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Abstract

We study transport in a completely chaotic Hamiltonian system, the sawtooth
map. Analytical expressions are obtained for its cantori and resonances. We show that
resonances give a complete partition of phase space whenever the map is hyperbolic.
The flux leaking out of a resonance is given by its turnstiles, whose form and areas
are obtained analytically. When the total flux out of a resonance becomes one third
the area of an island, the topology of the turnstiles changes. At the same parameter
value, a horseshoe is formed corresponding to the orbits trapped within the resonance.
Based on this, a coding scheme for the trapped orbits is introduced and expressions for
trapped ordered orbits are obtained. The partial flux transferred from one resonance
to another is determined by the degree of overlap of their turnstiles. We calculate
the survival proBa,bility within a resonance using the Markov model; the results are
compared with results obtained numerically and from periodic-orbit theory.
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1 Introduction

Chaotic motion for Hamiltonian systems occurs when invariant tori have been destroyed,
and results in transport of phase points from one part of the phase space to another. Esti-
mates of the rates of this transport are required for many applications in plasma, fluid and
chemical systems [1]; however, their computation by iteration of a sample of initial condi-
tions requires a great deal of computer time and becomes prohibitive when accurate results
are needed, or a large range of parameters must be scanned.

A much more efficient prescription for transport calculations can be obtained for systems
with two degrees of freedom, or, equivalently, area-preserving maps. In this case transport is
controlled by partial barriers [2, 3], formed from cantori and partial separatrices [4, 5]. Flux
across these barriers occurs through turnstiles.

A transport model is obtained by choosing a set of partial barriers to partition phase space
into regions which are connected by turnstiles. If the motion in these regions is completely
“random”, the transition probabilities from one to another are Markov [2, 6, 7]. While the
rates obtained from this model depend on the detailed structure of the partial barriers and
their turnstiles, its simplicity permits rapid computation when compared to direct iteration.
However, the statistical assumptions made in the Markov model require verification; this is
the problem to which we address this paper.

The phase space of a typical area-preserving map is divided between regular and irregular
motions. Motion in an irregular component is strongly influenced by its boundaries, which
are invariant circles. When an orbit nears such a boundary it invariably stays nearby for long
periods, which implies that the motion often appears to be nearly ordered [8]. These long
time correlations complicate the study of such mixed systems. Statistical approximations
often omit such structures, and thus fail dramatically in predicting the long time behavior.

In this paper we use the sawtooth map [9, 10, 11], a completely chaotic system, as a test
case for the Markov model. It has several advantages:

1. Cantori, partial barriers, turnstiles and resonance boundaries can all be obtained ana-
lytically.

2. These structures are completely analogous to those of piecewise linear maps [12] and
even smooth maps like the standard map [2, 4]. When the nonlinear kick is large the
agreement can even be quantitative. Thus the sawtooth map can be viewed as giving
the behavior of a smooth system in the limit of strong chaos.

3. Other methods for calculation of some of the transport properties are available for
purposes of comparison [13].

4. For all positive values of the parameter, the sawtooth map is purely chaotic. Thus,
there are no invariant tori, nor boundaries to the irregular components.

In Section 2 we summarize the properties of the sawtooth map, including its symbolic
dynamics, minimax periodic orbits, partial barriers and turnstiles.

In Section 3 we show that the entire phase space is partitioned into resonances, and how
the definition of turnstiles has to be generalized when the Lyapunov exponent is large. Turn-
stile overlaps, which are essential for the Markov transport model, are explicitly calculated.

3




In Section 4 we obtain the properties of periodic orbits within resonances, characterize
and derive them from the linear code, and provide numerical illustrations. For sufficiently
large values of the parameter, we find that the set of orbits trapped within a resonance is a
full horseshoe, topologically conjugate to a Bernoulli shift.

In Section 5 we review the construction of a Markov transport model. Specializing to
the case of escape from a single resonance, we calculate the survival probability. When the
horseshoe exists, the escape rate obtained using the Markov assumption is exact. For smaller
values of the parameter, the rates are compared to one based on the entropy as well as to

direct numerical iteration.




2 Partial Barriers and Turnstiles

In this section we introduce the sawtooth map [9, 10, 11] and present some new results
on its dynamics. We obtain explicit formulas for the minimax ordered orbits and exhibit the
geometry of the partial barriers and turnstiles of cantori.

2.1 The Sawtooth Map

A sawtooth map describes a kicked rotor subject to an impulse periodic in time and linear
in the rotation angle, except for a single discontinuity. The map is area preserving on a
cylinder, and is given by the equations

T { pr1 =p; + K f(z1), (1)
Tiy1 =Tt + Pry1, (mod 1)
where 27z is the configuration angle, so that z; is assumed to be in the unit interval
0<z:<1, (2)
p is the conjugate momentum,
flz)=2-1/2  (0<z<l),

and K is a positive parameter which represents the kick strength. The impulse function f(z)
is discontinuous on the line z = 0.

Alternatively, by removing the “mod 1” from the configuration component of (1), the
map can be extended to the plane. Let X; denote the configuration on the real line. The
corresponding Newtonian or Lagrangian equation of motion is then

82Xy = Xppy — 2X, + X,y = KF(X), (3)

where the function f(z) is continued periodically outside the unit interval.
- To return the configuration to the unit interval, define the sequence of integers {5, } [10]
by '

52Xt = (523}'t -+ bt. (4)
Subtracting this from the right-hand side of (3) gives
(6* = K)zs = — (b + K/2). (5)

The advantage of this technique is that (5) is now linear, and so can be easily inverted to

obtain wx,
i ,\ It—sl

+ 2 (6)

S=E—00

where ) is the greater eigenvalue of the hnearlzatmn of the map,

K++D
A= —_— -
1+ 5 3 (()
D = K?+4K.




The integers b; are determined by the dynamics of the orbit through (5), and conversely
they also determine the orbit through the inverse (Green) function (6). Because (5) and (6)
are linear equations, the sequence {b;} is said to be a linear code. For a given K not all
sequences {b;} are allowed, but only those for which the inequalities (2) are satisfied for all
t. We refer to those orbits which do not satisfy (2) as ghost orbits [11]. As the parameter K
increases a ghost orbit eventually will become a real orbit when its points all arrive in the
unit interval.

2.2 Ordered Periodic Orbits
Solutions of (3) satisfying the order-preserving property
(¢ + 7 <Xy <= Xipn + 7 <X, (8)

for all integers j,%,t" are known as ordered orbits. If, moreover, there exist two integers m
and n such that Xy, = X; +m for all ¢, the corresponding orbit is called periodic. If m and
n are the smallest such integers, n is called the period of the orbit, and one can easily show,
using (8), that m and n must be relatively prime. The winding number or frequency of the
orbit is then defined by
v =m/n. (9)
Among all periodic orbits of winding number m/n, the configuration for the ordered orbit
has the absolute minimum action sum [14]:
W =3 [5(Xen = Xo)* + V (X)), (10)
t=1 :
where ) .
V(z) = §K(w — 5)2 (0 < z<1),

and is continued periodically beyond this interval. The ordered periodic orbit is symmetric
about the discontinuity line, where V(z) assumes its maximum value. Thus, if the points of
the orbit in the interval (0, 1) are labeled, in order of increasing z, by z(l), { = 0,1,...,n —1,
one has z(I) =1 —z(n — I —1). If ; is the solution of (5) with (2), we choose the origin of
time so that zo = #(0). Then, using (8) and (9), one finds that

z; = z(mt), | (11)

where mt and, in general, all the arguments of the functions z; and z(I) from now on, are
taken modulo n. Equation (11) can be inverted to give

z(l) = zy, (12)
where r is a solution of the Diophantine equation
mr =1 (mod n). (13)

Throughout this paper we use z; to denote time ordering and z(I) to denote configuration
ordering.




