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1 Introduction

In a previous paper! by one of the present authors, which will hereafter be denoted as
(I), a generic theory of quasi one-dimensional nonlinear wave propagation was studied by
means of the reductive perturbation method. It dealt with an asymptotic method of reduc-
tion for waves of small but finite amplitude, and it was shown that weakly dispersive and
dissipative systems can be reduced to the Kadomtsev-Petviashivili (K.P.) equation? and the
Zablotskaya-Khokholov (Z.K.) equation,® respectively. Also, it was remarked that there exist
exceptional cases. For e#ample, in a weakly dispersive system, in general the dispersive terms
are given by third-order derivatives with respect to the space and time variables; however,
there exist exceptional systems with dispersive terms comprising second-order derivatives.
A typical example is two-fluid magnetohydrodynamics without dissipation. By means of the
reductive perturbation method this system was reduced to the K.P. equation by DeVito and
Pantano* for a cold plasma and by Shah and Bruno® for a warm plasma. Howevef, in both of
these works a one-dimensional transverse perturbation was considered, which is a slow vari-
ation in the direction normal to thé ambient magnetic field as well as the primary direction
of propagation, and consequently two-dimensional (2D) K.P. equations were derived. 'Also,
instabilities of solitons for transverse perturbations? were not studied. On the other hand,
using a heuristic argument Kuznetsov and others®” derived the three—dimehsional (3D) K.P.
equation for a cold plasma and showed that the nonlinear evolution of an instability of a
fast magnetosonic soliton results in acoustic collapse, for which the calculation in 3D space
is crucial.

In the present paper, as an application of the general theory to the exceptional case, the
system is reduced to the 3D K.P. equation for a plasma of finite temperature, and stability

conditions on the one- and two-dimensional magnetosonic solitons are established for both



the fast aﬁd slow modes.

2 A Heuristic Derivation of the K.P. Equation

The two-fluid magnetohydrodynamic equations for an isothermal hydrogen plasma are given

by8,9

on . .
s + div(nv;) =0, (1)

Cil\;z = —ﬁ(gradn)/n +(1/n)curl B x B +’)’[{(1/n)(cur1B . grad )} v;

-I-g-t- {(1/n) curlB}} -y +7) [{(1/n) curl B - grad } {(1/n) curl B}] , (2)

80_]253 = curl(v; x B) — curl (dv;/dt) , (3)

where n -and v; are, respectively, the density and the flow velocity of the ions, B is the
magnetic flux vector, v is the electron-to-ion mass ratio, 8 is the usual pressure ratio (i.e., a
characteristic plasma pressure divided by a characteristic magnetic pressur.e), and % = a% +
v; - grad. All the quantities are dimensionless, being normalized in units of a characteristic
strength of B, a characteristic density, the gyrofrequency of the ions, and the Alfvén velocity,
the latter two quantities then being given in terms of the characteristic field strength and
the density. The system of equations is obtained by assuming charge neutrality and then
eliminating the electron flow velocity and the electric field vector by meéns of Ampére’s law
and the equation of motion for the electron fluid, respéctively. In Eq. (2) the effects of the
electron inertia appear in the last two terms on the right-hand side, whereas in Eq. (3) the
last term on the right-hand side derives from the ion inertia. Both kinds of inertia terms
involve second-order derivatives and are respoﬁsible for the dispersion of hydromagnetic
waves. It is well known that for propagation normal to the magnetic field, the dispersion

due to the ion inertia vanishes and the electron inertia is responsible for the dispersion of the



fast wave. Here it may be noted that if the flow velocity of the plasma, v, is used instead of

the ion velocity, v;, we have

g—z + div(nv) =0, (1)
fl—: = —B(gradn)/n + (1/n)curl B x B —v[{(1/n) curl B - grad } {(1/n) curl B}] , (2

%—? = curl[v x B] — (1 — ) curl (dv/dt) — 7[cur1 (d/dt)( curl B/n)

+ curl {(curl B/n) - gradv}] . (3)

The last term in Eq. (2') does not not contribute to the linear dispersion relation. Conse-
quently, the contribution of the electron inertia to the linear dispersion relation is given by
the last term in Eq. (3') which in this case comprises third-order derivatives, whereas that
of the ion inertia is given by second-order derivatives in the same way as in Eq. (3).

