are typically highly unstable; the
sensitive dependence on initial conditions is a key impediment
to devising stable numerical prescriptions. A stable and
efficient method — the orbit extension method, is developéd for
finding both unstable ordered periodic orbits and the principal
heteroclinic orbits between two resonances.

A major challenge in the future is to generalize the idea of
resonances, partial barriers and turnstiles to higher
dimensional Hamiltonian systems. Some results in this direction
are discussed in Kook and Meiss [1989a] and MacKay, Meiss and
Stark [1989]. There is evidence for resonance zones in four
dimensional symplectic maps; however, we do not know how to
-form the resonance boundary. Certainly, the stable and unstable
sets of the hyperbolic periodic orbits play an important role.
Similarly it is unclear how to construct higher dimensional
partial barriers and whether the symplectic flux, the escaping
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- symplectic area, bears any relation to the actual escaping
dynamics.

Another problem raised by this dissertation is to study the
transport in nearly integrable Hamiltonian systems. As
suggested by our study, the Markov model fails to account for
the slow drift in the tiny channels of the stochastic web, since
the mixing assumption is not easily satisfied there. However, it
does appear that the characteristic time in the web scales
inversely with the flux. What is the mechanism for this?
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