Neighboring points on an ordered orbit define a gap; because of the ordering condition
(8), the iterate of a gap is also a gap. If a point z; = «(!) is the right endpoint of a gap then
(12) implies that z;—, = @(l — 1) is its left endpoint. Thus we define the gap width as

i = T — Ty + b1, (14)

where 8; is the Kronecker delta symbol with ¢ taken modulo n. It is included in (14) to
measure the gap width for points which straddle the discontinuity line.

When K = 0 all the gaps have equal width, so & = 1/n. Using the equation of motion
(5), the second difference operator applied to (14) gives

0= 52€t = 52675’0 —|— (bt—'r - bt) (I{ - O) (15)

Since the points on an ordered orbit can never cross as K is varied, (15) defines the linear
code for an ordered orbit for any value of K,

bt - bt—'r -I- 526t,0. (16)

Combining (16) with (14) and (5) for arbitrary K gives a linear second difference equation

for éta
(6% = K)é = —K 64, (17

which together with periodicity, £y, = &, implies
KA

ét - ma (18)

where A and D are given by (7).

The gap at ¢t = 0 is the biggest one, so we refer to it as the principal gap. Since the
principal gap is positioned symmetrically around the discontinuity line, the first point on
the orbit is '

b 1 KQO"+1)

o(0) =00 =3 =55 (19)

The other points are obtained by adding gaps to (19), using (12),
l
z(l) =z, = z(0) + D &r. (20)
s=1

A closed form for this sum is usually difficult to obtain.

In general, as the frequency of a minimizing orbit approaches an irrational number
(n—o0), the orbit approaches the cantorus with that frequency [15]. On the other hand, if
the frequency limits to m/n from below (or above), then the orbit approaches a minimizing
orbit homoclinic to the minimizing periodic orbit with frequency m/n. We refer to this orbit
using the symbol m/n_ (or m/n,). Expressions for all these orbits are obtained directly
from (18) and (20); for example, the gap function in this limit is

R
b= St (21)
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This function does not depend on v, thus every cantorus, and every minimizing homoclinic
orbit have the same gaps: it is only the ordering of the gaps which depends on the frequency.
In more general mappings the gap widths themselves depend explicitly on the frequency.

The ordered periodic orbit defined by (18)-(20) is the ordinary hyperbolic one, which
minimizes the action sum (10). For maps (1) with continuous f(z) the Poincaré-Birkhoff
fixed point theorem guarantees the existence of a second ordered periodic orbit with the
same winding number. This orbit is elliptic or hyperbolic with reflection, and its action sum
(10) is a minimax or saddle point.

For the sawtooth map, the discontinuity disallows the use of the theorem; nevertheless,
we can find a second periodic orbit, provided we adopt the convention that

f(z=0)=0. (22)

Applying the minimum principle subject to the constraint that one point of the orbit lies on
the discontinuity line then yields a second orbit.

Let Z;, ¢t = 0,1,...,m — 1 be the points of the minimax orbit, with T, = 0 and the
remaining points in (0, 1). Using (22) and (5), the equation for the minimax points is

K
(52 - I{)fﬁt = —bt + 7(6@0 - 1) (23)

Since the orbit is ordered, (11) and (12) are satisfied if x is everywhere replaced by z.
Similarly the gap width of the minimax orbit is ¢ = &; — &, + 8;0, and it has the same
symbol sequence as the minimizing orbit. Combining this with (23) gives

(8 ~ K& = ~3 K (8o -+ Bucr). (20)

Comparing (24) with (17), we immediately obtain

= &+ &, . (25)

T2

Equation (25) shows that the width of every gap of the new ordered orbit is the arithmetic
mean of the widths of two neighboring gaps of the corresponding hyperbolic orbit. In other
words, every point Z; is the center of the interval (z;—,, z;) for ¢t # 0. Furthermore, it is
obvious that Z, is the center of the principal gap since zy = 0. Using this in the equation for
the momentum (1), it is then easy to show that the momenta 7, are also in the centers of the
gaps in the momenta p; of the minimizing orbit. Thus, each point of the “minimax orbit”
is the center of the straight-line segment joining two neighboring points of the minimizing
orbit in phase space. This is illustrated schematically in Fig. 1.

In the limit n—oo, the minimax orbit becomes a minimax homoclinic orbit. If the
frequency approaches an irrational number, the orbit is homoclinic to the cantorus since
each of its points fall in the center of a gap of the cantorus. If the frequency limits to
m/n from below (or above), then the orbit approaches the minimax orbit homoclinic to the
minimizing periodic orbit with frequency m/n.




2.3 Partial Barriers and Turnstiles

_An absolute barrier to transport is a curve across which there is no motion, i. e., an invariant

circle. A partial barrier, on the other hand, is a continuous curve homotopic to the circle
p =0 (i. e., a rotational circle) which connects every point on a minimizing-minimax pair of
orbits with a given winding number [2]. In general, such rotational circles are not absolute
barriers: orbits can cross from below to above (an exception is the case K = 0, for which
every rotational circle p = po is an absolute barrier). The winding number of the orbits used
to make the partial barrier can be rational or irrational. For the rational case, the orbits can
be periodic, or can be the upper or lower homoclinic orbits to a minimizing orbit. For the
irrational case the orbits correspond to a cantorus and its minimax homoclinic orbit. Unlike
an invariant circle, each of these make imperfect barriers to transport.

The partial barrier can be chosen to be invariant under the action of the map with the
exception of one gap, which we choose to be the principal gap. The partial barrier and its
pre-image enclose a region known as a turnstile. The turnstile is divided into two parts whose
areas measure the upward and downward flux through the partial barrier. These fluxes must
be equal because the net flux through any rotational circle is zero [2].

The construction of partial barriers can be well illustrated by the sawtooth map. Let

| G; = (Et) 77t)

be the gaps of a minimizing orbit in phase space, so that &; is the configuration gap and n;
is the momentum gap. These are of three types, the principal gap Gy, the forward gaps, G;
with £>0, and the backward gaps, G; with t<0, where

G’t - TtGQ.

To begin the construction of the partial barrier, connect the endpoints of the principal
gap, Go, with a straight-line segment (recall that this segment goes through a minimax
point). The segments joining the backward gaps are the pre-images of this straight line.
Similarly connect the endpoints of G; with a straight-line segment; the segments for the
forward gaps are the images of this segment. All these images and pre-images must be
straight lines because they do not intersect the discontinuity line, and apart from this line the
sawtooth map acts linearly. The collection of these straight-line segments forms a continuous,
but not differentiable, rotational circle which is the partial barrier for the given orbit.