For a cold plasma, it is well known that in the one-dimensional case a fast hydromag-
netic wave propagating in a uniform plasma can be described by a Korteweg-deVries (KdV)
equation.®!® Let the uniform density and magnetic field be specified as n = 1 and B, = sin¥,
B, = cosf, and By = 0 for a wave propagating in the (z, y)-plane with a wavenumber vector
k = (kg ky). Thén, it 4 = 0 is assumed, the linear dispersion relation of the systerﬁ of

Egs. (1)=(3) [or Egs. (1)—(3")] takes the simple form
(w? — k%) [wz — (kg cos 9)2] — w2k (ky cos 0)2=0. (4)

The first term on the left-hand side of Eq. (4) gives the phase velocities of the fast wave and
the Alfvén wave in ideal magnetohydrodynamics (MHD), and the second term is respohsible
for the dispersion produced by the ion inertia. The dispersion vanishes for § = Z, that
is, for a wave propagating normally across the magnetic field, in which case the electron
inertia is responsible for the dispersion. The critical angle beyond which the electron inertia

becomes crucial is tan~!(y~1/2 — 41/2), We now assume that k, < k. < 1, namely, the wave
Y Y y
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form varies slowly in the z-direction and even more slowly in the y-direction. This may be
expressed by means of a small parameter ¢ as ky, ~ ¢, and k, ~ €/2. Then Eq. (4) can be

solved to give

w =k, + % [(cot 6)262 + (R2/R)] + -+ . (5)

The second term on the right-hand side of Eq. (5), which is O(¢%/2), gives the dispersion. The
first term in the bracket results from the ion inertia. However, the second term originates
‘from the expansion of the first term of Eq. (4), that is, the nondispersive term; consequently,
1t exists even in the ideal magnetohydrodynamic limit. Hence, the second term is independent
of both the electron inertia and the ion inertia and takes the same form for all 4. It is
obvious®~* that the coefficient of k2 is in agreement with that of the dispersive term of the |
KdV equation for § < 6, and v = 0, while k:/kx is replaced by [ %dm so that the KdV

equation is modified to the K.P. equation
. 3 1 =
S ony 4+ bn g, + 5 onén g + von ppy + 5 / 6N pmdz =0, (6)

where én is the ;ien{sity perturbation, and subscripts after a comma denote partial deriva-
tives. The second term on the left-hand side of Eq. (6) may be eliminated by a Galilean
transforﬁation. Moreover, noticing that & ~ €'/2, % ~ eand & ~ %2, we find én ~ e
Consequently upon introducing the coordinates ¢,7, and 7 by ¢ = €/%(z — 1), n = ey,

T = /%, we can rewrite Eq. (6) in the usual form
W4 30,0, ,,0) 1o .
T +§n M +’/n,£§§_§+§nmn" : (6")

where én = en(l),

As is shown in Eq. (5), for § < 6, we find that v ~ —1 cot? § is negative, whereas for all

6, v takes the form?®?®

v= (/2 {1 = (77 = 42) ot 0} = (1/2)( — cot?6) ©




and v becomes positive for § > 0§, and vanishes at § = .. This expression for v enables us to

make an analogy with the shallow water wave, for which the K.P. equation takes the form?

[f,f+gff,e+%<§ —T) f.ﬁﬁf}’e'}'%f,nn:b (8)

where f represents the surface elevation; 7,¢, and n are the corresponding coordinates, all
of which are normalized by the water depth and the linear speed of a water wave; and T is
a dimensionless surface tension, which in our case corresponds to the ion .inertia, term cot? 4.
A remarkable fact based on the results of Kadomtsev and Petviashvili is that if 1/3 — 7' < 0
(i-e., very thin sheets of water), the one-dimensional soliton is unstable for long transverse
perturbations. Therefore, we can conclude that the one-dimensional fast magnetosonic soli-
ton is unstable for long transverse perturbations, unless almost perpendicular propagation is
considered. On the other hand, in the latter case, v Becomes positive and one-dimensional

solitons will be neutrally stable.

For a plasma of finite §, it is well known that in the limit of ideal MHD, the linear

dispersion relation reduces to
[w? = (Bo - k)?] [w = (1 + B)wk* + (Bo - k)%k?| = 0. 4)

Solving Eq. (4') for w yields six real roots for the three modes, namely, the Alfvén wave,

with fwy, and the fast and slow magnetosonic waves with twy and Fw;, where

wqg = Bok (9)

ore = K[p{@+8 %[0+ 87 —ano- 2] )] (10)

and where the + signs correspond to the fast and slow waves, respectively. Then, assuming
the same ordering enables us to expand w;/k, and w,/k, in inverse powers of k. If wy s/ ks
is denoted as A,y,s, we have

wp & Nopky + Zpk, + ;Lpz(k:/kx) + ppak? [y + - - - (5"
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where the suffix p denotes f or s. It may be noted that the second term in Eq. (5'), which
is linear in k,, derives from By - k, and consequently terms linear with respect to k, do not
exist. In other words, if the transverse perturbation is normal to the magnetic field, then
Z, =048

On the other hand, it has been established that the fast and slow waves can be governed
by respective KdV equations, for which exi;licit forms of the coefficients of the nonlinear
terms and the dispersive terms have been obtained (see, for example, Ref. 10). Hence, it
is readily anticipated that incorporating the KdV equations Wﬁh the expansion of Eq. (5)

yields the K.P. equations for the fast and the slow waves,
(u,r + AUt g + Vugee) o + poUpm + paftee =0 - (1

in which ¢, 7, ¢, and 7 are introduced by

§ = €%z — Ayt) (12a)
n o= ey | (12b)
¢ = e(z—2Z,) (12¢)
r o= &% (12d)

The coeflicient of the nonlinear term Aj is always positive'® and the signs of v, u,, and us are
listed in Table 1. The stable angular domains of one-soliton solutions are shown in Fig. 1.

Details will be explained in the next section.




3 Derivation of the K.P. Equation by Means of the
Reductive Perturbation Method

We first assume that § < 6. so that v is equated to zero. Then, for the configuration under

consideration, the system of Eqs. (1')-(3') is written in matrix form:

o S soU 3 .
at+2 Pa; Zl —I q_o (13)

Here, z; = z, 23 =y, and z3 = 2; U is a column vector with seven components,

I n 7
Vg
Uy
U=1| v, | ; (14)
B,
B,
L Bz J
and A’ and K7 are-7 x 7 matrices, as follows:
[ n 0 0 0 0 0 ]
Bin vy, 0 0 0 By/n B./n
. 0 0 v, 0 0 =—Bg/n 0
Al = 0 0 0 Vg 0 0 —B;/n : (15a)
0 0 0 0 0 0 0
0 By =B, 0 -—u, Vg 0
| 0 B, 0 —-B, —v, 0 Vg j
[(v, 0 = 0 0 0 0 ]
0 vy, O 0 -—-B,/n 0 0
B/n 0 v, O B:/n 0 B,/n
A? = 0 0 0 v 0 0 -B,/n (15h)
0 -B, B, 0 Vy 0 0
0 0 0 0 0 Vy 0
0 0 B, -B, 0 0 vy




‘A3

v, 0 0 0 0
0 v, 0 0 -=-B,/n 0
0 0 v, 0 0 ~B,/n
,B/’I’L 0 0 Vz Ba;/n By/n
0 -B, 0 B, uv, 0
0 0 -B, B, 0 v,
0 0 0 0 0
- -
all the elements are zero
K' =
000 O 0 0
000 -1 0 0
L0 01 0 0 0 |
all the elements are zero
K? =

S O O o o

(15¢)
0
v, |
(16a)
(16D)



all the elements are zero

K = . (16¢)

-1

00 000 O

01 0 00O0 O
L0 0 0 000 O |
K is responsible for the dispersion in the m-direcfion, which is associated with an interchange
of vy and v,, arising from (V X v),, whereas K? and K® yield the dispersion effects in the y- -
and z-directions, which are higher order than that given by K*, but, nevertheless will not
be discarded. Equation (13) must be supplemented by the subsidiary condition divB = 0,

which perpetuates if it is valid initially.
A. Linear Dispersion Characteristics
The linear dispersion relation is expressed as
—wéU + (ijAg—iZwijj) U =0, o (17)

where Al = A(U,) and

1

0

0
Up=| 0 (18)
0OS

g

C

0
sin

Following the ordering so far assumed, we write k; = €'/2k,, k; = ¢k,, ks = ¢k, and

w = €/%w. Then Eq. (17) takes the form

BT+ Fo Af + /2 (By A2+ F. A3 — ik, K*) + e(—ioF, ) K? + e(—iwk.) K*| 6U = 0 .
(19)