When the orbit period is infinite, this construction gives a partial barrier constructed
from pieces of stable and unstable manifolds [2, 4]. For the sawtooth mapping the directions
of these manifolds in phase space are constant and are parallel to the stable (E,) and unstable
(E,) eigenvectors, which are [10]

B, =(1, 1-\),
E

L =(1, 1= A7), (26)

where A is given by (7). Since as ¢ approaches infinity, the gap size converges to zero, both
forward and backward segments G; converge to zero length. Thus the forward gaps must be
parallel to E, and the backward gaps, as well as Gy, to E,,.




It follows from (26) that the configuration and momentum gaps are related by

N =§t(1 - /\1,1 t>0, (27)

Nt —-_—-ét(l - A ), t S 0.
It is instructive to check that the sum over ¢ of the momentum-gap widths (27), which
corresponds to the net change in momentum through the cantorus, vanishes, while the gap
widths (21) in the & direction sum to unity. The latter result implies that the points of
the cantorus occupy zero measure. Actually, (21) implies that the cantorus has zero fractal
dimension, in conformity with a more general result [16].

A turnstile is formed by the partial barrier and its pre-image in the principal gap (see
Fig. 2). For the partial barrier, the two neighboring points of this gap are connected by
the original straight segment in G (solid line in Fig. 2), which is parallel to E, for the
infinite period case. The pre-image of G, gives the dashed line in Fig. 2. This line consists
of three parts: two segments parallel to E,, and one segment on the discontinuity line. This
structure forms the two triangles in Fig. 2, which define the turnstile. The lower (upper)
triangle is the region of phase space which, in one iteration of the map, crosses from below
(above) to above (below) the partial barrier. The equal areas of these two regions define the
one-way flux F across the partial barrier. Using (27) and (26), this flux is

2
Flv) = 2220 x4 -1 = T

222
Again the sawtooth map is special because the flux (28) does not depend on the winding
number v of the cantorus or homoclinic orbit. According to the general theory [2], the flux
is given by

(28)

F(v) = AW = W), — W,, (29)

where Wy, — W, is the long time limit of the difference in actions between the minimax orbit
and the corresponding minimizing orbit. One can show that (29) is valid for the sawtooth
map by a straightforward but tedious calculation.
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3 Resonances

In this section we consider resonances of the sawtooth map and show that they give a
complete partition of phase space. Each has an upper and a lower turnstile, giving the total
flux exchanged with the rest of phase space. We show that when this flux becomes larger
than one third of the area of one island of the resonance, the definition of the turnstiles has
to be modified. Finally, we consider the overlap of turnstiles of any two resonances which
gives the partial flux escaping from one resonance to the other. The onset of turnstile overlap
exhibits a threshold behavior which is determined exactly.

3.1 Geometry of Resonances

A resonance is a region of phase space corresponding to a winding number m/n [4]. As-
sociated with each minimizing (m, n) orbit are partial barriers for the upper and lower
homoclinic orbits. The (m, n) resonance is defined as the region of phase space bounded by
these two partial barriers. The partial barriers in this case are called “partial separatrices”.

Each resonance consists of n closed regions, called “islands” (see Fig. 4), one for each
gap of the hyperbolic periodic orbit. The principal island lies in the principal gap and the
other n — 1 islands are its pre-images: all islands have the same area.

Partial separatrices can be obtained as the limit of a sequence of periodic orbits which
approach m/n from above and below. Begin with two rational numbers m;/n;, for i = 0, 1,
which are neighbors to m/n: they satisfy m;n — ny;m = (=1)’. The minimizing periodic
orbits with winding numbers ‘

Gy _ mi+Jim
v = — ——
n; +Jn
approach m/n from above and below as j—oo, for i = 0 and ¢ = 1, respectively; in this limit,
we label the winding numbers m/n|+. The corresponding orbits limit to the upper and lower
minimizing orbits homoclinic to the m/n minimizing periodic orbit. The homoclinic orbits
consist of an infinite number of points and approach the points of the hyperbolic periodic
orbit in both directions of time.

For the (0, 1) resonance the winding numbers (30) of the approximating periodic orbits

are _
L0 _ (L

1 '1__1_—]—
Let (:c? ), pgj)) be points of the periodic orbits approximating the upper homoclinic orbit,
whose points we denote (z7, pf). For this simple case, m = r = 1 in (13), and using Egs.
(20) and (21), we find for the homoclinic orbit

(30)

b

—t
Lo
L )27 X
R !
§+ S t<0.
The momenta are y 1
+ - 2
pt /\+1
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Expressing p; as a function of z; gives

{ (A —1)(%
(1 =27 (e

so that for ¢ > 0 the upper partial separatrix is a straight line in the direction of the stable
manifold of the fixed point (1/2, 0), and for ¢<0 it is the unstable manifold of the same
fixed point. The lower partial separatrix is constructed in a similar way. The symmetry of
the map implies that it is obtained by inverting the upper one through the point (0, 0).
Partial separatrices for general (m, n) resonances may be constructed by similar cal-
culations. Consider the nth power of the map (1). The winding numbers of the periodic
approximants to the homoclinic orbits are given by (30); however, relative to the map 7™,
they are given by I/(J ) = m/(J ) It is easy to verify that the r-values in (13), corresponding to

fj ), are given simply by r = (—1)* for any j. This means that the homoclinic-orbit gaps Gy
are adjacent for adjacent values of ¢. In turn this implies that, in the corresponding partial
separatrices, all the gaps G; for ¢>0 (¢ < 0) lie on a straight-line segment parallel to the
stable (unstable) eigenvector. Thus the (m, n) resonance is built by extending the stable
(unstable) manifold of a given fixed point of 7™ until it intersects the unstable (stable) man-
ifold of a neighboring fixed point. The general form of the principal island of a resonance is
illustrated in Fig. 3. A set of resonances at K = 0.1 is shown in Fig. 4a. For comparison,

Fig. 4b shows some resonances of the standard map.

zf), t>0
?-—%)7 <0

3.2 Resonance Partition of Phase Space

It appears in Fig. 4a that the resonances of the sawtooth map tend to fill phase space. We
show here that this is indeed the case by deriving exact relations for the area of a resonance
[12].

The area of a resonance, A(m, n), is n times the area of the principal island (see Fig. 3).
The latter is given simply by twice the difference between the area of the triangle ABCR
and that of ABJH. The segments BH and BR have slope 1 — A%, while segments ER and
JH have slope (1 — A). This yields

Area(ABJH) =%\/B($H —z5)?,
' (31)
Area(ABCR) =%-\/I_)(mR —zp)%

The quantities 2(zr — zp) and 2(zy — zp) are, respectively, the widths of the principal gap
of the (m, n) hyperbolic periodic orbit (¢, in (18)) and of the principal gap of the lower
homoclinic orbit (£y in (21). Using this in (31), gives

nk?
VD(Ar 4 A —2)

Equation (32) implies that the predominant dependence of the area of a resonance on

(32)

A(m, n) =

12




the parameter K is through the residue of the hyperbolic orbit

Ry =2 [2 = Tr(DT™)]
: (33)
= f2— X" -2

Thus A(m,n) o 1/|R,|. This is also found to be true for the resonances of smooth maps, in
the limit of large residue [4].

Another measure of the resonances is the height A(m, n) = pg — pg, which is a measure
of the distance between the upper and the lower homoclinic orbits in the (m, n) resonance.
By a straightforward calculation we find

K

h(m, n) = \/D-[’I}R — g — (:EE — .TIA)] = m

We now consider total area Are(v) below the winding number v [2, 4, 17]. This is a
monotone function of v; for irrational values of v it is the area under the invariant circle, or
under the cantorus partial barrier with the given winding number. For the irrationals Az, (v)
is continuous. On the other hand, Ar.:(v) has two values for each v = m/n: the areas under
the upper and lower (m, n) partial separatrices. Thus Are(v) has a discontinuity at m/n
which is the area of the (m, n) resonance. Fig. 5 shows the area function for the sawtooth
map. The height function At (v) is defined similarly to be the total height below v.

A monotone function with a countable set of discontinuities is known as a devil’s staircase.
If the sum of all the jumps (discontinuities) of the function is equal to its total variation,
the staircase is complete.

In fact, both the height function and the area function give complete staircases for the
sawtooth map. To show that the height function, hz,:(v), is complete, compute the total of
the jumps for frequencies in the interval [0, 1); this is the sum of h(m, n) over all positive n
and over coprime m<n. Since h(m, n) = h(n) is independent of m, the sum over m yields
the Euler ¢-function, i.e., the number of positive integers not greater than and relatively
prime to n. Thus the sum of the jumps is [1§]

= o(n) K
2 ¢ln KZ Or—0)  (fai—g (34)
The total height change h7,:(1|-) — hz,:(0]-) = 1 because the sawtooth mapping is periodic
with period 1 in the momentum direction. Since (34) shows that the total of the jumps is
also one, the height devil’s staircase is complete.
Consider now the case of the area function. Introducing a new variable 6, defined by
A = €%, we can rewrite (34) as

o0 n . _
5 E — ointf (62
n=1
Taking the derivative with respect to 4, we get
f’: np(n)  cosh(0/2)
“— sinh®(nd/2)  sinh3(4/2)"
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Transforming back to A, shows that this is exactly the completeness relation for the area
staircase

(o]

Y p(n)A(n) =1.

n=1
This completeness is identical to that obtained by Aubry for the functional dependence of
the ground-state atomic mean distance on the external field in the Frenkel-Kontorova model

[14].

3.3 Resonance Turnstiles

The turnstiles of a resonance are associated with its principal island (the shaded regions in
Fig. 3). The flux across the upper (lower) partial separatrix corresponds to the triangles
AACE and AAGI (triangles ABHJ and ABFD). For the situation depicted in Fig. 3,
these triangular turnstiles give the total area leaving the resonance. This is because, for an
(m, n) resonance, the image under T" of the closed region LGICRHJDPF is the principal
island LERF. Each of the fluxes above is given by (28), thus the total flux leaving the

resonance is
K?

4/D

However, the flux across the partial separatrices is the area which escapes from a reso-
nance per iteration only when the outgoing halves of the turnstiles are completely contained
within the resonance. As the flux increases, the point I in Fig. 3 will eventually lie below the
point B and the point J will lie above the point A (Fig. 6). In this case, the triangular re-
gions AAJM and ABIN are outside the resonance, and cannot be included in the outgoing
flux; in one iteration these regions are mapped from above the resonance to below the reso-
nance or vice versa. The ingoing (outgoing) flux consists of the trapezoidal regions CEMJ
and DFNI (the trapezoidal regions BAMH and ABNG). The lower (upper) turnstile of
the resonance should be now identified as the union of the regions DFNI and BAMH (the
regions CEMJ and ABNG). We call these “generalized turnstiles”.

The condition for generalized turnstiles is py — pr = K/2 > ps —pp = h(m, n), or

A" > 3.

A< 3. (35)

F(m, n) =

The total ingoing or outgoing flux is the sum of the areas of the upper and the lower
generalized turnstiles

F(m, n) = 2[Area( AAIR) — Arca(ABIN)].
But Area(AAIG) is the flux (28) across the partial separatrix, and
Area(ABIN) = (pg — p1)?/(2VD).
Using pp — pr = pa — pr — h(m, n), we obtain
F(m, n) = 5_2_(/\)\:—2)2, A" > 3. (36)
These fluxes can also be obtained by taking action differences between various homoclinic

orbits, including the new homoclinic intersections represented by the points M and N.

14




3.4 Turnstile Overlap

The total flux F(m, n) escaping from a given resonance can be divided into partial fluzes
F(m/n—m/[n') transferred to an infinite number of neighboring resonances (m’, n’). The
calculation of partial fluxes is essential for the Markov transport model, as we will see in §5.
The partial flux F(m/n—m'/n’) is given by the area of overlap of an outgoing half turnstile
of (m, n) with an ingoing half turnstile of (m', n'). This is illustrated schematically in Fig.
7, for the case m/n>m’/n’. Because resonances give a complete partition of phase space,
the partial fluxes must sum to the total flux

F(m, n)= >, F(m/n—m'/n).

m! [n!
Furthermore, one has the “detailed balance” relation
F(m/n—-m'[n") = F(m/[n'-m/n),

which follows from the reversibility symmetry [2] of (1) about the discontinuity line.

Since py>pp and p4r>pp there are only five distinct cases of turnstile overlap, correspond-
ing to different geometries. For example, in the case illustrated in Fig. 7, pp<psp', pa<pr,
and the partial flux F(m'/n'—m/n) is the area of the trapezoid A'B'WV, or

F(m'/n'—m/n) = Area(AA'DV) — Area(AB' DW).

We can solve for these areas in terms of the momenta at the points A/, B, D and I to
obtain
1. Triangle:

1
F(m'/In'—m/n) = ) — 2 1 <Ppp<par<pr.
( / / ) 5 \/E(PA PD), PR <Pp<pPa<pr

2. Trapezoid 1:

1 |
F(m'fr'—m/n) = == [(pas ~p0)* ~ (b = p0)?|,  PD<PE, par<r.

2v/D

3. Trapezoid 2:

1
"In! = —— ;- 2 _ ) - 2 I ’
Flm'[n'—mn) = o i) (b4 —p0)* = (par = p1)?],  pm<pD, Pr<par,.

4. Pentagon:

1
F(m'[n'—m/n) = —= [(par — pp)* = (04 —p1)* — (b5 —p0)?],  PO<PE<PI<par.

2v/D

5. Parallelogram:

1
f(m'/n'-*m/”) = E(PA’ —PB')(PI —PD)> pr<pm’.
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The values of the momenta above are easily determined from those of the momenta
associated with points such as L and L’ in Fig. 7. For example, L is the left endpoint of the
principal gap of the (m, n) hyperbolic periodic orbit, so that p;, = p(n —1). Using Egs. (1),
(12), (13), and (20), we find '

pr=2z(n—1)—z(n—m—1)= "‘z‘: Eor

S=n—m

(we assume that n>m). For the case m = 1, this becomes pz, = ¢;. Using the slopes of the
eigenvectors (26), and the fact that 2(zp —z1) is the width of the principal gap (& in (18)),
we obtain

Y G P Al
PD=T5 T 2
Other values of the momenta can be obtained by similar calculations. For example, if m’ =1
as well,

} , (1, n) Resonance. (37)

_ K 1A 1o
PA'—\/I—) 1 — )7 2

The flux F(m'/n'~m/n) is non-zero only if the turnstiles of the (m, n) and (m/, n')
resonances overlap; this occurs when ps = pp. The parameter value at which this occurs is
a complicated function in general, but for the case of (1, n) and (1, n’) resonances (n'>n),
(37) and (38) imply

] , (1, n') Resonance. (38)

DD G|

At — 1 A+ 1
Specializing to the case n’ = n + 1, (39) implies that the threshold value, K., for overlap is
determined by the algebraic equation

(39)

A _xm v 1 =0, (40)

It it easy to show that Eq. (40) holds also in the case (m/, n’) = (0, 1) and arbitrary
n. We denote the value of the parameter for which this overlap occurs as K.(n). It is
straightforward to verify from (40) that K.(n) decreases with increasing n. Fig. 8 shows
that it decreases very slowly in the asymptotic regime.