10



As was shown in (I), this equation may be written in a form familiar to the usual perturbation

method,
(Ho+ e/* H' + eH") ¥ = AW (20)

where 8U is written as ¥, A = ©/k,, and Hy is the unperturbed part
whereas H' and H” are perturbation terms

H' = (ky/k;)A2 + (%, /k,)AS —iAK, K* (22)

H" = —iAk,K? —iAF, K. (23)

The eigenvalue pfoblem of Eq. (20) can be solved by a primitive expansion in powers of

€L/,

U= o+ 2T 4 eWy + 205 + .. | (24)
A = Ao+ eAy+ehy+SPA5+ ... . (25)

In zeroth order it yields
HyUy = AT, . | (26)

As is shown by Egs. (9) and (10), in the limit of ideal magnetohydrodynamics, besides the
null eigenvalue (for B, ), there are six real eigenvalues of Hy, corresponding to the fast and

slow magnetosonic waves and the Alfvén waves, that is,
Ao = %Moy , *A,, , £cosh, and 0, (27)

where A,y &~ 1 + g— sin?@ and A, ~ +/Bcosf (1 — g sin? 0), if # <« 1. The respective

11



eigenvectors ¥,, = (‘Il?, U, U, Up,) will be represented as

I 1

\Ilff = vff (28a)

R | (28b)

(28¢)

z

0
0
0
Up, = |0 ] . (28d)
0
0

Here vff etc. are defined by
vff = F(cosfsinb)A,z/(A2; — cos® ) & —cot 6 [1 — g(l + cos® «9)} (29)

Bff = sinfAZ;(AZ, — cos?§) ~ cosech(1 — Bcos?d) . (30)

12



Also, vE and BZ are given by the same expressions, but with A, ¢ replaced by A,s; conse-

quently we find vE ~ £./F sin [1 + (1 + cos? 0)] and BE ~ —fsin (1 + B cos? ).

In the first place, the fast wave propagating in the z-direction will be considered an

unperturbed state, and hence it is given by \I!}" Hereafter, the superscript + will be omitted

unless otherwise stated. From the representations of A2, A3, and K it is readily seen that

r O T
0
sinf B,; +
AdT; = 0
0
0
i 0 1
- ous -
0
0
ATy = B
—sin A5 + cos Qv
0
- 0 o
S
0
0
K'U; = 0
0
—V,
L 0 -

(31a)

(31b)

(31c)

Equations (31a) and (31c) mean that the y-components of the flow velocity and the magnetic

field are excited by the variation in the y-direction and the dispersion in the z-direction,

respectively. This may be regarded as a rotation of the polarization of the velocity and the

magnetic field; consequently, the state so obtained belongs to the Alfvén wave mode. On

the other hand, Eq. (31b) implies that the magnetosonic wave with a compression of B, is

13



excited due to the variation in the z-direction. From these representations we find
(27H"Ys) = (f|H'|f) = (FI(F-/F2) 43)5) | (32)
where ®,, is an adjoint eigenvector to ¥,,, introduced by the equation
Do Ho = £Aon Pon (33)
such that the orthonormality condition
(@om Yon) = bmn | (34)

holds. Specifically, we have @y, = ﬁi—s \I’T,SS and &4 = %\Il]; Here, the 7 x 7 matrix S is

given by )
000O0O0O

B

0

0 I

S=1|0 - (35)
0
0
0

which makes SH, symmetric; also, + denotes the transpose, and Ny, = (\Iers SUss) =
B+ A2+ (v255)° + (Bass)?. Equation (32) yields Ayy = 28v,5/N; &~ —(f8/2) sin 26, while
Wy is given by Eq. (14) of (I) as

(n|HY|f
= f'_p Uon + ¢ Ty, (36)

with the definition Hj = H' (A = A,y).

In the next order, Ayy is obtained as

¢ {flHoln) (n] 5| f) "y =
Z Aof_Aon +(f|H0lf>=_<

where (f|K3|f) = 0 has been used. Introducing the expression for H' into Eq. (37) and

! 1 !/
f HorHo

A, Yy

2f =

f> +i02, Fy Boy (37)

n

noting that (f~|A3|f*) = (A*|A3|f) = 0, we have

Azf — (Ey/zm) Z (flé\l;l)_(ZlA 1f) ( z/zz)2 Z (fl“fl:’)_(”ﬂ:io[f)

Ax

Bge,sE

14



— (Aof Ez)2 Z (fl-[(j'\oljl("j\lf lf) ’ (38)