Numerical evidence implies that the overlap of the (0, 1) and (1, n) resonances occurs
last in the sense that if all rationals up to level n on the Farey tree are included, then for
K > K.(n) every resonance overlaps with its two neighbors. This has implications, as we
will see in §5, for the adequacy of finite-state Markov models.

Near the overlap threshold,

par —pp o« [K — K (n)].

Thus, for K near K,(n), the overlap area (a case 1 triangle) always increases quadratically, as
[K — K.(n)]>. This is even valid as n—oo (I,—0). However, this scaling does not appear to
have clear physical implications, in contrast to continuous mappings like the standard map.
In the latter case, the turnstile area of the last invariant circle appears to dominate the
transport properties near the onset of global chaos [2]. In particular, the diffusion coefficient
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D scales in the same manner as the turnstile area of the golden-mean cantorus [19]. On the
other hand, there are no “dominant” cantori in the sawtooth map, since the flux (28) does
not depend on the winding number ». Thus, one may expect that the scaling of D near
K =0 is not the same as that of the flux. In fact, using (28), we find that the flux scales
as K'®, while D seems to scale as K% [7]. The latter scaling cannot be attributed to the
partial flux exchanged between the (0, 1) and (1, n) resonances (n—oo); rather, it emerges
as a collective effect of many resonances, exchanging approximately equal partial fluxes [7].
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4 Periodic Orbits within Resonances

Orbits which are trapped within a resonance give rise to the “islands around islands”
structure in smooth systems [20]. This structure impedes the escape of orbits from a reso-
nance because a minimax periodic point is encircled by librational cantori. Each cantorus
has a turnstile which impedes the transport of orbits. This structure is repeated hierarchi-
cally for each stable island within the resonance. It is natural to ask if such a structure exists
in the purely hyperbolic sawtooth map and how it affects the escaping dynamics.

In the smooth case some of the trapped orbits can be characterized by their rotation
frequency about the central elliptic point, or their rotation frequency about another trapped
orbit. For the sawtooth map, it is more convenient to characterize the set of trapped orbits
in terms of an extension of the linear code. This gives a complete characterization of the
trapped set.

4.1 Coding Scheme

An orbit is uniquely determined by the linear code {b;}. For a trapped orbit, however, it
is convenient to use a modified code which more naturally describes its properties. The
new code is constructed from two characteristics: the resonance within which the orbit is
trapped, (m, n), and an £-R symbol sequence {a;}. To construct the latter, consider the
principal island of the (m, n) resonance. The discontinuity line divides it into two halves,
call them £ and R for left and right, respectively (Fig. 9). A periodic orbit within the
(m, n) resonance has a period which is multiple of n, say ¢n; it has ¢ points in each island.
Pick a starting point z, in the principal island and let ag = 0 if zg is in £ , otherwise ag = 1;
continue for the remaining ¢ points, letting a; = 0 if z;, is in the £ half and so on. Therefore
{a;} has period ¢. For example, the librational ordered orbit with rotation frequency 3/8
(winding number relative to T™) has an £-R symbol sequence [1,1,0,1,0,0,1,0], where we
use the square brackets to denote the periodicity. This symbol sequence corresponds to the
usual symbol sequence for a hyperbolic horseshoe. In fact, as we will see below, this coding
scheme gives a general code for any trapped orbit of the sawtooth map.

The linear code {b;} is easily obtained from the £-R symbol sequence. To do this défine
a modified coding, the c-code, by setting ¢; = w if the iterate of X; crosses the discontinuity

line v times from left to right; if this line is crossed w times from right to left, ¢; = —u. From
(4), the linear code is related to the c-code by
by = ¢t — Ci—1 - (41)

For example, starting from the leftmost point of the (1, 3) orbit, the c-code is [0, 0, 1], and
the linear code is [~1,0,1].

Without loss of generality, we may restrict ourselves to the case 0 < m<n, so that
|ci] <1 for orbit (m, n). Suppose the c-code for this orbit is [co, ¢, €3y - - - 5 Cp1], Where time
0 corresponds to the leftmost point of the orbit. The c-code for a trapped orbit is then given
by

[1 —ag,c1,62,. 005 Cn-0,a1,1 — G1,C15. 00y Crm2,yQgy. vy L — Gy, Chye v, Qo)s (42)
where we assume that n>2. There is no change in c-code for points of the orbit which are
not in the principal island or in its pre-image. These points cross the discontinuity in the
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next iteration exactly as corresponding points of the (m, n) orbit. At times ¢ =in—1 (¢>0),

the iterate of X; crosses the discontinuity if and only if a; = 1. At times ¢ = in (1 > 0),

this crossing occurs if and only if a; = 0. This explains (42). Using (41), the linear code for

times (in — 1,4n,in + 1) is given by (1,—1,0) when a; = 1, and is (0,1, —1) when a; = 0.
The cases n = 1 and n = 2 are special. For (m, n) = (1, 2), the c-code is given by

[1 _ ao,a1,1 —a1y... ,1 — aq_l,ao],

therefore the linear code at times (2¢ — 1,21) is (1,—1) if ¢; = 1, and (—1,1) if a; = 0. The
c-code for (m, n) = (0, 1) is

la1 — ag, a2 — ay,...,a0 — g1,

therefore b; = a;41 — 2a; + a;—1.

If the £-R symbol is [1], the linear code is the same as that of (m, n) orbit. If £ -R
symbol is [0], the linear code is that of (m, n) orbit shifted to left once. These two cases
therefore do not give trapped orbits, but the usual (m, n) orbit.

Thus we see that each £-R symbol sequence corresponds to a unique linear code, and
hence to a unique orbit, if it exists. An orbit exists only if each configuration point z;, given
by (6), satisfies (2).

When A">3, we will show that every £-R code corresponds to a real trapped orbit. This
criterion is exactly that for the formation of “generalized turnstiles” (§3.3). In fact, in this
case we can not only characterize the periodic points but also the whole invariant set, which
is an orientation preserving horseshoe.

Consider the principal island of the resonance under the map T™ (see Figs. 10). Using the
boundary of the upper and lower turnstiles, we divide this island into three regions, Fig. 10a.
Upon one iteration, the upper homoclinic point G is mapped to E, and the lower homoclinic
point H is mapped to F; therefore, the vertical strip V; is mapped to Hy, and V, to H,, Fig.
10b. The middle strip M, which is the union of the generalized turnstiles, is mapped out of
the island. This defines an orientation preserving horseshoe map. The invariant set is given
by the non-escaping region of the principal island under repeated application of the map in
both the forward and backward directions. This is a Cantor set, and is naturally hyperbolic,
thus the dynamics on this invariant set is a full two shift, i. e., is topologically conjugate to a
shift map in the space of bi-infinite sequences with two symbols. This justifies our choice of
L-R symbols to code the dynamics. For illustration, we show the periodic horseshoe orbits
in Fig. 11a. '

Thus, when A>3, or K>4/3, every resonance has a full horseshoe, and every £-R code
corresponds to a true orbit. Even for smaller K there are always horseshoes in an infinite
number of resonances of the sawtooth map since A>3 when n is large enough for any K >0.

As A" decreases from 3, some of the trapped orbits began to disappear, and the horseshoe
is replaced by a structure similar to that of a stable island in smooth maps, as is illustrated
in Figs. 11b-d. In these figures we compute orbits for all £ — R symbol sequences up to
period 12. Only those orbits which satisfy (2) are real orbits and are shown in the figures.

The symbol sequence technique could also be used to code orbits which are not forever
trapped within a resonance. Since the resonance partition is complete, almost all orbits can
be decomposed into segments trapped within a particular resonance. Once in a resonance,
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the orbit must remain for some multiple of the resonance period. During each trapped
segment the £-R symbol sequence corresponding to the resonance can he used.

4.2 Trapped Rotational Periodic Orbits

An orbit which is trapped in a given (m, n) resonance, and which rotates under 7™ about
a point on the minimax orbit with a definite frequency, is called a class-1 orbit [20]. We
denote the rotation frequency by p/q, where p and ¢ are relatively prime integers (p should
not be confused here with the momentum!). In Fig. 12 we show such an orbit as a function
of the parameter. This orbit is born with all points at the minimax point at K =0 (it is a
collapsing orbit [11]); as K increases the points move outward. _

For simplicity, we will assume that ¢ is even, ¢ = 2§, and that no point of the orbit lies
on the discontinuity line. Of course, there can also be odd period ordered orbits. In fact,
by symmetry, there are at least two of them with the same rotation frequency. One has an
extra point on the left side of the discontinuity, and the other has one more point on the
right.

For the even-period case, symmetry implies that there are precisely § points on each
side of the discontinuity in the principal island. Following Fig. 13, denote the point on the
minimax orbit at z = 0 by O, and let R be the vector connecting the right endpoint of the
principal gap, R, to the first point of the orbit. We choose this point so that it makes the
smallest angle (measured in a clockwise sense around O) with the discontinuity line. The
vector Ro can be written in the basis of the stable and unstable eigenvectors:

Ro = as + bu, (43)

where s is the vector from R to F, and u is the vector from R to F. Our problem is to
determine the coefficients a and b.

To this end, consider repeated applications of the map T™. Each iteration of this map
generates a new point in the principal island, and after ¢ such iterations we must arrive back
at the starting point. Since the orbit is ordered with rotation frequency p/q, it stays on the
same side of the discontinuity as the starting point for t; = [§/p] + 1 — &, iterations of T™.
Here [2] denotes the integer part of z. During the first ¢ < ¢; iterations we have Rg—R,,
where

R; = a)A™™s + bA"u,
from the linearity of the map. After ¢, iterations the orbit is on the other side of the
discontinuity. Since the map is not linear across the discontinuity, it is convenient to now
use the point L (the left endpoint of the principal gap) as the new origin. Hence we will

— —
represent points on this side of the discontinuity by vectors L; = Ry — LR. Since LR =s+u
we may write

L; = (aA™™ — 1)A~lt)g 4 (pAnh — 1) Aty

for t; <t < ty, where t; is the time at which the orbit crosses the discontinuity for the
second time. In general, the lth crossing occurs at ¢ = [I§/p] +1 — 6,5, and the time between
the Ith and (I — 1)th crossing is

lg I—1)g
At = [_q} — [(—)QJ + 611 — O p.
p p
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We denote the vectors R; and L, after the /th crossing by R(!) and L({). Then

R(1) =aA™"8%s 4 pAmA% Y,

L(].) (CL)\_NA't31 — )S + (b/\nAn _ 1)u’

L(2) =(a)~"Ah — 1)\ nldtag L (pAnAt _ 1) \nltay (44)
R(2) = [(aA™4% — 1A% 4 1] s 4 [(A"44 — 1)A8% 4 1]

and so on. After p crossings we arrive at the point R(p), which is the symmetric image of

the starting point,
R;, +Ro=s+u. (45)

Using (44) and (45), we find, for p>2,

A = n(l—p)
/\nq + 1 Z ]._.[ )‘

1 °=0 (46)

In the special case p = 1 the result is
pyd . 1
“yT PTWeT

If we use (46) in equation (43), we will find some point in phase space. This point will
be an initial condition for an (np, ng) class-1 periodic orbit only if

1. The point is inside the (m, n) principal island, and outside the turnstile regions.

2. The actual motion is that of ordered rotation with the assumed rotational frequency
p/q-

These two conditions are not always satisfied. In fact, the trapped ordered orbits do not
always correspond to collapsing orbits [11] — the latter bifurcate only at integer parameter
values (unperturbed twist map and cat maps). This is illustrated in Fig. 14 for the orbit
with rotation frequency 3/10. For small parameter values two of the points fall outside the
interval 0<z<1, and thus the orbit is a “ghost”. It appears only at some non-zero parameter
value.

Another example of this is the case of class-1 homoclinic orbits. It is clearly impossible to
form a class-1 resonance (a chain of ¢ islands surrounding a minimax point) from the stable
and unstable eigenvectors, because these eigenvectors have constant directions throughout
the phase space. The same argument shows that long period ordered orbits approximating
class-1 homoclinic orbits are also non-existent.

When A is small the collection of trapped rotational orbits looks like the conventional
island structure of a smooth map. In Fig. 15, we show all the trapped rotational orbits up
to period 30 for the same value of A as in Fig. 11d. It is clear that the orbits move on the
hyperbolae corresponding to the invariant manifolds of the linearization of the map about

the (m, n) orbit.
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4.3 Topological Entropy

The number of periodic points trapped in a resonance grows exponentially with the period.
For a period n resonance the exponent is given by the topological entropy of T™ restricted
to the principal island of the resonance. Let N,(¢,A) be the number of periodic points in
the (m, n) principal island with period ¢ at Lyapunov exponent In()). It has the universal

form (see below)
Nyn(g,A) = N1(g, A™). (47)

The topological entropy of 1™, restricted to the principal island, is

ent(A) = qlgglo In[Ny(gq,A)]/qg. . (48)

Fig. 16 shows a plot of In[Ny(g, A)]/ent()) as a function of g.

When A">3, the dynamics is a full two shift; therefore, there are 27 period ¢ points, and
the entropy is In(2).