At

in which the contribution from the cross term
iRy o 2 [(£1481) (al 1) + (AU ) (ol4B17)] /(Bor = Aun) - (39)

cancels the second term of Eq. (37) so that A,; becomes real, as was anticipated by the result
in the previous section. The dispersion matrix SK} is not antisymmetric whereas SA% is
symmetric; hence without the contribution from (f|H{|f) « (f|K?|f), which originates from
the dispersion in the y-direction, the frequency shift does not become real. This situation is
rather special from a generic view, for example, as was assumed in a previous paper!! since
if

(FIEHF) = (FIKPIf) =0 (40)
is assumed, w becomes, in general, complex. We thus find that the present system belongs

to the exceptional case defined in (I).

B. Nonlinear Derivation

The reductive perturbation method incorporates the expansion of the linear dispersion rela-
tion with the expansion in amplitude, which is assumed to be O(g). Namely, U is expanded

as

U:U0+ 6U1+€3/2U3/2+62U2+"' s | (41)

which corresponds to Eq. (24), where U « g should be O(¢). Then the coordinates &,7,(,
and 7 are introduced by the extended Gardner-Morikawa transformation as was given in

Eq. (6') [see, e.g., Egs. (17)-(19) in (I)]:
£ = ez — Aot), _ (42a)

n o= ey, (421)
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¢ = e[z —=2B(veg/Ni)t] (42¢)

T = /%, ' (42d)
Here A(U) is one of the seven eigenvalues (Aft, Asx, Aas,0) of AY(U), and )¢ is taken to be
At+(Uo), which is equal to A,;. (Note that A and A are different quantities.)

Introducing Eq. (41) and the above transformation into Eq. (13), in the first order of

expansion, that is, in the order €¥/2, we have
(Ag = Ao) Urg =0 (43)
which, in view of the identity A} = Hp, admits a solution
U =Tsu , (44)

where u is a scalar function to be determined later. In the next order (the order €?), Eq. (41)
yields

(Ho = Aog) Usjag + A3Usn + (A3 = (FI421F)) Usc = Aoy K Unge =0 (45)
Substituting Eq. (44) into Eq. (45) and noticing that (f|A2|f) = (f|K|f) = 0, we can solve

Eq. (45) to obtain

_1 ’
Usjoe = e (A2 u, + A3 T ue — Ay K' g uge| + vy, (46)

where v is an arbitrary scalar function. It is obvious that Eq. (36) is a Fourier transformation

of Eq. (46). The nonlinear term appears in the next higher order ¢%/2, which now takes the

form
(Ho — Auy) Use + Urr + (V'u Aé ~Up) Ure + AS Usjom + AS Usjae

—Aos [K* Usprge + K2 Urgy + K*Ure| =0, (47)

16



where V, is defined by the gradient with respect to the seven components of U{u;}, i.e.,

VA U, = 2 (%ﬁ—;) " Wo;u. Multiplying this equation by ®,; from the left, and substitut-

ing Eq. (46) we obtain the K.P. equation
(7 + Aouttg + viigee) e + pathny + pauge =0 (48)

Here v and p; are given by

1

I ) |
Ho— Ay K

K1

f> , (492)

v o= A§f<f

#z‘=<f

which, by means of Eqgs. (28) and (31), take the forms

7 1 i

f> L (i=2,9), (49)

v = —(};/Ny) [A3;/ (Al — cos?0)] (50)

o = (B+sindB.p)? [(Aoy/Np)/ (A2, — cos*6)] , (51)

+ +32 + —\2
. 2 (vzf + Vs (vzf + vzs)
K3 = (ﬁ /Nf Ns) |: Aof _ Aos + Aof + Aas

+(—éin0Aof+cosﬂvzf)2/(Nf Ass), (52)

while

, ) B )
/\0 = (VU )‘f)o L:Df = (_a_nf') + (avf> AOf + (an> Bzf : (53)
0 z/0 /0

Frofn Eq. (50) we find that v is negative; also it vanishes for § = 7/2, as v.; does, where
the electron inertia becomes crucial. On the other hand, Eqs. (51) and (52) show that u,
and pg3 are both positive and do not vanish for § = 7/2. We also note that the origin of the
coordinate { moves in the negative z-direction because v} ¥ < 0.

For small values of §, the angular dependences of the coefficients can be shown explicitly.

Namely, if § < 1, then Ny & 2cosec?d + 28(1 — 2 cot?d) and N, = 23; hence, they may be

17



approximated as

v o --;- cot29[1-,3<1+%sin29>} , (54)
1. B I ., )

He ® 5+3 (1 5 sin 6) , (55)
~ l 6 2 ) =

Uz R~ 2—{-2 (1— sin“d) , (56)

3 B .
/\6 ~ 5 -+ Z SII’].2 6 , (57)
while ¢ is expressed as
( =~ ¢ [z + (g sin 26’) t] . (58)

The approximate expressions of Eqs. (54)-(57) imply that the coefficients may be well ap-
proximated by those of the cold plasma; however, it should be noted that to order f3, a
difference between p, and ps appears, implying an anisotropy in the (v, z)-plane. Here the
physical meaning of u3; may be noted: The first term on the right-hand side of Eq. (52)
results from the intermediate state comprising thé slow waves, whereas the second term is
due to compression of B, and in the small-3 approximation the dominant term is the latter
one. Hence, for the fast wave, the compression of the z-component of the maénetic field is
responsible for perturbations in the z-direction.

For the slow wave we likewise obtain the K.P. equation (48), the coefficients of which
may be given by Eq. (50)-(53), provided the subscripts f and s are interchanged. It then
follows from Egs. (50) and (51) that for £ > 6 > 0, v is positive and p, is negative. However,
in Eq. (52), the first term can be negative; consequently w3 changes sign depending on the
values of B and 6. Also, noticing that (As,, )0 Aos + (Asn)o > 0, one sees that A/ > 0. These

results may be seen by expanding in f:

v o~ ;)1-,63/2 sin®fcos? 8 , (59)

r

18



o —%63/2 cos>§ , (60)
L 372

ps & —-2-,8 cos 36 , (61)

PV \/,B_ cosf | (62)

while { = €[z — 2ﬂ(vzs/Ns)t] is approximated as
¢ ~ ez—+/B(sin0)f . (63)

In Eq. (61) it is exhibited that in the domain £ 20 >0, us is negative for £>02>0and
positive for § > 6 > Z. This implies that there is a critical angle near n /6, beyond which u3
changes sign from negative to positive as § increases. An explicit form of ,U;vg was given by
Shah and Bruno.® We can easily check that for ‘<< 1, it leads to the same expressions as
those in Eqgs. (55) and (60). The approximate expressions for u; and s — \}iz., Egs. (585),
(56), (60) and (61) — can be shown to be in agreement with those given by the heuristic
argument in the previous section. Thus its validity is demonstrated. The merit of the
analytical approach in this section is that physical pictures underlying the reduction to the
K.P. equation can be visualized. For example, the coefficients (except A,) can be given by
the diagrams illustrated in Fig. 2, for the fast wave. The same diagrams may be used for the
slow wave, in which case the solid lines represent the slow waves, and s* and s~ in Fig. 2(c)
should read f* and f~, respectively.

It has been well established? th@t for almost normal propagation, the electron inertia
is responsible for dispersfon and, for the fast wave, the sign of v changes from positive to
negative beyond a critical angle §.. However, for the slow wave, this does not take place;
namely, v is positive and decreases to zero as 6 increases to 7/2 (whereas, it diverges‘ as
§ — 0).1° Since the K.P. equation (48) is obtained at order ¢%/2, the electron inertia terms

in Egs. (2') can be neglected as being higher order, whereas in Eq. (3') they are order of ¢/2

19



and higher. Consequently Eq. (13) may be modified to

3 6 d 2
ZA’—+1— Zé—d—{’U+7%%KGU—O (64)
Jj=1

where the last term derives from «y curl 4 (curl B/n) and K*® is represented as

F -

all the elements are zero

K= : (65)

Hence, (f|K*|f) does not vanish but is equal to —B?2; /Ny (namely, the system is not excep-
tional.)
Therefore, for the fast wave propagating almost normally across the magnetic field, v is

approximated as
v Ryl Bzzf/Nf R % [1 -p (cos29 +‘1 —2cot?f — % sin? 9)] .. (66)
For the slow wave the contribution of the electron inertia is given by
Aoy BY /N, %ﬂsﬁ sin? @ cos § . (67)

In comparison with Eq. (59) this is smaller than the contribution from the ion inertia by the
| factor 7. Consequently, for the slow wave the effect of the electron inertia may be neglected
even at § = 7 where v vanishes. (This can be seen from the exact expression for v.1°) Since
As also vanishes for § = Z, the wave does not propagate in this direction.