The fact that N,(g, A) has the universal form (47) follows from the fact that the dynamics
in the principal island can be described geometrically. As is clear from Figs. 10, there are
basically three cases: A smaller than 2, between 2 and 3, and larger than 3. In all these cases
the principal island can be divided into three regions. The central strip M is the union of
the turnstiles or the generalized turnstiles; therefore, in studying the invariant set, we can
neglect this strip. The remaining two strips, labelled V; and V,, are the regions which stay in
the resonance upon n iterations, and do not include the points on the discontinuity line. For
these strips, the map is geometrically equivalent to squeezing by a factor A~ in the stable
direction and stretching by a factor A" in the unstable direction; the left and right (m, n)
periodic points remain fixed, respectively. As shown in Fig. 10, the detailed shape of the V;
and V, strips depends only on A"; therefore, the number of periodic points under the map
T™ depends only on A".
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5 Transport

Since the dynamics of the sawtooth map for K'>0 is chaotic, it is natural to attempt to
obtain a statistical description of this motion. The problem of transport is to determine the
time scale for transition from one region of phase space to another. In this section we recall
the Markov model for transport introduced in [2, 7], and show that some of its predictions
are exact when K is large enough. For smaller values of K the Markov predictions are
approximate, though they can give quantitatively reasonable results.

5.1 The Markov Model

A Markov description of transport requires two objects, a partition of phase space into
regions, and the transition probabilities from one region to another. We will use resonances
for the regions, since they give a complete and countable partition of phase space. For
applications, it is also useful that resonances act as a partition of the momentum variable,
thus each region corresponds physically to a state with approximately fixed energy or action.
The set of trajectories which leave a resonance upon iteration are just those which have
points in its upper or lower (generalized) turnstiles. Consider an ensemble of initial conditions
which is spread uniformly within the resonance; the fraction which escape after one iteration
is exactly
F(m, n)
A(m, n)/n’
Here A(m, n)/n is the area of a single island in the resonance (see (32)), and F(m, n) is
the total flux leaving the resonance (§3.3). For A"<3, F(m, n) is given by (35), while for
A" 2> 3, F(m, n) is given by (36). Evaluating (49) gives then

PE(m, n) = (49)

L™+ A" —2) = |R,|, A"<3,
P, n) = { {0 T = S (50)

where R, is the residue (33). As X increases from 1, PZ increases monotonically from zero,
approaching 1 as A—co. ‘

The probability for a transition from one resonance to another is determined by the
overlap of the two turnstiles. Assuming a uniform ensemble, this probability is

(m/n—m'/n')

A(m, n)/n ’

F
PE(m/n—sm!/n') = (51)
where F(m/n—m//n’) is given by the equations in §3.4.
To complete the Markov model suppose that each resonance has a density p;(m, n) of
particles at time ¢. If we assume that the density in each resonance is, and remains uniform,
then the time evolution is given by

pers(m, n) = (1= PE(m, n))pi(m, n)+ 3 PE(m'/n'—m/n)py(m, ')

m! !

To make a finite-state model we can choose a set of resonances based on some approx-
imation scheme, such as all resonances with periods smaller than some value 7,45, or all
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resonances up to some level on the Farey tree. Since the area of resonances decreases expo-
nentially with the period, calculations based on such a truncation should rapidly converge
with period. This model will allow for global transport only if the turnstiles of all neighbor-
ing resonances overlap [7]. In the case of the sawtooth map, this can always be achieved for
K >0 by choosing the set properly, e. g., choosing n,,., large enough. Given such a set, the
critical for overlap is determined by the criteria derived in §3.4.

The formulas for transition probabilities are exact, but refer only to the special case of
a uniform density in each resonance. Even if this is initially true, uniformity is in general
destroyed upon a single iteration. However, if the mixing within a resonance is rapid, so
that any non-uniformity in density is smoothed, then one would expect (49) and (51) to be
approximately valid for all time. That is, by the time a typical trajectory escapes from a
resonance it has effectively lost memory of its previous history and the transition probabilities
will be Markovian. To estimate when this is valid, note that upon each iteration of T™, the
turnstile of a resonance is stretched along the unstable manifold by a factor of A”; thus,
roughly speaking, the effective area of the turnstiles grows to F(m, n)A™. This mixing will
be complete if the effective area “covers” the principal island: F(m, n)A™ > A(m, n)/n, or,
from (49), | '
PE(m, n) > A" ‘ (52)

Using (50), this implies that the Markov model should be reasonable for
A>3,

which is by now a familiar criterion. As we will see below, this criterion exactly determines
the validity of (49) for the escape from a single resonance. We expect that it will also govern
the validity of the Markov model more generally.

5.2 Escape from a Resonance

The simplest transport problem is the escape from a single resonance: iterate the (m, n)
resonance t times and determine the fraction of the initial area remains in the resonance up
to time £. The survival probability at time ¢ is defined to be this fraction

P (m, n) = Ay(m, n)/Ao(m, n),

where Ai(m, n) is the area remaining at time . We expect that this probability decays
exponentially, since the map is hyperbolic [21], and so define the escape rate

a(m, n) = — lim In(P(m, n)/t. (53)

Since escape takes place only in the principal island, we may restrict consideration to
the area remaining in this island under the map 7™ Thus in (53) we set ¢ = ng, and let
g—oo. As discussed in §4.3, the dynamics in the principal island under 7™ only depends
on A"; therefore the escape rate for any resonance can be obtained from that for the (0, 1)
resonance. Letting a(A) be the escape rate from the (0, 1) resonance at eigenvalue ), and
t =ngin (53), we get

a(m, n) = a(A™)/n. ' (54)
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The universal form (54) facilitates the numerical simulation considerably.

When A>3, we can obtain the escape rate exactly, because the dynamics restricted to
the principal island is a horseshoe map (see §4.1). From Fig. 10, one can easily verify that
the survival probability at time ¢ is

PP =(2/N),

which gives the escape rate
a(A) =1n(1/2), A>3. (55)
In this case, the dynamics is purely mixing: under each iteration the remaining area is
stretched uniformly in the unstable direction, uniformly covering the width of the resonance.
Thus the escape probability per iteration is the same for all time.
On the other hand, suppose that the transport is a Markov process. The probability of
escape per time step is PP (see (49); therefore, ‘

P’ =(1-PF).
Using (50), this gives the rate
=l =M+ AT =2)/4], <3,
cnr(}) = { In()/2) , A>3, (56)

Note that Eq. (56) is identical to (55) when A>3. Thus, for single resonance phenomena,
the Markov theory is exact for A>3, as we expected from (52).

Equation (55) can also be interpreted in the following way. Let 7 be the trapped invariant
set of the resonance. Then, the escape rate is given by the difference between the Lyapunov
exponent and the metric entropy, of 7 [22]:

4

ar(T) = L(T) — ent(T) . (57)

This is generally true for hyperbolic systems. For the sawtooth resonance, the Lyapunov
exponent is always In()), and the metric entropy is equal to the topological entropy (48).
Furthermore, when A>3, the topological entropy is In(2) (§4.3), so the escape rate is given
by (55).

When A<3, the entropy, and hence oy, can be determined numerically by computing the
growth rate of the number of periodic orbits. This number decreases with decreasing A as
the various £-R coded orbits cross the discontinuity and cease to exist (see §4.1). Checking
the existence of the periodic orbits involves large computations which we find prohibitive
when A<1.5.

Finally, the escape rate can be computed using a Monte Carlo experiment. We start
with a large number of points (typically 10%, chosen on an evenly spaced grid within the
resonance) and iterate the map. The fraction of points remaining within the resonance at
time ¢ approximates the survival probability. Fig. 17a shows the log plot of the survival
probability; it appears to decay exponentially for large t. We can verify this by defining an
average escape rate at time ¢,

B(t) = —In(PY)/t (58)
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After a single time step, P is exactly given by (56) in the limit when the number of points
in the Monte Carlo experiment goes to infinity, since the points are uniformly distributed.
For larger ¢ the rate undergoes some oscillations before relaxing to a fixed value (Fig. 17b).
These oscillations are more prominent for small A\. Beyond the oscillation region, the survival
probability decays exponentially until there are too few trapped points (around 10%) to obtain
good statistics. We derive a numerical escape rate by a least-square fit to the exponential
regime.

Fig. 18 shows the escape rate as a function of A\. The smooth curve is the rate given by
(56). The second curve is the Lyapunov rate (57); this is computed by finding all the trapped
periodic orbits up to a period such that the relative error in the rate is 2%. We are unable
to calculate the entropy for small A because the convergence with period is extremely slow
and excessive computations are needed. The numerical rates, from a fit to (58), are plotted
as triangles. At moderate values of A (1.5<1<3.0), the numerical rates tend to fall close to
ar,. However, ajps is not far off, the largest discrepancy being about 10%. We conclude that
oy is a reasonable estimate of the exact rate.

For small A, the deviation between ajs and numerical rates is larger; in fact, the two
rates approach zero with different functional forms. This is shown in Fig. 19, which plots
the escape rates as a function of absolute value of the residue, |R;| = K/4 (see (50)). For
small K, ops in (56) scales linearly with |Ry|. Fig. 19 shows that the numerical rate scales
with a different exponent. The least-square fit gives an exponent of 1.4 +0.1. This error
estimate is not reliable, due to the difficulty of fitting the numerical escape-rate data to an
exponential. It appears as if the exponent for the escape rate is the same as that for the flux
at small residue, which is 1.5.

26




6 Conclusions

The sawtooth map provides a simple model for testing the assumptions of transport
theories. Though the map is completely chaotic, it has ordered orbits for every rotation
frequency, as do all twist maps. These orbits form the skeletal structure for a partition or
coarse graining of phase space.

Resonances are formed from ordered minimizing orbits together with their stable and
unstable manifolds. The resonance boundaries are called partial separatrices. We use the
resonances to partition phase space since they are countable, and since their areas decrease
exponentially with period. We have analytically calculated the structure of resonances and
their areas, explicitly demonstrating that they give a complete partition of phase space.

Transitions from one resonance to another take place through turnstiles, whose areas we
also calculate analytically. When the turnstiles of two different resonances overlap, there
is a probability of direct transition from one to the other, otherwise a transition requires
entering and exiting intermediary resonances. When the turnstile of one partial separatrix
of a resonance becomes large, it can overlap with that of the other partial separatrix of the
same resonance. In this case there is a probability of making a direct transition from below
to above the resonance (or vice-versa), corresponding to this overlap area. The actual flux
exchanged with the resonance is reduced; we call it the generalized turnstile.

The Markov model for transport assumes that the mixing rate within a resonance is rapid
enough to smooth any non-uniformity in density. This non-uniformity is reflected in the area
remaining in the resonance; if this area is spread over a resonance island within one period,
due to the exponential growth of separations, then the mixing is sufficient. For the sawtooth
map this criterion is exactly the same as that for formation of the generalized turnstile: the
escaping flux from a resonance is greater than one third the area of one resonance island. In
this case the Markov model exactly predicts the escape rate. Furthermore, the trapped set
in the resonance is a horseshoe. '

Even when the mixing rate is slower, the Markov model predictions for escape do not de-
viate more than 10% from numerical calculations of escape rates. Alternatively, calculations
of escape rates based on the trapped periodic orbits, while giving accurate values, become
computationally intensive when the Lyapunov exponent is small.

We expect that the Markov model will be reasonably accurate even for smooth maps,
provided that the mixing criterion is satisfied. The breakdown of this criterion is likely to
occur most prominently when the minimax orbit in a resonance is elliptic, and is surrounded
by invariant circles. In this case the resonance should be itself partitioned into librational
resonances. Whether repeated partitioning ultimately results in a model for which the mix-
ing criterion is valid remains to be seen.
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Figure Captions

1

2
3

10

11

12
13

14

Schematic illustration of some points on a (minimizing) hyperbolic ordered periodic
orbit (filled circles) and its “minimax” counterpart (open circles) in phase space.

Universal form of the turnstile in the principal gap of a sawtooth-map cantorus.

Principal island of a sawtooth-map resonance (parallelogram LERF). The shaded
regions correspond to the upper and lower turnstiles.

a) Resonances of the sawtooth map for K = 0.1 up to period 10. b) Five resonances of
the standard map at K = 1.972. Note that away from the central gap, around z = 0,
the resonances have a rectangular shape similar to the sawtooth map.

The area devil’s staircase function in the sawtooth map at K = 0.3. Only half the
staircase is plotted. The other half can be obtained by the reflection symmetry: A(1l —

v)=1-—A(v).

Principal island of a resonance when A\* > 3, with its generalized turnstiles (shaded
regions). The darker shading indicates outgoing flux.

Overlaps, F(m/n—m’/n') and F(m'/n'—m/n) (shaded regions), of the generalized
turnstiles of two resonances (m, n) and (m/, n') when m/n>m//n'.

Critical value K,(n) for the onset of turnstile overlap of the (0, 1) and (1, n) resonances
as a function of n.

Hlustration of £-R coding for the (1, 2) resonance.

Construction of the horseshoe for trapped orbits. Notation for the homoclinic points
is the same as for Fig. 6. a) For A>3, the trapped regions are contained in the strips
Vi, Vs, while region M is the union of the outgoing halves of the turnstiles. b) Upon
iteration by T", V; becomes H; and V, becomes H,. ¢) Regions V;, V, and M for
2<A<3. '

Trapped periodic orbits, computed using the £-R code: a) A = 3.2, maximum period
is 8; b) A = 2.4, maximum period is 12; ¢) A = 1.8, maximum period is 12; d) A = 1.2,
maximum period is 12.

Trapped rotational periodic orbit with frequency 1/11 as A varies from one to three.

Rotational orbit of even period ¢ (under the map 7™) inside the principal island of a
resonance but outside the turnstiles (dashed regions).

Trapped rotational periodic orbit with frequency 3/10. The orbit is born from the
minimax point (the origin) with two of its points (those on the S-shaped curve) on the
wrong side of the discontinuity line. These points cross to the proper side at a larger

value of A.
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15

16

17
18

19

Set of trapped rotational periodic orbits for all frequencies up to a a maximum period
of thirty. Here, A = 1.2, as in Fig. 11d.

Number of periodic points trapped in a resonance as a function of period ¢ at A = 2.4.
The number is shown on a logarithmic axis with a base A = 1.859, which is the
exponential of the entropy. For periods 18 and 19, N(gq) deviates from the exponential
behavior, due to numerical error in checking the existence condition (2).

a) Survival probability from a Monte Carlo experiment with 10° initial conditions. b)
Average escape rate from (58).

Escape rate as a function of the Lyapunov multiplier. The smooth line is the Markov
rate, (56). The dark line is the Lyapunov rate, (57), which is determined numerically
within a 2% relative error. The triangles are numerical rates, (58).

Escape rate as a function of the residue. The straight line is the Markov rate, and the
triangles are numerical rates. The smooth curve is the least-square fit to a power law.
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