The solitary wave of the 3D K.P. equation (48) is readily obtained as

u = (6/X)(v/|v])2x*sech? [N/\/TV—I) {f + P + P3¢ — (;Lg P2 + s PZ + 4(1//l1/|)/{2> T}] )
(68)
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where &, Py, and P; are arbitrary constants. For P, = Py = 0, it reduces to the one-soliton
solution of the KdV equation, and it is unstable if v and u, (or us) take different signs,
namely, v, < 0 or vus < 0. For P, = 0 or P; = 0, we have a one-soliton solution of the
2D K.P. equation which is obtained by putting pz = 0 or uz = 0 in Eq. (48). In this case,
if vuz < 0 or vuy > 0, the one-soliton solution is unstable for perturbations in the y- or the

z-direction, respectively. These results are summarized in Table 1 and illustrated in Fig. 1.

4 Conclusions and Remarks

In the present paper, stability conditions on magnetosonic solitary waves are established.
For the fast wave, one-soliton solutions of the KdV equation and the 2D K.P. equation are
stable only for nearly normal propagation across the magnetic field. The characteristic length
of the solitons is the skin depth, ¢/wp.. It should, however, be remarked that for finite S,
if a disturbance is imposed in the z-direction of the unperturbed magnetic field, a soliton
propagating in the (z,y)-plane begins to move in the F z-direction for the + mode of the
fast wave, respectively. This suggests that a cylindrical solitary wave propagating radially
inward or outward should be examined in detail. (The same is valid for the shock wave.)
For the slow mode, one KdV soliton is always unstable for transverse perturbations, and
only the 2D K.P. soliton propagating in the (z,y)-plane at an angle 7 =0 >0 is stable for
transverse perturbations that are in the z-direction. The characteristic length is, of course,
given by the normalization v4/ws = c/wp;. However, in this case the coefficient 3 of the
second-order z-derivative term becomes negative, and consequently it should be examined
as to whether the initial value problem of the 3D K.P. equation (48) is well-posed or not.
It has been shown by Kuznetsov and Musher®” that during the nonlinear evolution of the
instabilities, collapse occurs, leading to an acceleration of ions. On the other hand, it has been
shown by Ohsawa!® that resonant ions are accelerated by the magnetosonic solitons and that

the acceleration is remarkably efficient for the fast magnetosonic soliton propagating almost
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normally across the magnetic field, which is stable with respect to transverse perturbations.
. Incorporating these two results implies that ions are accelerated in all directions.

Finally, we note that the perturbed solutions in lowest order, U(), is proportional to
¥,; or U,,, and therefore if B(!) vanishes, then v(®) and n® vanish simultaneously and, by
means of the generalized Ohm’s law, the perturbation of the electric field E® also vanishes.
Hence, without a magnetic perturbation, the plasma does not move. In other words, any
displacement that does not accompany a magnetic perturbation is excluded. That means
that even if £ is small, the so-called low-8 approximation is not considered, for which the

electrostatic motion given by the E x Bq drift (where E = —V) is crucial.
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The Fast Wave
Table 1

0<8<é, 0=6~%—/7 0.<0<Z

v <0 0 >0

Lo >0 >0 >0

Iz >0 >0 >0
1D soliton in z unstable stable
2D soliton iﬁ Ty unstable stable
2D soliton in zz unstable : ' stable
stability unstable ' stable
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14

Ha

3

1D soliton in z
2D soliton in Ty

2D soliton in zz

The Slow Wave

Table 2

0<6<00 9:00

>0

<0

<0
unstable
unstable

unstable
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~I(B<])

>0
<0

0

fo<f<Z
>0
<0
>0
unstable
stable

unstablé



Figure Captions

1. Phase velocity surfaces for § = 0.5 and 0 < 6 < 7/2, illustrating the angular stability
regions of the one-soliton solutions (cf. Tables 1 and 2); the critical angles 8, and 6,

shown here are approximate.

2. Diagrammatic representation of the linear frequency shifts for the fast wave: the solid
lines represent the fast waves; the other lines represent the intermediate states specified
as A* (Alfvén waves), s* (slow waves), and B,(Up,); and A2, A3, K, and K? are the
vertices. Diagrams (a), (b), and (c) yield v, u,, and p3, respectively, while (d) shows

how the cross terms are cancelled by (f|K?|f).
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